Evaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitro

La enfermedad de Chagas (ECh), causada por el parasito protozoario Trypanosoma cruzi, es una enfermedad endémica y desatendida en las Américas. Debido a su compleja dinámica de transmisión, se ha convertido en un problema de salud pública en el mundo. Actualmente, se cuenta con dos medicamentos para...

Full description

Autores:
Chavarrio Cañas, Francy Milena
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85063
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85063
https://repositorio.unal.edu.co/
Palabra clave:
Parásitos
Parasites
Trypanosoma cruzi
Chagas disease
Cysteine synthase
Trypanocidal activity
Therapeutic target
Enzyme inhibition
Enfermedad de Chagas
Cisteína sintasa
Efecto tripanocida
Blanco terapéutico
Inhibición enzimática
Elbasvir
Glecaprevir
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_3b02df959f9953fcca49507e6fd2d8da
oai_identifier_str oai:repositorio.unal.edu.co:unal/85063
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitro
dc.title.translated.eng.fl_str_mv Evaluation of the trypanocidal activity of elbasvir and glecaprevir and the effect on the activity of the Trypanosoma cruzi cysteine synthase enzyme in vitro
title Evaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitro
spellingShingle Evaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitro
Parásitos
Parasites
Trypanosoma cruzi
Chagas disease
Cysteine synthase
Trypanocidal activity
Therapeutic target
Enzyme inhibition
Enfermedad de Chagas
Cisteína sintasa
Efecto tripanocida
Blanco terapéutico
Inhibición enzimática
Elbasvir
Glecaprevir
title_short Evaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitro
title_full Evaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitro
title_fullStr Evaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitro
title_full_unstemmed Evaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitro
title_sort Evaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitro
dc.creator.fl_str_mv Chavarrio Cañas, Francy Milena
dc.contributor.advisor.none.fl_str_mv Téllez Meneses, Jair Alexander
Romero Calderón, Ibeth Cristina
dc.contributor.author.none.fl_str_mv Chavarrio Cañas, Francy Milena
dc.contributor.researchgroup.spa.fl_str_mv Grupo de enfermedades infecciosas - Pontificia Universidad Javeriana
Grupo Infecciones y Salud en el Trópico - Universidad Nacional de Colombia sede Bogotá
Grupo Zajuna Jwa Samu “Semilla del conocimiento” del Cesar - Universidad Nacional de Colombia sede la Paz
dc.subject.decs.spa.fl_str_mv Parásitos
topic Parásitos
Parasites
Trypanosoma cruzi
Chagas disease
Cysteine synthase
Trypanocidal activity
Therapeutic target
Enzyme inhibition
Enfermedad de Chagas
Cisteína sintasa
Efecto tripanocida
Blanco terapéutico
Inhibición enzimática
Elbasvir
Glecaprevir
dc.subject.decs.eng.fl_str_mv Parasites
dc.subject.proposal.eng.fl_str_mv Trypanosoma cruzi
Chagas disease
Cysteine synthase
Trypanocidal activity
Therapeutic target
Enzyme inhibition
dc.subject.proposal.spa.fl_str_mv Enfermedad de Chagas
Cisteína sintasa
Efecto tripanocida
Blanco terapéutico
Inhibición enzimática
dc.subject.proposal.none.fl_str_mv Elbasvir
Glecaprevir
description La enfermedad de Chagas (ECh), causada por el parasito protozoario Trypanosoma cruzi, es una enfermedad endémica y desatendida en las Américas. Debido a su compleja dinámica de transmisión, se ha convertido en un problema de salud pública en el mundo. Actualmente, se cuenta con dos medicamentos para su tratamiento, benznidazol (BNZ) y nifurtimox (NFX). Esos medicamentos distan de ser un tratamiento ideal debido a su baja eficacia durante la fase crónica, a los efectos secundarios severos que llevan a una alta tasa de abandono de la terapia, y la menor susceptibilidad que presentan algunas cepas del parásito a estos medicamentos. Esas dificultades en el tratamiento de la ECh, han llevado a la necesidad de buscar nuevas alternativas terapéuticas. En este sentido, la Cisteína sintasa de T. cruzi (TcCS) ha sido estudiada como potencial blanco terapéutico, sobre la cual, se han realizado análisis de biología computacional que han permitido la identificación de moléculas con una alta afinidad y estabilidad de unión al sitio activo de la TcCS, dentro de las cuales se encuentra el elbasvir (EBV) y el glecaprevir (GCV). La presente investigación tuvo como objetivo evaluar in vitro, la actividad tripanocida y el efecto inhibitorio de EBV y de GCV sobre la actividad de la enzima TcCS. El efecto tripanocida de los compuestos fue evaluado en los estadios tripomastigote y amastigote del parásito, la citotoxicidad en células Vero y el efecto sobre la actividad enzimática a partir de extractos de proteínas solubles del parásito. El compuesto EBV presentó actividad biológica contra T. cruzi con una CE50 de 24.22 μM sobre el estadio tripomastigotes y una CI50 de 7.59 μM sobre el amastigote; con un índice de selectividad (IS) estimado de al menos 2.06 en el estadio infectivo y de al menos 6.58 sobre el estadio intracelular. Por su parte, GCV no mostró actividad biológica contra T. cruzi, y su citotoxicidad fue intermedia (CC50: 134.4 μM). Los compuestos evaluados no presentaron una inhibición selectiva de la actividad enzimática de TcCS. En conclusión, EBV presenta una actividad biológica principalmente contra el estadio amastigote de T. cruzi, lo cual hace de éste un posible compuesto líder para el desarrollo de nuevos tratamientos contra la ECh. (Texto tomado de la fuente)
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-11T15:24:10Z
dc.date.available.none.fl_str_mv 2023-12-11T15:24:10Z
dc.date.issued.none.fl_str_mv 2023-12
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85063
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85063
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aguilera, E., Varela, J., Serna, E., Torres, S., Yaluff, G., De Bilbao, N. V., Cerecetto, H., Alvarez, G., & González, M. (2018). Looking for combination of benznidazole and trypanosoma cruzitriosephosphate isomerase inhibitors for chagas disease treatment. Memorias Do Instituto Oswaldo Cruz, 113(3), 153–160. https://doi.org/10.1590/0074-02760170267
Asselah, T., Pol, S., Hezode, C., Loustaud-Ratti, V., Leroy, V., Ahmed, S. N. S., Ozenne, V., Bronowicki, J. P., Larrey, D., Tran, A., Alric, L., Nguyen-Khac, E., Robertson, M. N., Hanna, G. J., Brown, D., Asante-Appiah, E., Su, F. H., Hwang, P., Hall, J. D., … Serfaty, L. (2020). Efficacy and safety of elbasvir/grazoprevir for 8 or 12 weeks for hepatitis C virus genotype 4 infection: A randomized study. Liver International, 40(5), 1042–1051. https://doi.org/10.1111/liv.14313
Atwood, J. A., Weatherly, D. B., Minning, T. A., Bundy, B., Cavola, C., Opperdoes, F. R., Orlando, R., & Tarleton, R. L. (2005). Microbiology: The Trypanosoma cruzi proteome. Science, 309(5733), 473–476. https://doi.org/10.1126/science.1110289
Bahia, M. T., De Figueiredo Diniz, L. D. F., & Mosqueira, V. C. F. (2014). Therapeutical approaches under investigation for treatment of Chagas disease. Expert Opinion on Investigational Drugs, 23(9), 1225–1237. https://doi.org/10.1517/13543784.2014.922952
Balasubramaniam, M., & Reis, R. J. S. (2020). Computational target-based drug repurposing of elbasvir, an antiviral drug predicted to bind multiple SARS-CoV-2 proteins. ChemRxiv : The Preprint Server for Chemistry. https://doi.org/10.26434/chemrxiv.12084822
Beaumier, C. M., Gillespie, P. M., Strych, U., Hayward, T., Hotez, P. J., & Bottazzi, M. E. (2016). Status of vaccine research and development of vaccines for Chagas disease. Vaccine, 34(26), 2996–3000. https://doi.org/10.1016/j.vaccine.2016.03.074
Beer, M. F., Frank, F. M., Germán Elso, O., Ernesto Bivona, A., Cerny, N., Giberti, G., Luis Malchiodi, E., Susana Martino, V., Alonso, M. R., Patricia Sülsen, V., & Cazorla, S. I. (2016). Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia. Pharmaceutical Biology, 54(10), 2188–2195. https://doi.org/10.3109/13880209.2016.1150304
Beltran-Hortelano, I., Alcolea, V., Font, M., & Pérez-Silanes, S. (2022). Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorganic & Medicinal Chemistry, 58, 116577. https://doi.org/10.1016/j.bmc.2021.116577
Bern, C. (2011). Antitrypanosomal Therapy for Chronic Chagas’ Disease. New England Journal of Medicine, 365(13), 1258–1259. https://doi.org/10.1056/nejmc1108653
Bern, C., Messenger, L. A., Whitman, J. D., & Maguire, J. H. (2019). Chagas disease in the united states: A public health approach. Clinical Microbiology Reviews, 33(1), 1–42. https://doi.org/10.1128/CMR.00023-19
Berná, L., Chiribao, M. L., Greif, G., Rodriguez, M., Alvarez-Valin, F., & Robello, C. (2017). Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in trypanosoma cruzi. PeerJ, 2017(3), 1–32. https://doi.org/10.7717/peerj.3017
Bero, J., Ganfon, H., Jonville, M. C., Frédérich, M., Gbaguidi, F., DeMol, P., Moudachirou, M., & Quetin-Leclercq, J. (2009). In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria. Journal of Ethnopharmacology, 122(3), 439–444. https://doi.org/10.1016/j.jep.2009.02.004
Bero, J., Hannaert, V., Chataigné, G., Hérent, M. F., & Quetin-Leclercq, J. (2011). In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. Journal of Ethnopharmacology, 137(2), 998–1002. https://doi.org/10.1016/j.jep.2011.07.022
Breckenridge, A., & Jacob, R. (2019). Overcoming the legal and regulatory barriers to drug repurposing. Nature Reviews. Drug Discovery, 18(1), 1–2. https://doi.org/10.1038/nrd.2018.92
Cada, D. J., Editor, F., & Kim, A. P. (2016). Elbasvir / Grazoprevir. 51(8), 665–686. https://doi.org/10.1310/hpj5108
Campos, M. C. O., Castro-Pinto, D. B., Ribeiro, G. A., Berredo-Pinho, M. M., Gomes, L. H. F., Da Silva Bellieny, M. S., Goulart, C. M., Echevarria, Á., & Leon, L. L. (2013). P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance. Parasitology Research, 112(6), 2341–2351. https://doi.org/10.1007/s00436-013-3398-z
Canepa, G. E., Bouvier, L. A., Miranda, M. R., Uttaro, A. D., & Pereira, C. A. (2009). Characterization of Trypanosoma cruzi L-cysteine transport mechanisms and their adaptive regulation. FEMS Microbiology Letters, 292(1), 27–32. https://doi.org/10.1111/j.1574-6968.2008.01467.x
CDC, C. of D. C. and P. (2019). Parasites - American Trypanosomiasis (also known as Chagas Disease). https://www.cdc.gov/parasites/chagas/
Chatelain, E. (2015). Chagas disease drug discovery: Toward a new era. Journal of Biomolecular Screening, 20(1), 22–35. https://doi.org/10.1177/1087057114550585
Chtita, S., Belhassan, A., Aouidate, A., Belaidi, S., Bouachrine, M., & Lakhlifi, T. (2021). Discovery of Potent SARS-CoV-2 Inhibitors from Approved Antiviral Drugs via Docking and Virtual Screening. Combinatorial Chemistry & High Throughput Screening, 24(3), 441–454. https://doi.org/10.2174/1386207323999200730205447
Cook, S. E., Vogel, H., Castillo, D., Olsen, M., Pedersen, N., & Murphy, B. G. (2021). Investigation of monotherapy and combined anticoronaviral therapies against feline coronavirus serotype II in vitro. Journal of Feline Medicine and Surgery, 24(10), 943–953. https://doi.org/10.1177/1098612X211048647
Crespillo-Andújar, C., Chamorro-Tojeiro, S., Norman, F., Monge-Maillo, B., López-Vélez, R., & Pérez-Molina, J. A. (2018). Toxicity of nifurtimox as second-line treatment after benznidazole intolerance in patients with chronic Chagas disease: when available options fail. Clinical Microbiology and Infection, 24(12), 1344.e1-1344.e4. https://doi.org/10.1016/j.cmi.2018.06.006
De Andrade, P., Galo, O. A., Carvalho, M. R., Lopes, C. D., Carneiro, Z. A., Sesti-Costa, R., De Melo, E. B., Silva, J. S., & Carvalho, I. (2015). 1,2,3-Triazole-based analogue of benznidazole displays remarkable activity against Trypanosoma cruzi. Bioorganic and Medicinal Chemistry, 23(21), 6815–6826. https://doi.org/10.1016/j.bmc.2015.10.008
de Oliveira, R. G., Cruz, L. R., Mollo, M. C., Dias, L. C., & Kratz, J. M. (2021). Chagas Disease Drug Discovery in Latin America—A Mini Review of Antiparasitic Agents Explored Between 2010 and 2021. Frontiers in Chemistry, 9(October), 1–7. https://doi.org/10.3389/fchem.2021.771143
de Souza, W. (2009). Structural organization of Trypanosoma cruzi. Memorias Do Instituto Oswaldo Cruz, 104(SUPPL. 1), 89–100. https://doi.org/10.1590/s0074-02762009000900014
Decuypere, S., Vanaerschot, M., Brunker, K., Imamura, H., Müller, S., Khanal, B., Rijal, S., Dujardin, J. C., & Coombs, G. H. (2012). Molecular mechanisms of drug resistance in natural leishmania populations vary with genetic background. PLoS Neglected Tropical Diseases, 6(2). https://doi.org/10.1371/journal.pntd.0001514
Dharavath, S., Vijayan, R., Kumari, K., Tomar, P., & Gourinath, S. (2020). Crystal structure of O-Acetylserine sulfhydralase (OASS) isoform 3 from Entamoeba histolytica: Pharmacophore-based virtual screening and validation of novel inhibitors. European Journal of Medicinal Chemistry, 192, 112157. https://doi.org/10.1016/j.ejmech.2020.112157
Ekins, S., Williams, A. J., Krasowski, M. D., & Freundlich, J. S. (2011). In silico repositioning of approved drugs for rare and neglected diseases. Drug Discovery Today, 16(7–8), 298–310. https://doi.org/10.1016/j.drudis.2011.02.016
El-Sayed, N. M., Myler, P. J., Bartholomeu, D. C., Nilsson, D., Aggarwal, G., Tran, A. N., Ghedin, E., Worthey, E. A., Delcher, A. L., Blandin, G., Westenberger, S. J., Caler, E., Cerqueira, G. C., Branche, C., Haas, B., Anupama, A., Arner, E., Åslund, L., Attipoe, P., … Andersson, B. (2005). The genome sequence of Trypanosoma cruzi, etiologic agent of chagas disease. Science, 309(5733). https://doi.org/10.1126/science.1112631
European Medicines Agency. (2016). Zepatier: Assessment Report (Vol. 44, Issue May). https://www.ema.europa.eu/en/documents/assessment-report/zepatier-epar-public-assessment-report_en.pdf
Fyfe, P. K., Westrop, G. D., Ramos, T., Müller, S., Coombs, G. H., & Hunter, W. N. (2012). Structure of Leishmania major cysteine synthase. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 68(7), 738–743. https://doi.org/10.1107/S1744309112019124
Gammeltoft, K. A., Zhou, Y., Hernandez, C. R. D., Galli, A., Offersgaard, A., Costa, R., Pham, L. V., Fahnøe, U., Feng, S., Scheel, T. K. H., Ramirez, S., Bukh, J., & Gottwein, J. M. (2021). Hepatitis c virus protease inhibitors show differential efficacy and interactions with Remdesivir for treatment of SARS-CoV-2 in Vitro. Antimicrobial Agents and Chemotherapy, 65(9), 1–24. https://doi.org/10.1128/AAC.02680-20
García-Huertas, P., Mejía-Jaramillo, A. M., González, L., & Triana-Chávez, O. (2017). Transcriptome and Functional Genomics Reveal the Participation of Adenine Phosphoribosyltransferase in Trypanosoma cruzi Resistance to Benznidazole. Journal of Cellular Biochemistry, 118(7), 1936–1945. https://doi.org/10.1002/jcb.25978
García-Huertas, P., Mejía-Jaramillo, A. M., Machado, C. R., Guimarães, A. C., & Triana-Chávez, O. (2017). Prostaglandin F2α synthase in trypanosoma cruzi plays critical roles in oxidative stress and susceptibility to benznidazole. Royal Society Open Science, 4(9). https://doi.org/10.1098/rsos.170773
Ghosh, A. K., Samanta, I., Mondal, A., & Liu, W. R. (2019). Covalent Inhibition in Drug Discovery. ChemMedChem, 14(9), 889–906. https://doi.org/10.1002/cmdc.201900107
González, L., García-Huertas, P., Triana-Chávez, O., García, G. A., Murta, S. M. F., & Mejía-Jaramillo, A. M. (2017). Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi. Molecular Microbiology, 106(5), 704–718. https://doi.org/10.1111/mmi.13830
Gopal, G. J., & Kumar, A. (2013). Strategies for the production of recombinant protein in escherichia coli. Protein Journal, 32(6), 419–425. https://doi.org/10.1007/s10930-013-9502-5
Guarner, J. (2019). Chagas disease as example of a reemerging parasite. Seminars in Diagnostic Pathology, 36(3), 164–169. https://doi.org/10.1053/j.semdp.2019.04.008
Hall, B. S., & Wilkinson, S. R. (2012). Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrobial Agents and Chemotherapy, 56(1), 115–123. https://doi.org/10.1128/AAC.05135-11
Horner, S. M., & Gale, M. (2013). Regulation of hepatic innate immunity by hepatitis C virus. Nature Medicine, 19(7), 879–888. https://doi.org/10.1038/nm.3253
Huličiak, M., Vokřál, I., Holas, O., Martinec, O., Štaud, F., & Červený, L. (2022). Evaluation of the Potency of Anti-HIV and Anti-HCV Drugs to Inhibit P-Glycoprotein Mediated Efflux of Digoxin in Caco-2 Cell Line and Human Precision-Cut Intestinal Slices. Pharmaceuticals, 15(2). https://doi.org/10.3390/ph15020242
Ibrahim, M. A. A., Abdeljawaad, K. A. A., Jaragh-Alhadad, L. A., Oraby, H. F., Atia, M. A. M., Alzahrani, O. R., Mekhemer, G. A. H., Moustafa, M. F., Shawky, A. M., Sidhom, P. A., & Abdelrahman, A. H. M. (2023). Potential drug candidates as P-glycoprotein inhibitors to reverse multidrug resistance in cancer: an in silico drug discovery study. Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2023.2176360
INS, I. N. de S. (2023). Informe de evento: CHAGAS. https://www.ins.gov.co/buscador-eventos/Paginas/Info-Evento.aspx
Isah, M. B., Ibrahim, M. A., Mohammed, A., Aliyu, A. B., Masola, B., & Coetzer, T. H. T. (2016). A systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases. Parasitology, 143(10), 1219–1231. https://doi.org/10.1017/S0031182016000718
Jackson, Y., Wyssa, B., & Chappuis, F. (2020). Tolerance to nifurtimox and benznidazole in adult patients with chronic Chagas’ disease. Journal of Antimicrobial Chemotherapy, 75(3), 690–696. https://doi.org/10.1093/jac/dkz473
Jean, V., Poyraz, Ö., Saxena, S., Schnell, R., Yogeeswari, P., Schneider, G., & Sriram, D. (2013). Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using virtual high-throughput screening. Bioorganic and Medicinal Chemistry Letters, 23(5), 1182–1186. https://doi.org/10.1016/j.bmcl.2013.01.031
Jubair, N., Rajagopal, M., Chinnappan, S., Abdullah, N. B., & Fatima, A. (2021). Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/3663315
Kosloski, M. P., Bow, D. A. J., Kikuchi, R., Wang, H., Kim, E. J., Marsh, K., Mensa, F., Kort, J., & Liu, W. (2019). Translation of in vitro transport inhibition studies to clinical drug-drug interactions for glecaprevir and pibrentasvirs. Journal of Pharmacology and Experimental Therapeutics, 370(2), 278–287. https://doi.org/10.1124/jpet.119.256966
Kratz, J. M. (2019). Drug discovery for chagas disease: A viewpoint. Acta Tropica, 198(July). https://doi.org/10.1016/j.actatropica.2019.105107
Lamb, Y. N. (2017). Glecaprevir/Pibrentasvir: First Global Approval. Drugs, 77(16), 1797–1804. https://doi.org/10.1007/s40265-017-0817-y
Lee, B. Y., Bacon, K. M., Bottazzi, M. E., & Hotez, P. J. (2013). Global economic burden of Chagas disease: a computational simulation model. The Lancet. Infectious Diseases, 13(4), 342–348. https://doi.org/10.1016/S1473-3099(13)70002-1
Leite, D. I., Fontes, F. de V., Bastos, M. M., Hoelz, L. V. B., Bianco, M. da C. A. D., de Oliveira, A. P., da Silva, P. B., da Silva, C. F., Batista, D. da G. J., da Gama, A. N. S., Peres, R. B., Villar, J. D. F., Soeiro, M. de N. C., & Boechat, N. (2018). New 1,2,3-triazole-based analogues of benznidazole for use against Trypanosoma cruzi infection: In vitro and in vivo evaluations. Chemical Biology and Drug Design, 92(3), 1670–1682. https://doi.org/10.1111/cbdd.13333
Li, Y., Shah-Simpson, S., Okrah, K., Belew, A. T., Choi, J., Caradonna, K. L., Padmanabhan, P., Ndegwa, D. M., Temanni, M. R., Corrada Bravo, H., El-Sayed, N. M., & Burleigh, B. A. (2016). Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection. PLoS Pathogens, 12(4), 1–30. https://doi.org/10.1371/journal.ppat.1005511
Lidani, K. C. F., Andrade, F. A., Bavia, L., Damasceno, F. S., Beltrame, M. H., Messias-Reason, I. J., & Sandri, T. L. (2019). Chagas disease: From discovery to a worldwide health problem. Journal of Physical Oceanography, 49(6), 1–13. https://doi.org/10.3389/fpubh.2019.00166
Lima, C. R., Carels, N., Guimaraes, A. C. R., Tufféry, P., & Derreumaux, P. (2016). In silico structural characterization of protein targets for drug development against Trypanosoma cruzi. Journal of Molecular Modeling, 22(10). https://doi.org/10.1007/s00894-016-3115-9
Liu, R., Curry, S., McMonagle, P., Yeh, W. W., Ludmerer, S. W., Jumes, P. A., Marshall, W. L., Kong, S., Ingravallo, P., Black, S., Pak, I., DiNubile, M. J., & Howe, A. Y. M. (2015). Susceptibilities of genotype 1a, 1b, and 3 hepatitis C virus variants to the NS5A inhibitor elbasvir. Antimicrobial Agents and Chemotherapy, 59(11), 6922–6929. https://doi.org/10.1128/AAC.01390-15
Mady, C., Ianni, B. M., & de Souza, J. L. (2008). Benznidazole and Chagas disease: Can an old drug be the answer to an old problem? Expert Opinion on Investigational Drugs, 17(10), 1427–1433. https://doi.org/10.1517/13543784.17.10.1427
Magalhães, J., Franko, N., Annunziato, G., Welch, M., Dolan, S. K., Bruno, A., Mozzarelli, A., Armao, S., Jirgensons, A., Pieroni, M., Costantino, G., & Campanini, B. (2018). Discovery of novel fragments inhibiting O-acetylserine sulphhydrylase by combining scaffold hopping and ligand–based drug design. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1444–1452. https://doi.org/10.1080/14756366.2018.1512596
Malone, C. J., Nevis, I., Fernández, E., & Sanchez, A. (2021). A rapid review on the efficacy and safety of pharmacological treatments for chagas disease. Tropical Medicine and Infectious Disease, 6(3). https://doi.org/10.3390/tropicalmed6030128
Marciano, D., Santana, M., & Nowicki, C. (2012). Functional characterization of enzymes involved in cysteine biosynthesis and H2S production in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 185(2), 114–120. https://doi.org/10.1016/j.molbiopara.2012.07.009
Martín-Escolano, J., Medina-Carmona, E., & Martín-Escolano, R. (2020). Chagas Disease: Current View of an Ancient and Global Chemotherapy Challenge. ACS Infectious Diseases, 6(11), 2830–2843. https://doi.org/10.1021/acsinfecdis.0c00353
Matsuo, A. L., Silva, L. S., Torrecilhas, A. C., Pascoalino, B. S., Ramos, T. C., Rodrigues, E. G., Schenkman, S., Caires, A. C. F., & Travassos, L. R. (2010). In vitro and in vivo trypanocidal effects of the cyclopalladated compound 7a, a drug candidate for treatment of Chagas’ disease. Antimicrobial Agents and Chemotherapy, 54(8), 3318–3325. https://doi.org/10.1128/AAC.00323-10
Maya, J. D., Cassels, B. K., Iturriaga-Vásquez, P., Ferreira, J., Faúndez, M., Galanti, N., Ferreira, A., & Morello, A. (2007). Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 146(4), 601–620. https://doi.org/10.1016/j.cbpa.2006.03.004
MedChemExpress. (2023). Master of Bioactive Molecules. https://www.medchemexpress.com/
Meira, C. S., Barbosa-Filho, J. M., Lanfredi-Rangel, A., Guimarães, E. T., Moreira, D. R. M., & Soares, M. B. P. (2016). Antiparasitic evaluation of betulinic acid derivatives reveals effective and selective anti-Trypanosoma cruzi inhibitors. Experimental Parasitology, 166, 108–115. https://doi.org/10.1016/j.exppara.2016.04.007
Mejía-Jaramillo, A. M., Fernández, G. J., Palacio, L., & Triana-Chávez, O. (2011). Gene expression study using real-time PCR identifies an NTR gene as a major marker of resistance to benznidazole in Trypanosoma cruzi. Parasites and Vectors, 4(1), 1–12. https://doi.org/10.1186/1756-3305-4-169
Mejia, A. M., Hall, B. S., Taylor, M. C., Gómez-Palacio, A., Wilkinson, S. R., Triana-Chávez, O., & Kelly, J. M. (2012). Benznidazole-resistance in trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. Journal of Infectious Diseases, 206(2), 220–228. https://doi.org/10.1093/infdis/jis331
Merck Sharp & Dohme Corp. (2016). ZEPATIER- elbasvir and grazoprevir tablet, film coated. https://www.merck.com/product/usa/pi_circulars/z/zepatier/zepatier_pi.pdf
Milani, M., Donalisio, M., Bonotto, R. M., Schneider, E., Arduino, I., Boni, F., Lembo, D., Marcello, A., & Mastrangelo, E. (2021). Combined in silico and in vitro approaches identified the antipsychotic drug lurasidone and the antiviral drug elbasvir as SARS-CoV2 and HCoV-OC43 inhibitors. Antiviral Research, 189, 105055. https://doi.org/10.1016/j.antiviral.2021.105055
Minning, T. A., Weatherly, D. B., Atwood, J., Orlando, R., & Tarleton, R. L. (2009). The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics, 10. https://doi.org/10.1186/1471-2164-10-370
Moreno, É. M., Leal, S. M., Stashenko, E. E., & García, L. T. (2018). Induction of programmed cell death in Trypanosoma cruzi by Lippia alba essential oils and their major and synergistic terpenes (citral, limonene and caryophyllene oxide). BMC Complementary and Alternative Medicine, 18(1), 1–16. https://doi.org/10.1186/s12906-018-2293-7
Müller Kratz, J., Garcia Bournissen, F., Forsyth, C. J., & Sosa-Estani, S. (2018). Clinical and pharmacological profile of benznidazole for treatment of Chagas disease. In Expert Review of Clinical Pharmacology (Vol. 11, Issue 10). Taylor & Francis. https://doi.org/10.1080/17512433.2018.1509704
Ng, T., Tripathi, R., Dekhtyar, T., Krishnan, P., Schnell, G., Beyer, J., Mcdaniel, K. F., & Ma, J. (2018). In Vitro Antiviral Activity and Resistance Profile of the Next-Generation HCV NS3-4A Protease Inhibitor Glecaprevir. Antimicrobial Agents and Chemotherapy, 62(1), 1–16.
Nozaki, T., Ali, V., & Tokoro, M. (2005). Sulfur-containing amino acid metabolism in parasitic protozoa. In Advances in Parasitology (Vol. 60, Issue 05). Elsevier Masson SAS. https://doi.org/10.1016/S0065-308X(05)60001-2
Nozaki, T., Shigeta, Y., Saito-Nakano, Y., Imada, M., & Kruger, W. D. (2001). Characterization of transsulfuration and cysteine biosynthetic pathways in the protozoan hemoflagellate, Trypanosoma cruzi: Isolation and molecular characterization of cystathionine β-synthase and serine acetyltransferase from trypanosoma. Journal of Biological Chemistry, 276(9), 6516–6523. https://doi.org/10.1074/jbc.M009774200
Nunes, M. C. P., Dones, W., Morillo, C. A., Encina, J. J., & Ribeiro, A. L. (2013). Chagas disease: An overview of clinical and epidemiological aspects. Journal of the American College of Cardiology, 62(9), 767–776. https://doi.org/10.1016/j.jacc.2013.05.046
Núñez-Vergara, L. J., Squella, J. A., Aldunate, J., Letelier, M. E., Bollo, S., Repetto, Y., Morello, A., & Spencer, P. L. (1997). Nitro radical anion formation from nifurtimox. Part 1: Biological evidences in Trypanosoma cruzi. Bioelectrochemistry and Bioenergetics, 43(1), 151–155. https://doi.org/10.1016/S0302-4598(96)05188-4
Nwaka, S., & Hudson, A. (2006). Innovative lead discovery strategies for tropical diseases. Nature Reviews Drug Discovery, 5(11), 941–955. https://doi.org/10.1038/nrd2144
Olivera, M. J., & Buitrago, G. (2020). Economic costs of Chagas disease in Colombia in 2017: A social perspective. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 91, 196–201. https://doi.org/10.1016/j.ijid.2019.11.022
Olivera, M. J., Cucunubá, Z. M., Valencia-Hernández, C. A., Herazo, R., Agreda-Rudenko, D., Flórez, C., Duque, S., & Nicholls, R. S. (2017). Risk factors for treatment interruption and severe adverse effects to benznidazole in adult patients with Chagas disease. PLoS ONE, 12(9), 1–13. https://doi.org/10.1371/journal.pone.0185033
OPS, O. P. de la S. (2022). Chagas disease. https://www.paho.org/en/documents/factsheet-chagas-disease-americas-public-health-workers
Pardo-rodriguez, D., Cifuentes-l, A., Bravo-espejo, J., Romero, I., Robles, J., Cuervo, C., Mej, S. M., & Tellez, J. (2023). Lupeol Acetate and α -Amyrin Terpenes Activity against Trypanosoma cruzi : Insights into Toxicity and Potential Mechanisms of Action.
Pardo-Rodriguez, D., Lasso, P., Mateus, J., Mendez, J., Puerta, C. J., Cuéllar, A., Robles, J., & Cuervo, C. (2022). A terpenoid-rich extract from Clethra fimbriata exhibits anti-Trypanosoma cruzi activity and induces T cell cytokine production. Heliyon, 8(3). https://doi.org/10.1016/j.heliyon.2022.e09182
Pavia, P. X., Thomas, M. C., López, M. C., & Puerta, C. J. (2012). Molecular characterization of the short interspersed repetitive element SIRE in the six discrete typing units (DTUs) of Trypanosoma cruzi. Experimental Parasitology, 132(2), 144–150. https://doi.org/10.1016/j.exppara.2012.06.007
Pech-Canul, Á. D. L. C., Monteón, V., & Solís-Oviedo, R. L. (2017). A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. Journal of Parasitology Research, 2017. https://doi.org/10.1155/2017/3751403
Pérez-Molina, J. A., Crespillo-Andújar, C., Bosch-Nicolau, P., & Molina, I. (2021). Trypanocidal treatment of Chagas disease. Enfermedades Infecciosas y Microbiologia Clinica (English Ed.), 39(9), 458–470. https://doi.org/10.1016/j.eimce.2020.04.012
Pijnenburg, D. W. M., van Seyen, M., Abbink, E. J., Colbers, A., Drenth, J. P. H., & Burger, D. M. (2020). Pharmacokinetic similarity demonstrated after crushing of the elbasvir/grazoprevir fixed-dose combination tablet for HCV infection. Journal of Antimicrobial Chemotherapy, 75(9), 2661–2665. https://doi.org/10.1093/jac/dkaa230
Pink, R., Hudson, A., Mouriès, M. A., & Bendig, M. (2005). Opportunities and challenges in antiparasitic drug discovery. Nature Reviews Drug Discovery, 4(9), 727–740. https://doi.org/10.1038/nrd1824
Portillo, S., Zepeda, B. G., Iniguez, E., Olivas, J. J., Karimi, N. H., Moreira, O. C., Marques, A. F., Michael, K., Maldonado, R. A., & Almeida, I. C. (2019). A prophylactic α-Gal-based glycovaccine effectively protects against murine acute Chagas disease. Npj Vaccines, 4(1). https://doi.org/10.1038/s41541-019-0107-7
Prata, A. (2001). Clinical and epidemiological aspects of Chagas disease. Lancet Infectious Diseases, 1(2), 92–100. https://doi.org/10.1016/S1473-3099(01)00065-2
Qiagen. (2011). QIA express ® Ni-NTA Fast Start Handbook For purification and detection of recombinant Sample & Assay Technologies QIAGEN Sample and Assay Technologies (Issue July). file:///C:/Users/fmile/Downloads/EN-QIAexpress-Ni-NTA-Fast-Start-Handbook (2).pdf
Ramírez, J. D., & Hernández, C. (2018). Trypanosoma cruzi I: Towards the need of genetic subdivision?, Part II. Acta Tropica, 184, 53–58. https://doi.org/10.1016/j.actatropica.2017.05.005
Rassi, A., Rassi, A., & Marin-Neto, J. A. (2010). Chagas disease. The Lancet, 375(9723), 1388–1402. https://doi.org/10.1016/S0140-6736(10)60061-X
Ribeiro, V., Dias, N., Paiva, T., Hagström-Bex, L., Nitz, N., Pratesi, R., & Hecht, M. (2020). Current trends in the pharmacological management of Chagas disease. International Journal for Parasitology: Drugs and Drug Resistance, 12(November 2019), 7–17. https://doi.org/10.1016/j.ijpddr.2019.11.004
Romanha, A. J., de Castro, S. L., Soeiro, M. de N. C., Lannes-Vieira, J., Ribeiro, I., Talvani, A., Bourdin, B., Blum, B., Olivieri, B., Zani, C., Spadafora, C., Chiari, E., Chatelain, E., Chaves, G., Calzada, J. E., Bustamante, J. M., Freitas-Junior, L. H., Romero, L. I., Bahia, M. T., … Andrade, Z. de A. (2010). In vitro and in vivo experimental models for drug screening and development for Chagas disease. Memorias Do Instituto Oswaldo Cruz, 105(2), 233–238. https://doi.org/10.1590/S0074-02762010000200022
Romero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of cysteine synthase and cystathionine β-synthase contributes to Leishmania braziliensis survival under oxidative stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770–4781. https://doi.org/10.1128/AAC.04880-14
Romero, I., Téllez, J., Yamanaka, L. E., Steindel, M., Romanha, A. J., & Grisard, E. C. (2014). Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasites and Vectors, 7(1), 1–11. https://doi.org/10.1186/1756-3305-7-197
Salassa, B. N., & Romano, P. S. (2019). Autophagy: A necessary process during the Trypanosoma cruzi life-cycle. Virulence, 10(1), 460–469. https://doi.org/10.1080/21505594.2018.1543517
Sánchez-Valdéz, F. J., Padilla, A., Wang, W., Orr, D., & Tarleton, R. (2017). Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. BioRxiv, 1–20. https://doi.org/10.1101/235762
Santoro, G. F., Cardoso, M. G., Guimarães, L. G. L., Freire, J. M., & Soares, M. J. (2007). Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida). Parasitology, 134(11), 1649–1656. https://doi.org/10.1017/S0031182007002958
Santos, E. de S., Silva, D. K. C., Reis, B. P. Z. C. dos, Barreto, B. C., Cardoso, C. M. A., Ribeiro dos Santos, R., Meira, C. S., & Soares, M. B. P. (2021). Immunomodulation for the Treatment of Chronic Chagas Disease Cardiomyopathy: A New Approach to an Old Enemy. Frontiers in Cellular and Infection Microbiology, 11(November), 1–12. https://doi.org/10.3389/fcimb.2021.765879
Schnell, R., Sriram, D., & Schneider, G. (2015). Pyridoxal-phosphate dependent mycobacterial cysteine synthases: Structure, mechanism and potential as drug targets. Biochimica et Biophysica Acta - Proteins and Proteomics, 1854(9), 1175–1183. https://doi.org/10.1016/j.bbapap.2014.11.010
Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database : The Journal of Biological Databases and Curation, 2020. https://doi.org/10.1093/database/baaa062
Sereno, D., Holzmuller, P., & Lemesre, J. L. (2000). Efficacy of second line drugs on antimonyl-resistant amastigotes of Leishmania infantum. Acta Tropica, 74(1), 25–31. https://doi.org/10.1016/S0001-706X(99)00048-0
Silber, A. M., Tonelli, R. R., Lopes, C. G., Cunha-e-Silva, N., Torrecilhas, A. C. T., Schumacher, R. I., Colli, W., & Alves, M. J. M. (2009). Glucose uptake in the mammalian stages of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 168(1), 102–108. https://doi.org/10.1016/j.molbiopara.2009.07.006
Singh, S., Sablok, G., Farmer, R., Singh, A. K., Gautam, B., & Kumar, S. (2013). Molecular dynamic simulation and inhibitor prediction of cysteine synthase structured model as a potential drug target for trichomoniasis. BioMed Research International, 2013. https://doi.org/10.1155/2013/390920
Souza, R., Lima, F., Barros, R. M., Cortez, D. R., Santos, M. F., Cordero, E. M., Ruiz, J. C., Goldenberg, S., Teixeira, M. M. G., & da Silveira, J. F. (2011). Genome size, karyotype polymorphism and chromosomal evolution in Trypanosoma cruzi. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0023042
Sowerby, K., Freitag-Pohl, S., Murillo, A. M., Silber, A. M., & Pohl, E. (2023). Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis. Acta Crystallographica Section D Structural Biology, 79(6), 518–530. https://doi.org/10.1107/S2059798323003613
Takagi, H., & Ohtsu, I. (2016). L -Cysteine Metabolism and Fermentation in Microorganisms. https://doi.org/10.1007/10
Teixeira, A., Hecht, M., Guimaro, M., Sousa, A., & Nitz, N. (2011). Pathogenesis of chagas’ disease: Parasite persistence and autoimmunity. Clinical Microbiology Reviews, 24(3), 592–630. https://doi.org/10.1128/CMR.00063-10
Teixeira, Benchimol, M., Crepaldi, P. H., & de Souza, W. (2012). Interactive Multimedia to Teach the Life Cycle of Trypanosoma cruzi, the Causative Agent of Chagas Disease. PLoS Neglected Tropical Diseases, 6(8), 1–13. https://doi.org/10.1371/journal.pntd.0001749
Téllez, J., Amarillo, A., Suarez, C., Cardozo, C., Guerra, D., Ochoa, R., Muskus, C., & Romero, I. (2022). Prediction of potential cysteine synthase inhibitors of Leishmania braziliensis and Leishmania major parasites by computational screening. Acta Tropica, 225(October 2021). https://doi.org/10.1016/j.actatropica.2021.106182
Téllez, J., Romero, I., Romanha, A. J., & Steindel, M. (2019). Drug transporter and oxidative stress gene expression in human macrophages infected with benznidazole-sensitive and naturally benznidazole-resistant Trypanosoma cruzi parasites treated with benznidazole. Parasites and Vectors, 12(1), 1–9. https://doi.org/10.1186/s13071-019-3485-9
Thomas, D., & Surdin-Kerjan, Y. (1997). Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 61(4), 503–532. https://doi.org/10.1128/mmbr.61.4.503-532.1997
Tyers, M., & Wright, G. D. (2019). Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nature Reviews Microbiology, 17(3), 141–155. https://doi.org/10.1038/s41579-018-0141-x
Tyler, K., & Engman, D. (2001). The life cycle of Trypanosoma cruzi revisited. International Journal for Parasitology, 31(5–6), 472–481. https://doi.org/10.1016/S0020-7519(01)00153-9
Valencia, L., Muñoz, D. L., Robledo, S. M., Echeverri, F., Arango, G. J., Vélez, I. D., & Triana, O. (2011). Trypanocidal and cytotoxic activity of extracts of Colombian plants. Biomedica, 31(4), 552–559. https://doi.org/10.7705/biomedica.v31i4.426
Viotti, R., Vigliano, C., Lococo, B., Alvarez, M. G., Petti, M., Bertocchi, G., & Armenti, A. (2009). Side effects of benznidazole as treatment in chronic Chagas disease: Fears and realities. Expert Review of Anti-Infective Therapy, 7(2), 157–163. https://doi.org/10.1586/14787210.7.2.157
Wang, S. J., Huang, C. F., & Yu, M. L. (2021). Elbasvir and grazoprevir for the treatment of hepatitis C. Expert Review of Anti-Infective Therapy, 19(9), 1071–1081. https://doi.org/10.1080/14787210.2021.1874351
WHO, W. H. O. (2015). Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Relevé Épidémiologique Hebdomadaire / Section d’hygiène Du Secrétariat de La Société Des Nations = Weekly Epidemiological Record / Health Section of the Secretariat of the League of Nations, 90(6), 33–43.
WHO, W. H. O. (2021). Chagas disease (also known as American trypanosomiasis). 2021. https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)#:~:text=secondary thrombotic strokes.-,Treatment,the cases of congenital transmission.
Wilkinson, S. R., Taylor, M. C., Horn, D., Kelly, J. M., & Cheeseman, I. (2008). A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5022–5027. https://doi.org/10.1073/pnas.0711014105
Williams, R. A. M., Westrop, G. D., & Coombs, G. H. (2009). Two pathways for cysteine biosynthesis in Leishmania major. Biochemical Journal, 420(3), 451–462. https://doi.org/10.1042/BJ20082441
Xia, H., Lu, C., Wang, Y., Zaongo, S. D., Hu, Y., Wu, Y., Yan, Z., & Ma, P. (2020). Efficacy and Safety of Direct-Acting Antiviral Therapy in Patients With Chronic Hepatitis C Virus Infection: A Real-World Single-Center Experience in Tianjin, China. Frontiers in Pharmacology, 11(May), 1–8. https://doi.org/10.3389/fphar.2020.00710
Zingales, B. (2018). Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Tropica, 184(April 2017), 38–52. https://doi.org/10.1016/j.actatropica.2017.09.017
Zingales, Bianca, Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G., Schijman, A. G., Llewellyn, M. S., Lages-Silva, E., Machado, C. R., Andrade, S. G., & Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85063/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85063/2/1022981858.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85063/3/1022981858.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
9a3f914d01fc94a2fbbff88ed9916820
e77996538ea1b99b7cb50146a613f822
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090124507480064
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Téllez Meneses, Jair Alexanderd50ed986507359558c5372c33a4d1190Romero Calderón, Ibeth Cristina1be6cd68f2562dc4b43f161eb1ab77a0Chavarrio Cañas, Francy Milena2166b81784f5163fde4992da12855beeGrupo de enfermedades infecciosas - Pontificia Universidad JaverianaGrupo Infecciones y Salud en el Trópico - Universidad Nacional de Colombia sede BogotáGrupo Zajuna Jwa Samu “Semilla del conocimiento” del Cesar - Universidad Nacional de Colombia sede la Paz2023-12-11T15:24:10Z2023-12-11T15:24:10Z2023-12https://repositorio.unal.edu.co/handle/unal/85063Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/La enfermedad de Chagas (ECh), causada por el parasito protozoario Trypanosoma cruzi, es una enfermedad endémica y desatendida en las Américas. Debido a su compleja dinámica de transmisión, se ha convertido en un problema de salud pública en el mundo. Actualmente, se cuenta con dos medicamentos para su tratamiento, benznidazol (BNZ) y nifurtimox (NFX). Esos medicamentos distan de ser un tratamiento ideal debido a su baja eficacia durante la fase crónica, a los efectos secundarios severos que llevan a una alta tasa de abandono de la terapia, y la menor susceptibilidad que presentan algunas cepas del parásito a estos medicamentos. Esas dificultades en el tratamiento de la ECh, han llevado a la necesidad de buscar nuevas alternativas terapéuticas. En este sentido, la Cisteína sintasa de T. cruzi (TcCS) ha sido estudiada como potencial blanco terapéutico, sobre la cual, se han realizado análisis de biología computacional que han permitido la identificación de moléculas con una alta afinidad y estabilidad de unión al sitio activo de la TcCS, dentro de las cuales se encuentra el elbasvir (EBV) y el glecaprevir (GCV). La presente investigación tuvo como objetivo evaluar in vitro, la actividad tripanocida y el efecto inhibitorio de EBV y de GCV sobre la actividad de la enzima TcCS. El efecto tripanocida de los compuestos fue evaluado en los estadios tripomastigote y amastigote del parásito, la citotoxicidad en células Vero y el efecto sobre la actividad enzimática a partir de extractos de proteínas solubles del parásito. El compuesto EBV presentó actividad biológica contra T. cruzi con una CE50 de 24.22 μM sobre el estadio tripomastigotes y una CI50 de 7.59 μM sobre el amastigote; con un índice de selectividad (IS) estimado de al menos 2.06 en el estadio infectivo y de al menos 6.58 sobre el estadio intracelular. Por su parte, GCV no mostró actividad biológica contra T. cruzi, y su citotoxicidad fue intermedia (CC50: 134.4 μM). Los compuestos evaluados no presentaron una inhibición selectiva de la actividad enzimática de TcCS. En conclusión, EBV presenta una actividad biológica principalmente contra el estadio amastigote de T. cruzi, lo cual hace de éste un posible compuesto líder para el desarrollo de nuevos tratamientos contra la ECh. (Texto tomado de la fuente)Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is an endemic and neglected disease in the Americas. Due to its complex transmission dynamics, it has become a public health problem in the world. Currently, there are two medications for its treatment, benznidazole (BNZ) and nifurtimox (NFX). These medications are far from being an ideal treatment due to their low effectiveness during the chronic phase, severe side effects that lead to a high rate of abandonment of therapy, and the lower susceptibility of some strains of the parasite to these medications. These difficulties in the treatment of CD have led to the need to search for new therapeutic alternatives. In this sense, T. cruzi Cysteine synthase (TcCS) has been studied as a potential therapeutic target, on which computational biology analyzes have been conducted that have allowed the identification of molecules with high affinity and stability of binding to the TcCS active site, among which are elbasvir (EBV) and glecaprevir (GCV). The aim of this research was to evaluate in vitro, trypanocidal activity and inhibitory effect of EBV and GCV on the activity of the TcCS enzyme. The trypanocidal effect of the compounds was evaluated in trypomastigote and amastigote stages of the parasite, cytotoxicity in Vero cells and effect on the enzymatic activity from soluble protein extracts of the parasite. The EBV compound presented biological activity against T. cruzi with an EC50 of 24.22 μM on trypomastigote stage and an IC50 of 7.59 μM on amastigote; with an estimated selectivity index (SI) of at least 2.06 in the infective stage and at least 6.58 in the intracellular stage. For its part, GCV did not show biological activity against T. cruzi, and its cytotoxicity was intermediate (CC50: 134.4 μM). The compounds evaluated did not present a selective inhibition of the enzymatic activity of TcCS. In conclusion, EBV presents biological activity mainly against amastigote stage of T. cruzi, which makes it a possible lead compound for the development of new treatments against CD.MaestríaMagíster en Ciencias - MicrobiologíaBiotecnología en saludapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáEvaluación de la actividad tripanocida de elbasvir y glecaprevir y del efecto sobre la actividad de la enzima Cisteína sintasa de Trypanosoma cruzi in vitroEvaluation of the trypanocidal activity of elbasvir and glecaprevir and the effect on the activity of the Trypanosoma cruzi cysteine synthase enzyme in vitroTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAguilera, E., Varela, J., Serna, E., Torres, S., Yaluff, G., De Bilbao, N. V., Cerecetto, H., Alvarez, G., & González, M. (2018). Looking for combination of benznidazole and trypanosoma cruzitriosephosphate isomerase inhibitors for chagas disease treatment. Memorias Do Instituto Oswaldo Cruz, 113(3), 153–160. https://doi.org/10.1590/0074-02760170267Asselah, T., Pol, S., Hezode, C., Loustaud-Ratti, V., Leroy, V., Ahmed, S. N. S., Ozenne, V., Bronowicki, J. P., Larrey, D., Tran, A., Alric, L., Nguyen-Khac, E., Robertson, M. N., Hanna, G. J., Brown, D., Asante-Appiah, E., Su, F. H., Hwang, P., Hall, J. D., … Serfaty, L. (2020). Efficacy and safety of elbasvir/grazoprevir for 8 or 12 weeks for hepatitis C virus genotype 4 infection: A randomized study. Liver International, 40(5), 1042–1051. https://doi.org/10.1111/liv.14313Atwood, J. A., Weatherly, D. B., Minning, T. A., Bundy, B., Cavola, C., Opperdoes, F. R., Orlando, R., & Tarleton, R. L. (2005). Microbiology: The Trypanosoma cruzi proteome. Science, 309(5733), 473–476. https://doi.org/10.1126/science.1110289Bahia, M. T., De Figueiredo Diniz, L. D. F., & Mosqueira, V. C. F. (2014). Therapeutical approaches under investigation for treatment of Chagas disease. Expert Opinion on Investigational Drugs, 23(9), 1225–1237. https://doi.org/10.1517/13543784.2014.922952Balasubramaniam, M., & Reis, R. J. S. (2020). Computational target-based drug repurposing of elbasvir, an antiviral drug predicted to bind multiple SARS-CoV-2 proteins. ChemRxiv : The Preprint Server for Chemistry. https://doi.org/10.26434/chemrxiv.12084822Beaumier, C. M., Gillespie, P. M., Strych, U., Hayward, T., Hotez, P. J., & Bottazzi, M. E. (2016). Status of vaccine research and development of vaccines for Chagas disease. Vaccine, 34(26), 2996–3000. https://doi.org/10.1016/j.vaccine.2016.03.074Beer, M. F., Frank, F. M., Germán Elso, O., Ernesto Bivona, A., Cerny, N., Giberti, G., Luis Malchiodi, E., Susana Martino, V., Alonso, M. R., Patricia Sülsen, V., & Cazorla, S. I. (2016). Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia. Pharmaceutical Biology, 54(10), 2188–2195. https://doi.org/10.3109/13880209.2016.1150304Beltran-Hortelano, I., Alcolea, V., Font, M., & Pérez-Silanes, S. (2022). Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorganic & Medicinal Chemistry, 58, 116577. https://doi.org/10.1016/j.bmc.2021.116577Bern, C. (2011). Antitrypanosomal Therapy for Chronic Chagas’ Disease. New England Journal of Medicine, 365(13), 1258–1259. https://doi.org/10.1056/nejmc1108653Bern, C., Messenger, L. A., Whitman, J. D., & Maguire, J. H. (2019). Chagas disease in the united states: A public health approach. Clinical Microbiology Reviews, 33(1), 1–42. https://doi.org/10.1128/CMR.00023-19Berná, L., Chiribao, M. L., Greif, G., Rodriguez, M., Alvarez-Valin, F., & Robello, C. (2017). Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in trypanosoma cruzi. PeerJ, 2017(3), 1–32. https://doi.org/10.7717/peerj.3017Bero, J., Ganfon, H., Jonville, M. C., Frédérich, M., Gbaguidi, F., DeMol, P., Moudachirou, M., & Quetin-Leclercq, J. (2009). In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria. Journal of Ethnopharmacology, 122(3), 439–444. https://doi.org/10.1016/j.jep.2009.02.004Bero, J., Hannaert, V., Chataigné, G., Hérent, M. F., & Quetin-Leclercq, J. (2011). In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract. Journal of Ethnopharmacology, 137(2), 998–1002. https://doi.org/10.1016/j.jep.2011.07.022Breckenridge, A., & Jacob, R. (2019). Overcoming the legal and regulatory barriers to drug repurposing. Nature Reviews. Drug Discovery, 18(1), 1–2. https://doi.org/10.1038/nrd.2018.92Cada, D. J., Editor, F., & Kim, A. P. (2016). Elbasvir / Grazoprevir. 51(8), 665–686. https://doi.org/10.1310/hpj5108Campos, M. C. O., Castro-Pinto, D. B., Ribeiro, G. A., Berredo-Pinho, M. M., Gomes, L. H. F., Da Silva Bellieny, M. S., Goulart, C. M., Echevarria, Á., & Leon, L. L. (2013). P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance. Parasitology Research, 112(6), 2341–2351. https://doi.org/10.1007/s00436-013-3398-zCanepa, G. E., Bouvier, L. A., Miranda, M. R., Uttaro, A. D., & Pereira, C. A. (2009). Characterization of Trypanosoma cruzi L-cysteine transport mechanisms and their adaptive regulation. FEMS Microbiology Letters, 292(1), 27–32. https://doi.org/10.1111/j.1574-6968.2008.01467.xCDC, C. of D. C. and P. (2019). Parasites - American Trypanosomiasis (also known as Chagas Disease). https://www.cdc.gov/parasites/chagas/Chatelain, E. (2015). Chagas disease drug discovery: Toward a new era. Journal of Biomolecular Screening, 20(1), 22–35. https://doi.org/10.1177/1087057114550585Chtita, S., Belhassan, A., Aouidate, A., Belaidi, S., Bouachrine, M., & Lakhlifi, T. (2021). Discovery of Potent SARS-CoV-2 Inhibitors from Approved Antiviral Drugs via Docking and Virtual Screening. Combinatorial Chemistry & High Throughput Screening, 24(3), 441–454. https://doi.org/10.2174/1386207323999200730205447Cook, S. E., Vogel, H., Castillo, D., Olsen, M., Pedersen, N., & Murphy, B. G. (2021). Investigation of monotherapy and combined anticoronaviral therapies against feline coronavirus serotype II in vitro. Journal of Feline Medicine and Surgery, 24(10), 943–953. https://doi.org/10.1177/1098612X211048647Crespillo-Andújar, C., Chamorro-Tojeiro, S., Norman, F., Monge-Maillo, B., López-Vélez, R., & Pérez-Molina, J. A. (2018). Toxicity of nifurtimox as second-line treatment after benznidazole intolerance in patients with chronic Chagas disease: when available options fail. Clinical Microbiology and Infection, 24(12), 1344.e1-1344.e4. https://doi.org/10.1016/j.cmi.2018.06.006De Andrade, P., Galo, O. A., Carvalho, M. R., Lopes, C. D., Carneiro, Z. A., Sesti-Costa, R., De Melo, E. B., Silva, J. S., & Carvalho, I. (2015). 1,2,3-Triazole-based analogue of benznidazole displays remarkable activity against Trypanosoma cruzi. Bioorganic and Medicinal Chemistry, 23(21), 6815–6826. https://doi.org/10.1016/j.bmc.2015.10.008de Oliveira, R. G., Cruz, L. R., Mollo, M. C., Dias, L. C., & Kratz, J. M. (2021). Chagas Disease Drug Discovery in Latin America—A Mini Review of Antiparasitic Agents Explored Between 2010 and 2021. Frontiers in Chemistry, 9(October), 1–7. https://doi.org/10.3389/fchem.2021.771143de Souza, W. (2009). Structural organization of Trypanosoma cruzi. Memorias Do Instituto Oswaldo Cruz, 104(SUPPL. 1), 89–100. https://doi.org/10.1590/s0074-02762009000900014Decuypere, S., Vanaerschot, M., Brunker, K., Imamura, H., Müller, S., Khanal, B., Rijal, S., Dujardin, J. C., & Coombs, G. H. (2012). Molecular mechanisms of drug resistance in natural leishmania populations vary with genetic background. PLoS Neglected Tropical Diseases, 6(2). https://doi.org/10.1371/journal.pntd.0001514Dharavath, S., Vijayan, R., Kumari, K., Tomar, P., & Gourinath, S. (2020). Crystal structure of O-Acetylserine sulfhydralase (OASS) isoform 3 from Entamoeba histolytica: Pharmacophore-based virtual screening and validation of novel inhibitors. European Journal of Medicinal Chemistry, 192, 112157. https://doi.org/10.1016/j.ejmech.2020.112157Ekins, S., Williams, A. J., Krasowski, M. D., & Freundlich, J. S. (2011). In silico repositioning of approved drugs for rare and neglected diseases. Drug Discovery Today, 16(7–8), 298–310. https://doi.org/10.1016/j.drudis.2011.02.016El-Sayed, N. M., Myler, P. J., Bartholomeu, D. C., Nilsson, D., Aggarwal, G., Tran, A. N., Ghedin, E., Worthey, E. A., Delcher, A. L., Blandin, G., Westenberger, S. J., Caler, E., Cerqueira, G. C., Branche, C., Haas, B., Anupama, A., Arner, E., Åslund, L., Attipoe, P., … Andersson, B. (2005). The genome sequence of Trypanosoma cruzi, etiologic agent of chagas disease. Science, 309(5733). https://doi.org/10.1126/science.1112631European Medicines Agency. (2016). Zepatier: Assessment Report (Vol. 44, Issue May). https://www.ema.europa.eu/en/documents/assessment-report/zepatier-epar-public-assessment-report_en.pdfFyfe, P. K., Westrop, G. D., Ramos, T., Müller, S., Coombs, G. H., & Hunter, W. N. (2012). Structure of Leishmania major cysteine synthase. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 68(7), 738–743. https://doi.org/10.1107/S1744309112019124Gammeltoft, K. A., Zhou, Y., Hernandez, C. R. D., Galli, A., Offersgaard, A., Costa, R., Pham, L. V., Fahnøe, U., Feng, S., Scheel, T. K. H., Ramirez, S., Bukh, J., & Gottwein, J. M. (2021). Hepatitis c virus protease inhibitors show differential efficacy and interactions with Remdesivir for treatment of SARS-CoV-2 in Vitro. Antimicrobial Agents and Chemotherapy, 65(9), 1–24. https://doi.org/10.1128/AAC.02680-20García-Huertas, P., Mejía-Jaramillo, A. M., González, L., & Triana-Chávez, O. (2017). Transcriptome and Functional Genomics Reveal the Participation of Adenine Phosphoribosyltransferase in Trypanosoma cruzi Resistance to Benznidazole. Journal of Cellular Biochemistry, 118(7), 1936–1945. https://doi.org/10.1002/jcb.25978García-Huertas, P., Mejía-Jaramillo, A. M., Machado, C. R., Guimarães, A. C., & Triana-Chávez, O. (2017). Prostaglandin F2α synthase in trypanosoma cruzi plays critical roles in oxidative stress and susceptibility to benznidazole. Royal Society Open Science, 4(9). https://doi.org/10.1098/rsos.170773Ghosh, A. K., Samanta, I., Mondal, A., & Liu, W. R. (2019). Covalent Inhibition in Drug Discovery. ChemMedChem, 14(9), 889–906. https://doi.org/10.1002/cmdc.201900107González, L., García-Huertas, P., Triana-Chávez, O., García, G. A., Murta, S. M. F., & Mejía-Jaramillo, A. M. (2017). Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi. Molecular Microbiology, 106(5), 704–718. https://doi.org/10.1111/mmi.13830Gopal, G. J., & Kumar, A. (2013). Strategies for the production of recombinant protein in escherichia coli. Protein Journal, 32(6), 419–425. https://doi.org/10.1007/s10930-013-9502-5Guarner, J. (2019). Chagas disease as example of a reemerging parasite. Seminars in Diagnostic Pathology, 36(3), 164–169. https://doi.org/10.1053/j.semdp.2019.04.008Hall, B. S., & Wilkinson, S. R. (2012). Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrobial Agents and Chemotherapy, 56(1), 115–123. https://doi.org/10.1128/AAC.05135-11Horner, S. M., & Gale, M. (2013). Regulation of hepatic innate immunity by hepatitis C virus. Nature Medicine, 19(7), 879–888. https://doi.org/10.1038/nm.3253Huličiak, M., Vokřál, I., Holas, O., Martinec, O., Štaud, F., & Červený, L. (2022). Evaluation of the Potency of Anti-HIV and Anti-HCV Drugs to Inhibit P-Glycoprotein Mediated Efflux of Digoxin in Caco-2 Cell Line and Human Precision-Cut Intestinal Slices. Pharmaceuticals, 15(2). https://doi.org/10.3390/ph15020242Ibrahim, M. A. A., Abdeljawaad, K. A. A., Jaragh-Alhadad, L. A., Oraby, H. F., Atia, M. A. M., Alzahrani, O. R., Mekhemer, G. A. H., Moustafa, M. F., Shawky, A. M., Sidhom, P. A., & Abdelrahman, A. H. M. (2023). Potential drug candidates as P-glycoprotein inhibitors to reverse multidrug resistance in cancer: an in silico drug discovery study. Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2023.2176360INS, I. N. de S. (2023). Informe de evento: CHAGAS. https://www.ins.gov.co/buscador-eventos/Paginas/Info-Evento.aspxIsah, M. B., Ibrahim, M. A., Mohammed, A., Aliyu, A. B., Masola, B., & Coetzer, T. H. T. (2016). A systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases. Parasitology, 143(10), 1219–1231. https://doi.org/10.1017/S0031182016000718Jackson, Y., Wyssa, B., & Chappuis, F. (2020). Tolerance to nifurtimox and benznidazole in adult patients with chronic Chagas’ disease. Journal of Antimicrobial Chemotherapy, 75(3), 690–696. https://doi.org/10.1093/jac/dkz473Jean, V., Poyraz, Ö., Saxena, S., Schnell, R., Yogeeswari, P., Schneider, G., & Sriram, D. (2013). Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using virtual high-throughput screening. Bioorganic and Medicinal Chemistry Letters, 23(5), 1182–1186. https://doi.org/10.1016/j.bmcl.2013.01.031Jubair, N., Rajagopal, M., Chinnappan, S., Abdullah, N. B., & Fatima, A. (2021). Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/3663315Kosloski, M. P., Bow, D. A. J., Kikuchi, R., Wang, H., Kim, E. J., Marsh, K., Mensa, F., Kort, J., & Liu, W. (2019). Translation of in vitro transport inhibition studies to clinical drug-drug interactions for glecaprevir and pibrentasvirs. Journal of Pharmacology and Experimental Therapeutics, 370(2), 278–287. https://doi.org/10.1124/jpet.119.256966Kratz, J. M. (2019). Drug discovery for chagas disease: A viewpoint. Acta Tropica, 198(July). https://doi.org/10.1016/j.actatropica.2019.105107Lamb, Y. N. (2017). Glecaprevir/Pibrentasvir: First Global Approval. Drugs, 77(16), 1797–1804. https://doi.org/10.1007/s40265-017-0817-yLee, B. Y., Bacon, K. M., Bottazzi, M. E., & Hotez, P. J. (2013). Global economic burden of Chagas disease: a computational simulation model. The Lancet. Infectious Diseases, 13(4), 342–348. https://doi.org/10.1016/S1473-3099(13)70002-1Leite, D. I., Fontes, F. de V., Bastos, M. M., Hoelz, L. V. B., Bianco, M. da C. A. D., de Oliveira, A. P., da Silva, P. B., da Silva, C. F., Batista, D. da G. J., da Gama, A. N. S., Peres, R. B., Villar, J. D. F., Soeiro, M. de N. C., & Boechat, N. (2018). New 1,2,3-triazole-based analogues of benznidazole for use against Trypanosoma cruzi infection: In vitro and in vivo evaluations. Chemical Biology and Drug Design, 92(3), 1670–1682. https://doi.org/10.1111/cbdd.13333Li, Y., Shah-Simpson, S., Okrah, K., Belew, A. T., Choi, J., Caradonna, K. L., Padmanabhan, P., Ndegwa, D. M., Temanni, M. R., Corrada Bravo, H., El-Sayed, N. M., & Burleigh, B. A. (2016). Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection. PLoS Pathogens, 12(4), 1–30. https://doi.org/10.1371/journal.ppat.1005511Lidani, K. C. F., Andrade, F. A., Bavia, L., Damasceno, F. S., Beltrame, M. H., Messias-Reason, I. J., & Sandri, T. L. (2019). Chagas disease: From discovery to a worldwide health problem. Journal of Physical Oceanography, 49(6), 1–13. https://doi.org/10.3389/fpubh.2019.00166Lima, C. R., Carels, N., Guimaraes, A. C. R., Tufféry, P., & Derreumaux, P. (2016). In silico structural characterization of protein targets for drug development against Trypanosoma cruzi. Journal of Molecular Modeling, 22(10). https://doi.org/10.1007/s00894-016-3115-9Liu, R., Curry, S., McMonagle, P., Yeh, W. W., Ludmerer, S. W., Jumes, P. A., Marshall, W. L., Kong, S., Ingravallo, P., Black, S., Pak, I., DiNubile, M. J., & Howe, A. Y. M. (2015). Susceptibilities of genotype 1a, 1b, and 3 hepatitis C virus variants to the NS5A inhibitor elbasvir. Antimicrobial Agents and Chemotherapy, 59(11), 6922–6929. https://doi.org/10.1128/AAC.01390-15Mady, C., Ianni, B. M., & de Souza, J. L. (2008). Benznidazole and Chagas disease: Can an old drug be the answer to an old problem? Expert Opinion on Investigational Drugs, 17(10), 1427–1433. https://doi.org/10.1517/13543784.17.10.1427Magalhães, J., Franko, N., Annunziato, G., Welch, M., Dolan, S. K., Bruno, A., Mozzarelli, A., Armao, S., Jirgensons, A., Pieroni, M., Costantino, G., & Campanini, B. (2018). Discovery of novel fragments inhibiting O-acetylserine sulphhydrylase by combining scaffold hopping and ligand–based drug design. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1444–1452. https://doi.org/10.1080/14756366.2018.1512596Malone, C. J., Nevis, I., Fernández, E., & Sanchez, A. (2021). A rapid review on the efficacy and safety of pharmacological treatments for chagas disease. Tropical Medicine and Infectious Disease, 6(3). https://doi.org/10.3390/tropicalmed6030128Marciano, D., Santana, M., & Nowicki, C. (2012). Functional characterization of enzymes involved in cysteine biosynthesis and H2S production in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 185(2), 114–120. https://doi.org/10.1016/j.molbiopara.2012.07.009Martín-Escolano, J., Medina-Carmona, E., & Martín-Escolano, R. (2020). Chagas Disease: Current View of an Ancient and Global Chemotherapy Challenge. ACS Infectious Diseases, 6(11), 2830–2843. https://doi.org/10.1021/acsinfecdis.0c00353Matsuo, A. L., Silva, L. S., Torrecilhas, A. C., Pascoalino, B. S., Ramos, T. C., Rodrigues, E. G., Schenkman, S., Caires, A. C. F., & Travassos, L. R. (2010). In vitro and in vivo trypanocidal effects of the cyclopalladated compound 7a, a drug candidate for treatment of Chagas’ disease. Antimicrobial Agents and Chemotherapy, 54(8), 3318–3325. https://doi.org/10.1128/AAC.00323-10Maya, J. D., Cassels, B. K., Iturriaga-Vásquez, P., Ferreira, J., Faúndez, M., Galanti, N., Ferreira, A., & Morello, A. (2007). Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 146(4), 601–620. https://doi.org/10.1016/j.cbpa.2006.03.004MedChemExpress. (2023). Master of Bioactive Molecules. https://www.medchemexpress.com/Meira, C. S., Barbosa-Filho, J. M., Lanfredi-Rangel, A., Guimarães, E. T., Moreira, D. R. M., & Soares, M. B. P. (2016). Antiparasitic evaluation of betulinic acid derivatives reveals effective and selective anti-Trypanosoma cruzi inhibitors. Experimental Parasitology, 166, 108–115. https://doi.org/10.1016/j.exppara.2016.04.007Mejía-Jaramillo, A. M., Fernández, G. J., Palacio, L., & Triana-Chávez, O. (2011). Gene expression study using real-time PCR identifies an NTR gene as a major marker of resistance to benznidazole in Trypanosoma cruzi. Parasites and Vectors, 4(1), 1–12. https://doi.org/10.1186/1756-3305-4-169Mejia, A. M., Hall, B. S., Taylor, M. C., Gómez-Palacio, A., Wilkinson, S. R., Triana-Chávez, O., & Kelly, J. M. (2012). Benznidazole-resistance in trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. Journal of Infectious Diseases, 206(2), 220–228. https://doi.org/10.1093/infdis/jis331Merck Sharp & Dohme Corp. (2016). ZEPATIER- elbasvir and grazoprevir tablet, film coated. https://www.merck.com/product/usa/pi_circulars/z/zepatier/zepatier_pi.pdfMilani, M., Donalisio, M., Bonotto, R. M., Schneider, E., Arduino, I., Boni, F., Lembo, D., Marcello, A., & Mastrangelo, E. (2021). Combined in silico and in vitro approaches identified the antipsychotic drug lurasidone and the antiviral drug elbasvir as SARS-CoV2 and HCoV-OC43 inhibitors. Antiviral Research, 189, 105055. https://doi.org/10.1016/j.antiviral.2021.105055Minning, T. A., Weatherly, D. B., Atwood, J., Orlando, R., & Tarleton, R. L. (2009). The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics, 10. https://doi.org/10.1186/1471-2164-10-370Moreno, É. M., Leal, S. M., Stashenko, E. E., & García, L. T. (2018). Induction of programmed cell death in Trypanosoma cruzi by Lippia alba essential oils and their major and synergistic terpenes (citral, limonene and caryophyllene oxide). BMC Complementary and Alternative Medicine, 18(1), 1–16. https://doi.org/10.1186/s12906-018-2293-7Müller Kratz, J., Garcia Bournissen, F., Forsyth, C. J., & Sosa-Estani, S. (2018). Clinical and pharmacological profile of benznidazole for treatment of Chagas disease. In Expert Review of Clinical Pharmacology (Vol. 11, Issue 10). Taylor & Francis. https://doi.org/10.1080/17512433.2018.1509704Ng, T., Tripathi, R., Dekhtyar, T., Krishnan, P., Schnell, G., Beyer, J., Mcdaniel, K. F., & Ma, J. (2018). In Vitro Antiviral Activity and Resistance Profile of the Next-Generation HCV NS3-4A Protease Inhibitor Glecaprevir. Antimicrobial Agents and Chemotherapy, 62(1), 1–16.Nozaki, T., Ali, V., & Tokoro, M. (2005). Sulfur-containing amino acid metabolism in parasitic protozoa. In Advances in Parasitology (Vol. 60, Issue 05). Elsevier Masson SAS. https://doi.org/10.1016/S0065-308X(05)60001-2Nozaki, T., Shigeta, Y., Saito-Nakano, Y., Imada, M., & Kruger, W. D. (2001). Characterization of transsulfuration and cysteine biosynthetic pathways in the protozoan hemoflagellate, Trypanosoma cruzi: Isolation and molecular characterization of cystathionine β-synthase and serine acetyltransferase from trypanosoma. Journal of Biological Chemistry, 276(9), 6516–6523. https://doi.org/10.1074/jbc.M009774200Nunes, M. C. P., Dones, W., Morillo, C. A., Encina, J. J., & Ribeiro, A. L. (2013). Chagas disease: An overview of clinical and epidemiological aspects. Journal of the American College of Cardiology, 62(9), 767–776. https://doi.org/10.1016/j.jacc.2013.05.046Núñez-Vergara, L. J., Squella, J. A., Aldunate, J., Letelier, M. E., Bollo, S., Repetto, Y., Morello, A., & Spencer, P. L. (1997). Nitro radical anion formation from nifurtimox. Part 1: Biological evidences in Trypanosoma cruzi. Bioelectrochemistry and Bioenergetics, 43(1), 151–155. https://doi.org/10.1016/S0302-4598(96)05188-4Nwaka, S., & Hudson, A. (2006). Innovative lead discovery strategies for tropical diseases. Nature Reviews Drug Discovery, 5(11), 941–955. https://doi.org/10.1038/nrd2144Olivera, M. J., & Buitrago, G. (2020). Economic costs of Chagas disease in Colombia in 2017: A social perspective. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 91, 196–201. https://doi.org/10.1016/j.ijid.2019.11.022Olivera, M. J., Cucunubá, Z. M., Valencia-Hernández, C. A., Herazo, R., Agreda-Rudenko, D., Flórez, C., Duque, S., & Nicholls, R. S. (2017). Risk factors for treatment interruption and severe adverse effects to benznidazole in adult patients with Chagas disease. PLoS ONE, 12(9), 1–13. https://doi.org/10.1371/journal.pone.0185033OPS, O. P. de la S. (2022). Chagas disease. https://www.paho.org/en/documents/factsheet-chagas-disease-americas-public-health-workersPardo-rodriguez, D., Cifuentes-l, A., Bravo-espejo, J., Romero, I., Robles, J., Cuervo, C., Mej, S. M., & Tellez, J. (2023). Lupeol Acetate and α -Amyrin Terpenes Activity against Trypanosoma cruzi : Insights into Toxicity and Potential Mechanisms of Action.Pardo-Rodriguez, D., Lasso, P., Mateus, J., Mendez, J., Puerta, C. J., Cuéllar, A., Robles, J., & Cuervo, C. (2022). A terpenoid-rich extract from Clethra fimbriata exhibits anti-Trypanosoma cruzi activity and induces T cell cytokine production. Heliyon, 8(3). https://doi.org/10.1016/j.heliyon.2022.e09182Pavia, P. X., Thomas, M. C., López, M. C., & Puerta, C. J. (2012). Molecular characterization of the short interspersed repetitive element SIRE in the six discrete typing units (DTUs) of Trypanosoma cruzi. Experimental Parasitology, 132(2), 144–150. https://doi.org/10.1016/j.exppara.2012.06.007Pech-Canul, Á. D. L. C., Monteón, V., & Solís-Oviedo, R. L. (2017). A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. Journal of Parasitology Research, 2017. https://doi.org/10.1155/2017/3751403Pérez-Molina, J. A., Crespillo-Andújar, C., Bosch-Nicolau, P., & Molina, I. (2021). Trypanocidal treatment of Chagas disease. Enfermedades Infecciosas y Microbiologia Clinica (English Ed.), 39(9), 458–470. https://doi.org/10.1016/j.eimce.2020.04.012Pijnenburg, D. W. M., van Seyen, M., Abbink, E. J., Colbers, A., Drenth, J. P. H., & Burger, D. M. (2020). Pharmacokinetic similarity demonstrated after crushing of the elbasvir/grazoprevir fixed-dose combination tablet for HCV infection. Journal of Antimicrobial Chemotherapy, 75(9), 2661–2665. https://doi.org/10.1093/jac/dkaa230Pink, R., Hudson, A., Mouriès, M. A., & Bendig, M. (2005). Opportunities and challenges in antiparasitic drug discovery. Nature Reviews Drug Discovery, 4(9), 727–740. https://doi.org/10.1038/nrd1824Portillo, S., Zepeda, B. G., Iniguez, E., Olivas, J. J., Karimi, N. H., Moreira, O. C., Marques, A. F., Michael, K., Maldonado, R. A., & Almeida, I. C. (2019). A prophylactic α-Gal-based glycovaccine effectively protects against murine acute Chagas disease. Npj Vaccines, 4(1). https://doi.org/10.1038/s41541-019-0107-7Prata, A. (2001). Clinical and epidemiological aspects of Chagas disease. Lancet Infectious Diseases, 1(2), 92–100. https://doi.org/10.1016/S1473-3099(01)00065-2Qiagen. (2011). QIA express ® Ni-NTA Fast Start Handbook For purification and detection of recombinant Sample & Assay Technologies QIAGEN Sample and Assay Technologies (Issue July). file:///C:/Users/fmile/Downloads/EN-QIAexpress-Ni-NTA-Fast-Start-Handbook (2).pdfRamírez, J. D., & Hernández, C. (2018). Trypanosoma cruzi I: Towards the need of genetic subdivision?, Part II. Acta Tropica, 184, 53–58. https://doi.org/10.1016/j.actatropica.2017.05.005Rassi, A., Rassi, A., & Marin-Neto, J. A. (2010). Chagas disease. The Lancet, 375(9723), 1388–1402. https://doi.org/10.1016/S0140-6736(10)60061-XRibeiro, V., Dias, N., Paiva, T., Hagström-Bex, L., Nitz, N., Pratesi, R., & Hecht, M. (2020). Current trends in the pharmacological management of Chagas disease. International Journal for Parasitology: Drugs and Drug Resistance, 12(November 2019), 7–17. https://doi.org/10.1016/j.ijpddr.2019.11.004Romanha, A. J., de Castro, S. L., Soeiro, M. de N. C., Lannes-Vieira, J., Ribeiro, I., Talvani, A., Bourdin, B., Blum, B., Olivieri, B., Zani, C., Spadafora, C., Chiari, E., Chatelain, E., Chaves, G., Calzada, J. E., Bustamante, J. M., Freitas-Junior, L. H., Romero, L. I., Bahia, M. T., … Andrade, Z. de A. (2010). In vitro and in vivo experimental models for drug screening and development for Chagas disease. Memorias Do Instituto Oswaldo Cruz, 105(2), 233–238. https://doi.org/10.1590/S0074-02762010000200022Romero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of cysteine synthase and cystathionine β-synthase contributes to Leishmania braziliensis survival under oxidative stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770–4781. https://doi.org/10.1128/AAC.04880-14Romero, I., Téllez, J., Yamanaka, L. E., Steindel, M., Romanha, A. J., & Grisard, E. C. (2014). Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasites and Vectors, 7(1), 1–11. https://doi.org/10.1186/1756-3305-7-197Salassa, B. N., & Romano, P. S. (2019). Autophagy: A necessary process during the Trypanosoma cruzi life-cycle. Virulence, 10(1), 460–469. https://doi.org/10.1080/21505594.2018.1543517Sánchez-Valdéz, F. J., Padilla, A., Wang, W., Orr, D., & Tarleton, R. (2017). Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. BioRxiv, 1–20. https://doi.org/10.1101/235762Santoro, G. F., Cardoso, M. G., Guimarães, L. G. L., Freire, J. M., & Soares, M. J. (2007). Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida). Parasitology, 134(11), 1649–1656. https://doi.org/10.1017/S0031182007002958Santos, E. de S., Silva, D. K. C., Reis, B. P. Z. C. dos, Barreto, B. C., Cardoso, C. M. A., Ribeiro dos Santos, R., Meira, C. S., & Soares, M. B. P. (2021). Immunomodulation for the Treatment of Chronic Chagas Disease Cardiomyopathy: A New Approach to an Old Enemy. Frontiers in Cellular and Infection Microbiology, 11(November), 1–12. https://doi.org/10.3389/fcimb.2021.765879Schnell, R., Sriram, D., & Schneider, G. (2015). Pyridoxal-phosphate dependent mycobacterial cysteine synthases: Structure, mechanism and potential as drug targets. Biochimica et Biophysica Acta - Proteins and Proteomics, 1854(9), 1175–1183. https://doi.org/10.1016/j.bbapap.2014.11.010Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database : The Journal of Biological Databases and Curation, 2020. https://doi.org/10.1093/database/baaa062Sereno, D., Holzmuller, P., & Lemesre, J. L. (2000). Efficacy of second line drugs on antimonyl-resistant amastigotes of Leishmania infantum. Acta Tropica, 74(1), 25–31. https://doi.org/10.1016/S0001-706X(99)00048-0Silber, A. M., Tonelli, R. R., Lopes, C. G., Cunha-e-Silva, N., Torrecilhas, A. C. T., Schumacher, R. I., Colli, W., & Alves, M. J. M. (2009). Glucose uptake in the mammalian stages of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 168(1), 102–108. https://doi.org/10.1016/j.molbiopara.2009.07.006Singh, S., Sablok, G., Farmer, R., Singh, A. K., Gautam, B., & Kumar, S. (2013). Molecular dynamic simulation and inhibitor prediction of cysteine synthase structured model as a potential drug target for trichomoniasis. BioMed Research International, 2013. https://doi.org/10.1155/2013/390920Souza, R., Lima, F., Barros, R. M., Cortez, D. R., Santos, M. F., Cordero, E. M., Ruiz, J. C., Goldenberg, S., Teixeira, M. M. G., & da Silveira, J. F. (2011). Genome size, karyotype polymorphism and chromosomal evolution in Trypanosoma cruzi. PLoS ONE, 6(8). https://doi.org/10.1371/journal.pone.0023042Sowerby, K., Freitag-Pohl, S., Murillo, A. M., Silber, A. M., & Pohl, E. (2023). Cysteine synthase: multiple structures of a key enzyme in cysteine synthesis and a potential drug target for Chagas disease and leishmaniasis. Acta Crystallographica Section D Structural Biology, 79(6), 518–530. https://doi.org/10.1107/S2059798323003613Takagi, H., & Ohtsu, I. (2016). L -Cysteine Metabolism and Fermentation in Microorganisms. https://doi.org/10.1007/10Teixeira, A., Hecht, M., Guimaro, M., Sousa, A., & Nitz, N. (2011). Pathogenesis of chagas’ disease: Parasite persistence and autoimmunity. Clinical Microbiology Reviews, 24(3), 592–630. https://doi.org/10.1128/CMR.00063-10Teixeira, Benchimol, M., Crepaldi, P. H., & de Souza, W. (2012). Interactive Multimedia to Teach the Life Cycle of Trypanosoma cruzi, the Causative Agent of Chagas Disease. PLoS Neglected Tropical Diseases, 6(8), 1–13. https://doi.org/10.1371/journal.pntd.0001749Téllez, J., Amarillo, A., Suarez, C., Cardozo, C., Guerra, D., Ochoa, R., Muskus, C., & Romero, I. (2022). Prediction of potential cysteine synthase inhibitors of Leishmania braziliensis and Leishmania major parasites by computational screening. Acta Tropica, 225(October 2021). https://doi.org/10.1016/j.actatropica.2021.106182Téllez, J., Romero, I., Romanha, A. J., & Steindel, M. (2019). Drug transporter and oxidative stress gene expression in human macrophages infected with benznidazole-sensitive and naturally benznidazole-resistant Trypanosoma cruzi parasites treated with benznidazole. Parasites and Vectors, 12(1), 1–9. https://doi.org/10.1186/s13071-019-3485-9Thomas, D., & Surdin-Kerjan, Y. (1997). Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 61(4), 503–532. https://doi.org/10.1128/mmbr.61.4.503-532.1997Tyers, M., & Wright, G. D. (2019). Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nature Reviews Microbiology, 17(3), 141–155. https://doi.org/10.1038/s41579-018-0141-xTyler, K., & Engman, D. (2001). The life cycle of Trypanosoma cruzi revisited. International Journal for Parasitology, 31(5–6), 472–481. https://doi.org/10.1016/S0020-7519(01)00153-9Valencia, L., Muñoz, D. L., Robledo, S. M., Echeverri, F., Arango, G. J., Vélez, I. D., & Triana, O. (2011). Trypanocidal and cytotoxic activity of extracts of Colombian plants. Biomedica, 31(4), 552–559. https://doi.org/10.7705/biomedica.v31i4.426Viotti, R., Vigliano, C., Lococo, B., Alvarez, M. G., Petti, M., Bertocchi, G., & Armenti, A. (2009). Side effects of benznidazole as treatment in chronic Chagas disease: Fears and realities. Expert Review of Anti-Infective Therapy, 7(2), 157–163. https://doi.org/10.1586/14787210.7.2.157Wang, S. J., Huang, C. F., & Yu, M. L. (2021). Elbasvir and grazoprevir for the treatment of hepatitis C. Expert Review of Anti-Infective Therapy, 19(9), 1071–1081. https://doi.org/10.1080/14787210.2021.1874351WHO, W. H. O. (2015). Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Relevé Épidémiologique Hebdomadaire / Section d’hygiène Du Secrétariat de La Société Des Nations = Weekly Epidemiological Record / Health Section of the Secretariat of the League of Nations, 90(6), 33–43.WHO, W. H. O. (2021). Chagas disease (also known as American trypanosomiasis). 2021. https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)#:~:text=secondary thrombotic strokes.-,Treatment,the cases of congenital transmission.Wilkinson, S. R., Taylor, M. C., Horn, D., Kelly, J. M., & Cheeseman, I. (2008). A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5022–5027. https://doi.org/10.1073/pnas.0711014105Williams, R. A. M., Westrop, G. D., & Coombs, G. H. (2009). Two pathways for cysteine biosynthesis in Leishmania major. Biochemical Journal, 420(3), 451–462. https://doi.org/10.1042/BJ20082441Xia, H., Lu, C., Wang, Y., Zaongo, S. D., Hu, Y., Wu, Y., Yan, Z., & Ma, P. (2020). Efficacy and Safety of Direct-Acting Antiviral Therapy in Patients With Chronic Hepatitis C Virus Infection: A Real-World Single-Center Experience in Tianjin, China. Frontiers in Pharmacology, 11(May), 1–8. https://doi.org/10.3389/fphar.2020.00710Zingales, B. (2018). Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Tropica, 184(April 2017), 38–52. https://doi.org/10.1016/j.actatropica.2017.09.017Zingales, Bianca, Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G., Schijman, A. G., Llewellyn, M. S., Lages-Silva, E., Machado, C. R., Andrade, S. G., & Sturm, N. R. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009ParásitosParasitesTrypanosoma cruziChagas diseaseCysteine synthaseTrypanocidal activityTherapeutic targetEnzyme inhibitionEnfermedad de ChagasCisteína sintasaEfecto tripanocidaBlanco terapéuticoInhibición enzimáticaElbasvirGlecaprevirIdentificación de compuestos inhibidores de la enzima Cisteína Sintasa de Trypanosoma cruzi con potencial actividad tripanocida para el desarrollo de una terapia selectiva contra este parásitoPontificia Universidad JaverianaAdministradoresBibliotecariosConsejerosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPadres y familiasPersonal de apoyo escolarProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85063/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1022981858.2023.pdf1022981858.2023.pdfTesis de Maestría en Ciencias - Microbiologíaapplication/pdf1199204https://repositorio.unal.edu.co/bitstream/unal/85063/2/1022981858.2023.pdf9a3f914d01fc94a2fbbff88ed9916820MD52THUMBNAIL1022981858.2023.pdf.jpg1022981858.2023.pdf.jpgGenerated Thumbnailimage/jpeg5163https://repositorio.unal.edu.co/bitstream/unal/85063/3/1022981858.2023.pdf.jpge77996538ea1b99b7cb50146a613f822MD53unal/85063oai:repositorio.unal.edu.co:unal/850632024-08-20 23:10:27.175Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=