Inclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SID
ilustraciones, gráficos
- Autores:
-
Díaz Guerra, Jaime Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86053
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
Algoritmos difusos
Algoritmos genéticos
Inferencia (lógica)
Lógica difusa
Sistemas difusos
Algoritmos Genéticos
Lógica Difusa
Preferencias
Sistema de Inferencia Difusa
Optimización Multiobjetivo
Genetic Algorithms
Fuzzy Logic
Multiobjective Optimization
Preferences
Fuzzy Inference System
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_3bf177eb524aabf78621341d44dff24d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86053 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Inclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SID |
dc.title.translated.eng.fl_str_mv |
Dynamic inclusion of decision-maker preferences in a multi-objective genetic algorithm using a FIS |
title |
Inclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SID |
spellingShingle |
Inclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SID 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación Algoritmos difusos Algoritmos genéticos Inferencia (lógica) Lógica difusa Sistemas difusos Algoritmos Genéticos Lógica Difusa Preferencias Sistema de Inferencia Difusa Optimización Multiobjetivo Genetic Algorithms Fuzzy Logic Multiobjective Optimization Preferences Fuzzy Inference System |
title_short |
Inclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SID |
title_full |
Inclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SID |
title_fullStr |
Inclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SID |
title_full_unstemmed |
Inclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SID |
title_sort |
Inclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SID |
dc.creator.fl_str_mv |
Díaz Guerra, Jaime Andrés |
dc.contributor.advisor.none.fl_str_mv |
Jaramillo Álvarez, Gloria Patricia |
dc.contributor.author.none.fl_str_mv |
Díaz Guerra, Jaime Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Ciencias de la Decision |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación |
topic |
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación Algoritmos difusos Algoritmos genéticos Inferencia (lógica) Lógica difusa Sistemas difusos Algoritmos Genéticos Lógica Difusa Preferencias Sistema de Inferencia Difusa Optimización Multiobjetivo Genetic Algorithms Fuzzy Logic Multiobjective Optimization Preferences Fuzzy Inference System |
dc.subject.lemb.none.fl_str_mv |
Algoritmos difusos Algoritmos genéticos Inferencia (lógica) Lógica difusa Sistemas difusos |
dc.subject.proposal.spa.fl_str_mv |
Algoritmos Genéticos Lógica Difusa Preferencias Sistema de Inferencia Difusa Optimización Multiobjetivo |
dc.subject.proposal.eng.fl_str_mv |
Genetic Algorithms Fuzzy Logic Multiobjective Optimization Preferences Fuzzy Inference System |
description |
ilustraciones, gráficos |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-05-08T19:39:43Z |
dc.date.available.none.fl_str_mv |
2024-05-08T19:39:43Z |
dc.date.issued.none.fl_str_mv |
2024-05-07 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86053 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86053 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Aguilar Arroyo, E. A. (2023). Un nuevo sistema inmune artificial para problemas de optimización multi-objetivo [Tesis de maestría, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional]. https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/4776/SSIT0018189.pdf?sequence=1 Bechikh, S., Kessentini, M., Said, L. B., & Ghédira, K. (2015). Preference Incorporation in Evolutionary Multiobjective Optimization. En Advances in Computers (Vol. 98, pp. 141-207). Elsevier. https://doi.org/10.1016/bs.adcom.2015.03.001 Blank, J., & Deb, K. (2020). Pymoo: Multi-Objective Optimization in Python. IEEE Access, 8, 89497-89509. https://doi.org/10.1109/ACCESS.2020.2990567 Bonissone, S. R. (2001). Evolutionary algorithms for multi-objective optimization: Fuzzy preference aggregation and multisexual EAs (B. Bosacchi, D. B. Fogel, & J. C. Bezdek, Eds.; pp. 157-164). https://doi.org/10.1117/12.448334 Branke, J., Kaußler, T., & Schmeck, H. (2001). Guidance in evolutionary multi-objective optimization. Advances in Engineering Software, 32(6), 499-507. https://doi.org/10.1016/S0965-9978(00)00110-1 Choon, O. H., & Tilahun, S. L. (2011). Integration fuzzy preference in genetic algorithm to solve multiobjective optimization problems. Far East Math. Sci, 55, 165-179. Coello, C. A. C. (2019). Introduccion a la Computación Evolutiva (Notas de Curso) [Notas de Curso]. https://gc.scalahed.com/recursos/files/r161r/w25199w/s1_introduccionalacomputacionevolutiva.pdf Coello, C. A. C., Lamont, G. B., & Veldhuizen, D. A. V. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems Second Edition (2.a ed.). Springer. http://tinyurl.com/4b2cp7ef Cortez, V. F., Cruz, D. V., & Margolis, P. E. L. (2019). Optimización de Portafolios de Inversión con Algoritmos Genéticos. Revista de Investigación en Ciencias Contables y Administrativas, 4(2), Article 2. Cuartas Torres, B. A. C. (2009). Metodología para la optimización de múltiples objetivos basada en ag y uso de preferencias [Tesis de maestría]. https://repositorio.unal.edu.co/handle/unal/70080 Cvetković, D., & Coello, C. A. C. (2005). Human Preferences and their Applications in Evolutionary Multi—Objective Optimization. En Y. Jin (Ed.), Knowledge Incorporation in Evolutionary Computation (Vol. 167, pp. 479-502). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-44511-1_22 Deb, K., & Chaudhuri, S. (2005). I-EMO: An Interactive Evolutionary Multi-objective Optimization Tool. En S. K. Pal, S. Bandyopadhyay, & S. Biswas (Eds.), Pattern Recognition and Machine Intelligence (Vol. 3776, pp. 690-695). Springer Berlin Heidelberg. https://doi.org/10.1007/11590316_111 Deb, K., & Jain, H. (2014). An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577-601. https://doi.org/10.1109/TEVC.2013.2281535 Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017 Duarte, O. G. (1999). Sistemas de lógica difusa: Fundamentos. Ingeniería e Investigación, 42, 22-30. https://doi.org/10.15446/ing.investig.n42.21065 Duarte, O., Sarmiento, C., Barrera, M., Márquez, M., Culma, J. E., & Ramirez, J. J. (2022). Modelos matemáticos para la gestión curricular (1.a ed.). Universidad Nacional de Colombia, Facultad de Ingeniería. https://repositorio.unal.edu.co/handle/unal/83381 Fonseca, C., & Fleming, P. (1999). Genetic Algorithms for Multiobjective Optimization: Formulation Discussion and Generalization. the fifth Intl conference on Genetic Algorithms, 93. Ishibuchi, H., Imada, R., Setoguchi, Y., & Nojima, Y. (2016). Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. 2016 IEEE Congress on Evolutionary Computation (CEC), 3045-3052. https://doi.org/10.1109/CEC.2016.7744174 Jamwal, P. K., Abdikenov, B., & Hussain, S. (2019). Evolutionary Optimization Using Equitable Fuzzy Sorting Genetic Algorithm (EFSGA). IEEE Access, 7, 8111-8126. https://doi.org/10.1109/ACCESS.2018.2890274 Jin, Y., & Sendhoff, B. (2002). Incorporation of fuzzy preferences into evolutionary multiobjective optimization. En 4th Asia-Pacific Conference on Simulated Evolution and Learning (Vol. 1, pp. 26-30). Kaci, S. (2011). Working with Preferences: Less Is More. Springer Science & Business Media. Kahneman, D. (2012). Pensar rápido, pensar despacio. Debate. http://tinyurl.com/4rf8zpjk Kim, J.-H., Han, J.-H., Kim, Y.-H., Choi, S.-H., & Kim, E.-S. (2012). Preference-Based Solution Selection Algorithm for Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 16(1), 20-34. https://doi.org/10.1109/TEVC.2010.2098412 Kingsley, D. C. (2006). Preference Uncertainty, Preference Refinement and Paired Comparison Choice Experiments. University of Colorado, Boulder. Lai, G., Liao, M., & Li, K. (2021). Empirical Studies on the Role of the Decision Maker in Interactive Evolutionary Multi-Objective Optimization. 2021 IEEE Congress on Evolutionary Computation (CEC), 185-192. https://doi.org/10.1109/CEC45853.2021.9504980 Leyva-Lopez, J. C., & Aguilera-Contreras, M. A. (2005). A Multiobjective Evolutionary Algorithm for Deriving Final Ranking from a Fuzzy Outranking Relation. En C. A. Coello Coello, A. Hernández Aguirre, & E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimization (Vol. 3410, pp. 235-249). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_17 Li, B., Li, J., Tang, K., & Yao, X. (2015). Many-Objective Evolutionary Algorithms: A Survey. ACM Computing Surveys, 48(1), 1-35. https://doi.org/10.1145/2792984 Li, J., Li, Y., & Wang, Y. (2021). Fuzzy Inference NSGA-III Algorithm-Based Multi-Objective Optimization for Switched Reluctance Generator. IEEE Transactions on Energy Conversion, 36(4), 3578-3581. https://doi.org/10.1109/TEC.2021.3099961 Li, K., Chen, R., Min, G., & Yao, X. (2018). Integration of Preferences in Decomposition Multiobjective Optimization. IEEE Transactions on Cybernetics, 48(12), 3359-3370. https://doi.org/10.1109/TCYB.2018.2859363 Li, K., Chen, R., Savic, D., & Yao, X. (2019). Interactive Decomposition Multiobjective Optimization Via Progressively Learned Value Functions. IEEE Transactions on Fuzzy Systems, 27(5), 849-860. https://doi.org/10.1109/TFUZZ.2018.2880700 Li, K., Liao, M., Deb, K., Min, G., & Yao, X. (2020). Does Preference Always Help? A Holistic Study on Preference-Based Evolutionary Multiobjective Optimization Using Reference Points. IEEE Transactions on Evolutionary Computation, 24(6), 1078-1096. https://doi.org/10.1109/TEVC.2020.2987559 Lichtenstein, S., & Slovic, P. (Eds.). (2006). The Construction of Preference (1.a ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511618031 Luo, B., Lin, L., & Zhong, S. (2018). PGA/MOEAD: A preference-guided evolutionary algorithm for multi-objective decision-making problems with interval-valued fuzzy preferences. International Journal of Systems Science, 49(3), 595-616. https://doi.org/10.1080/00207721.2017.1412537 Pedrycz, W., Ekel, P., & Parreiras, R. (2011). Fuzzy Multicriteria Decision-Making: Models, Methods and Applications. John Wiley & Sons. Rachmawati, L., & Srinivasan, D. (2006). Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey. 2006 IEEE International Conference on Evolutionary Computation, 962-968. https://doi.org/10.1109/CEC.2006.1688414 Ramakrishnan, S., & Hasan, Y. A. (2013). Fuzzy preference-based multi-objective optimization method. Artificial Intelligence Review, 39(2), 165-181. https://doi.org/10.1007/s10462-011-9264-4 REAL ACADEMIA ESPAÑOLA. (2023). Diccionario de la lengua española (23.a ed.). https://dle.rae.es Rosenthal, R. E. (1984). Principles of multiobjective optimization. Naval Postgraduate School. Santana, L. V. S., & Coello, C. A. C. (2006). Una introducción a la Computación Evolutiva y alguna de sus aplicaciones en Economía y Finanzas. Revista de Métodos Cuantitativos para la Economía y la Empresa, 2, páginas 3 a 26-páginas 3 a 26. https://doi.org/10.46661/revmetodoscuanteconempresa.2057 Shen, X., Guo, Y., Chen, Q., & Hu, W. (2010). A multi-objective optimization evolutionary algorithm incorporating preference information based on fuzzy logic. Computational Optimization and Applications, 46(1), 159-188. https://doi.org/10.1007/s10589-008-9189-2 Shen, X., Li, T., & Zhang, M. (2009). A Fuzzy Multi-objective Optimization Evolutionary Algorithm Incorporating Preference Information. 2009 Second International Symposium on Knowledge Acquisition and Modeling, 143-146. https://doi.org/10.1109/KAM.2009.12 Smith, R., Mesa, O., Dyner, I., Jaramillo, P., Poveda, G., & Valencia, D. (2000). Decisiones con Múltiples Objetivos e Incertidumbre (2.a ed.). Universidad Nacional de Colombia. Taylor, K. P. (2022). Preference Learning for Multi-objective Optimisation Problems [Tesis de doctorado]. Thiele, L., Miettinen, K., Korhonen, P. J., & Molina, J. (2009). A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization. Evolutionary Computation, 17(3), 411-436. https://doi.org/10.1162/evco.2009.17.3.411 Tomczyk, M. K., & Kadziński, M. (2020). On the elicitation of indirect preferences in interactive evolutionary multiple objective optimization. Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 569-577. https://doi.org/10.1145/3377930.3389826 Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124 Xin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., & Liu, B. (2018). Interactive Multiobjective Optimization: A Review of the State-of-the-Art Xiong, J., Tan, X., Yang, K., & Chen, Y. (2013). Fuzzy Group Decision Making for Multiobjective Problems: Tradeoff between Consensus and Robustness. Journal of Applied Mathematics, 2013, 1-9. https://doi.org/10.1155/2013/657978 Yoon, K. P., & Kim, W. K. (2017). The behavioral TOPSIS. Expert Systems with Applications, 89, 266-272. https://doi.org/10.1016/j.eswa.2017.07.045 Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2), 173-195. https://doi.org/10.1162/106365600568202 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
141 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86053/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86053/2/71526848.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86053/3/71526848.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 258426c15fea5d00cf945f4bcfbf0231 a800c44c47c029841a6a76b95beb5d27 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089415743504384 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jaramillo Álvarez, Gloria Patriciaad53fbba65d6b627dab527c179dbe8ceDíaz Guerra, Jaime Andrés2c72dc0cc64226d8370ad2777003f920Ciencias de la Decision2024-05-08T19:39:43Z2024-05-08T19:39:43Z2024-05-07https://repositorio.unal.edu.co/handle/unal/86053Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficosEl presente trabajo propone una metodología que permite que un decisor incluya las preferencias que experimenta sobre un problema, utilizando un Sistema de Inferencia Difusa en un algoritmo genético de optimización multiobjetivo. Esta metodología se logra a través del diseño de un método denominado Algoritmo Genético Multiobjetivo con Sistema de Inferencia de Preferencias Difusas (AGMOSIPD). Este algoritmo es una técnica de incorporación de preferencias a priori que le ofrece al decisor una etapa de aprendizaje inicial donde, a través de la obtención de un conjunto de soluciones a través de simulación Monte Carlo, podrá construir su estructura de preferencias mediante el diseño de un Sistema de Inferencia Difusa (SID). Posteriormente, el SID se incorpora en un algoritmo genético a través de una restricción para dirigir los individuos hacia la zona de la Frontera de Pareto más preferida por el decisor y ofrecer un conjunto reducido de alternativas. Este trabajo se ejecuta en 60 casos de prueba que involucran 6 problemas y 2 algoritmos genéticos, se presentan los resultados gráficos, se verifica la obtención de soluciones eficientes y se comparan las soluciones obtenidas mediante AGMOSIPD con las soluciones obtenidas a través de la optimización de los problemas de prueba en un algoritmo genético sin preferencias. AGMOSIPD obtiene soluciones eficientes en la mayoría de los casos probados y presenta desafíos y oportunidades de mejora en otras circunstancias. (Tomado de la fuente)This work proposes a methodology that includes the decision maker preferences about a problem using a Fuzzy Inference System in a multiobjective genetic optimization algorithm. This methodology is achieved through the design of a method called Multiobjective Genetic Algorithm with Fuzzy Preference Inference System (AGMOSIPD). This algorithm is an a priori preference incorporation technique that offers an initial learning stage where, by obtaining a set of solutions through Monte Carlo simulation, the decision maker can build a preference structure through the design of a Fuzzy Inference System (FIS). Subsequently, the FIS is incorporated into a genetic algorithm through a constraint to direct the individuals towards the Pareto Frontier zone most preferred by the decision maker and offer a reduced set of alternatives. This work is run on 60 test cases involving 6 problems and 2 genetic algorithms, the graphical results are presented, the obtaining of efficient solutions is verified, and the solutions obtained through AGMOSIPD are compared with the solutions obtained through the optimization of test problems in a genetic algorithm without preferences. AGMOSIPD obtains efficient solutions in most of the tested cases and presents challenges and opportunities for improvement in other circumstances.MaestríaOptimización MultiobjetivoIngeniería De Sistemas E Informática.Sede Medellín141 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería de SistemasFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónAlgoritmos difusosAlgoritmos genéticosInferencia (lógica)Lógica difusaSistemas difusosAlgoritmos GenéticosLógica DifusaPreferenciasSistema de Inferencia DifusaOptimización MultiobjetivoGenetic AlgorithmsFuzzy LogicMultiobjective OptimizationPreferencesFuzzy Inference SystemInclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SIDDynamic inclusion of decision-maker preferences in a multi-objective genetic algorithm using a FISTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAguilar Arroyo, E. A. (2023). Un nuevo sistema inmune artificial para problemas de optimización multi-objetivo [Tesis de maestría, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional]. https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/4776/SSIT0018189.pdf?sequence=1Bechikh, S., Kessentini, M., Said, L. B., & Ghédira, K. (2015). Preference Incorporation in Evolutionary Multiobjective Optimization. En Advances in Computers (Vol. 98, pp. 141-207). Elsevier. https://doi.org/10.1016/bs.adcom.2015.03.001Blank, J., & Deb, K. (2020). Pymoo: Multi-Objective Optimization in Python. IEEE Access, 8, 89497-89509. https://doi.org/10.1109/ACCESS.2020.2990567Bonissone, S. R. (2001). Evolutionary algorithms for multi-objective optimization: Fuzzy preference aggregation and multisexual EAs (B. Bosacchi, D. B. Fogel, & J. C. Bezdek, Eds.; pp. 157-164). https://doi.org/10.1117/12.448334Branke, J., Kaußler, T., & Schmeck, H. (2001). Guidance in evolutionary multi-objective optimization. Advances in Engineering Software, 32(6), 499-507. https://doi.org/10.1016/S0965-9978(00)00110-1Choon, O. H., & Tilahun, S. L. (2011). Integration fuzzy preference in genetic algorithm to solve multiobjective optimization problems. Far East Math. Sci, 55, 165-179.Coello, C. A. C. (2019). Introduccion a la Computación Evolutiva (Notas de Curso) [Notas de Curso]. https://gc.scalahed.com/recursos/files/r161r/w25199w/s1_introduccionalacomputacionevolutiva.pdfCoello, C. A. C., Lamont, G. B., & Veldhuizen, D. A. V. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems Second Edition (2.a ed.). Springer. http://tinyurl.com/4b2cp7efCortez, V. F., Cruz, D. V., & Margolis, P. E. L. (2019). Optimización de Portafolios de Inversión con Algoritmos Genéticos. Revista de Investigación en Ciencias Contables y Administrativas, 4(2), Article 2.Cuartas Torres, B. A. C. (2009). Metodología para la optimización de múltiples objetivos basada en ag y uso de preferencias [Tesis de maestría]. https://repositorio.unal.edu.co/handle/unal/70080Cvetković, D., & Coello, C. A. C. (2005). Human Preferences and their Applications in Evolutionary Multi—Objective Optimization. En Y. Jin (Ed.), Knowledge Incorporation in Evolutionary Computation (Vol. 167, pp. 479-502). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-44511-1_22Deb, K., & Chaudhuri, S. (2005). I-EMO: An Interactive Evolutionary Multi-objective Optimization Tool. En S. K. Pal, S. Bandyopadhyay, & S. Biswas (Eds.), Pattern Recognition and Machine Intelligence (Vol. 3776, pp. 690-695). Springer Berlin Heidelberg. https://doi.org/10.1007/11590316_111Deb, K., & Jain, H. (2014). An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577-601. https://doi.org/10.1109/TEVC.2013.2281535Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017Duarte, O. G. (1999). Sistemas de lógica difusa: Fundamentos. Ingeniería e Investigación, 42, 22-30. https://doi.org/10.15446/ing.investig.n42.21065Duarte, O., Sarmiento, C., Barrera, M., Márquez, M., Culma, J. E., & Ramirez, J. J. (2022). Modelos matemáticos para la gestión curricular (1.a ed.). Universidad Nacional de Colombia, Facultad de Ingeniería. https://repositorio.unal.edu.co/handle/unal/83381Fonseca, C., & Fleming, P. (1999). Genetic Algorithms for Multiobjective Optimization: Formulation Discussion and Generalization. the fifth Intl conference on Genetic Algorithms, 93.Ishibuchi, H., Imada, R., Setoguchi, Y., & Nojima, Y. (2016). Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. 2016 IEEE Congress on Evolutionary Computation (CEC), 3045-3052. https://doi.org/10.1109/CEC.2016.7744174Jamwal, P. K., Abdikenov, B., & Hussain, S. (2019). Evolutionary Optimization Using Equitable Fuzzy Sorting Genetic Algorithm (EFSGA). IEEE Access, 7, 8111-8126. https://doi.org/10.1109/ACCESS.2018.2890274Jin, Y., & Sendhoff, B. (2002). Incorporation of fuzzy preferences into evolutionary multiobjective optimization. En 4th Asia-Pacific Conference on Simulated Evolution and Learning (Vol. 1, pp. 26-30).Kaci, S. (2011). Working with Preferences: Less Is More. Springer Science & Business Media.Kahneman, D. (2012). Pensar rápido, pensar despacio. Debate. http://tinyurl.com/4rf8zpjkKim, J.-H., Han, J.-H., Kim, Y.-H., Choi, S.-H., & Kim, E.-S. (2012). Preference-Based Solution Selection Algorithm for Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 16(1), 20-34. https://doi.org/10.1109/TEVC.2010.2098412Kingsley, D. C. (2006). Preference Uncertainty, Preference Refinement and Paired Comparison Choice Experiments. University of Colorado, Boulder.Lai, G., Liao, M., & Li, K. (2021). Empirical Studies on the Role of the Decision Maker in Interactive Evolutionary Multi-Objective Optimization. 2021 IEEE Congress on Evolutionary Computation (CEC), 185-192. https://doi.org/10.1109/CEC45853.2021.9504980Leyva-Lopez, J. C., & Aguilera-Contreras, M. A. (2005). A Multiobjective Evolutionary Algorithm for Deriving Final Ranking from a Fuzzy Outranking Relation. En C. A. Coello Coello, A. Hernández Aguirre, & E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimization (Vol. 3410, pp. 235-249). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_17Li, B., Li, J., Tang, K., & Yao, X. (2015). Many-Objective Evolutionary Algorithms: A Survey. ACM Computing Surveys, 48(1), 1-35. https://doi.org/10.1145/2792984Li, J., Li, Y., & Wang, Y. (2021). Fuzzy Inference NSGA-III Algorithm-Based Multi-Objective Optimization for Switched Reluctance Generator. IEEE Transactions on Energy Conversion, 36(4), 3578-3581. https://doi.org/10.1109/TEC.2021.3099961Li, K., Chen, R., Min, G., & Yao, X. (2018). Integration of Preferences in Decomposition Multiobjective Optimization. IEEE Transactions on Cybernetics, 48(12), 3359-3370. https://doi.org/10.1109/TCYB.2018.2859363Li, K., Chen, R., Savic, D., & Yao, X. (2019). Interactive Decomposition Multiobjective Optimization Via Progressively Learned Value Functions. IEEE Transactions on Fuzzy Systems, 27(5), 849-860. https://doi.org/10.1109/TFUZZ.2018.2880700Li, K., Liao, M., Deb, K., Min, G., & Yao, X. (2020). Does Preference Always Help? A Holistic Study on Preference-Based Evolutionary Multiobjective Optimization Using Reference Points. IEEE Transactions on Evolutionary Computation, 24(6), 1078-1096. https://doi.org/10.1109/TEVC.2020.2987559Lichtenstein, S., & Slovic, P. (Eds.). (2006). The Construction of Preference (1.a ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511618031Luo, B., Lin, L., & Zhong, S. (2018). PGA/MOEAD: A preference-guided evolutionary algorithm for multi-objective decision-making problems with interval-valued fuzzy preferences. International Journal of Systems Science, 49(3), 595-616. https://doi.org/10.1080/00207721.2017.1412537Pedrycz, W., Ekel, P., & Parreiras, R. (2011). Fuzzy Multicriteria Decision-Making: Models, Methods and Applications. John Wiley & Sons.Rachmawati, L., & Srinivasan, D. (2006). Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey. 2006 IEEE International Conference on Evolutionary Computation, 962-968. https://doi.org/10.1109/CEC.2006.1688414Ramakrishnan, S., & Hasan, Y. A. (2013). Fuzzy preference-based multi-objective optimization method. Artificial Intelligence Review, 39(2), 165-181. https://doi.org/10.1007/s10462-011-9264-4REAL ACADEMIA ESPAÑOLA. (2023). Diccionario de la lengua española (23.a ed.). https://dle.rae.esRosenthal, R. E. (1984). Principles of multiobjective optimization. Naval Postgraduate School.Santana, L. V. S., & Coello, C. A. C. (2006). Una introducción a la Computación Evolutiva y alguna de sus aplicaciones en Economía y Finanzas. Revista de Métodos Cuantitativos para la Economía y la Empresa, 2, páginas 3 a 26-páginas 3 a 26. https://doi.org/10.46661/revmetodoscuanteconempresa.2057Shen, X., Guo, Y., Chen, Q., & Hu, W. (2010). A multi-objective optimization evolutionary algorithm incorporating preference information based on fuzzy logic. Computational Optimization and Applications, 46(1), 159-188. https://doi.org/10.1007/s10589-008-9189-2Shen, X., Li, T., & Zhang, M. (2009). A Fuzzy Multi-objective Optimization Evolutionary Algorithm Incorporating Preference Information. 2009 Second International Symposium on Knowledge Acquisition and Modeling, 143-146. https://doi.org/10.1109/KAM.2009.12Smith, R., Mesa, O., Dyner, I., Jaramillo, P., Poveda, G., & Valencia, D. (2000). Decisiones con Múltiples Objetivos e Incertidumbre (2.a ed.). Universidad Nacional de Colombia.Taylor, K. P. (2022). Preference Learning for Multi-objective Optimisation Problems [Tesis de doctorado].Thiele, L., Miettinen, K., Korhonen, P. J., & Molina, J. (2009). A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization. Evolutionary Computation, 17(3), 411-436. https://doi.org/10.1162/evco.2009.17.3.411Tomczyk, M. K., & Kadziński, M. (2020). On the elicitation of indirect preferences in interactive evolutionary multiple objective optimization. Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 569-577. https://doi.org/10.1145/3377930.3389826Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124Xin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., & Liu, B. (2018). Interactive Multiobjective Optimization: A Review of the State-of-the-ArtXiong, J., Tan, X., Yang, K., & Chen, Y. (2013). Fuzzy Group Decision Making for Multiobjective Problems: Tradeoff between Consensus and Robustness. Journal of Applied Mathematics, 2013, 1-9. https://doi.org/10.1155/2013/657978Yoon, K. P., & Kim, W. K. (2017). The behavioral TOPSIS. Expert Systems with Applications, 89, 266-272. https://doi.org/10.1016/j.eswa.2017.07.045Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2), 173-195. https://doi.org/10.1162/106365600568202EstudiantesMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86053/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL71526848.2024.pdf71526848.2024.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemasapplication/pdf8636293https://repositorio.unal.edu.co/bitstream/unal/86053/2/71526848.2024.pdf258426c15fea5d00cf945f4bcfbf0231MD52THUMBNAIL71526848.2024.pdf.jpg71526848.2024.pdf.jpgGenerated Thumbnailimage/jpeg5288https://repositorio.unal.edu.co/bitstream/unal/86053/3/71526848.2024.pdf.jpga800c44c47c029841a6a76b95beb5d27MD53unal/86053oai:repositorio.unal.edu.co:unal/860532024-08-24 23:13:41.811Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |