Desarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periférico

ilustraciones, fotografías, graficas

Autores:
Millán Cortés, Diana Milena
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82254
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82254
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva pública
Nervios Periféricos
Colágeno Tipo I
Peripheral Nerves
Collagen Type I
Conductos nerviosos
Nervio periférico
Ingeniería de tejidos
Regeneración
Axones
Peripheral nerve
Nerve conduits
Regeneration
Axons
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_3a90345689045cf21b5bc8ad575110d0
oai_identifier_str oai:repositorio.unal.edu.co:unal/82254
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periférico
dc.title.translated.eng.fl_str_mv Development of laminar biphasic conduits of type I collagen for use in peripheral nerve regeneration
title Desarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periférico
spellingShingle Desarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periférico
610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva pública
Nervios Periféricos
Colágeno Tipo I
Peripheral Nerves
Collagen Type I
Conductos nerviosos
Nervio periférico
Ingeniería de tejidos
Regeneración
Axones
Peripheral nerve
Nerve conduits
Regeneration
Axons
title_short Desarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periférico
title_full Desarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periférico
title_fullStr Desarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periférico
title_full_unstemmed Desarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periférico
title_sort Desarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periférico
dc.creator.fl_str_mv Millán Cortés, Diana Milena
dc.contributor.advisor.none.fl_str_mv Fontanilla Duque, Martha Raquel
dc.contributor.author.none.fl_str_mv Millán Cortés, Diana Milena
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Trabajo en Ingeniería de Tejidos
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva pública
topic 610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva pública
Nervios Periféricos
Colágeno Tipo I
Peripheral Nerves
Collagen Type I
Conductos nerviosos
Nervio periférico
Ingeniería de tejidos
Regeneración
Axones
Peripheral nerve
Nerve conduits
Regeneration
Axons
dc.subject.other.spa.fl_str_mv Nervios Periféricos
Colágeno Tipo I
dc.subject.other.eng.fl_str_mv Peripheral Nerves
Collagen Type I
dc.subject.proposal.spa.fl_str_mv Conductos nerviosos
Nervio periférico
Ingeniería de tejidos
Regeneración
Axones
dc.subject.proposal.eng.fl_str_mv Peripheral nerve
Nerve conduits
Regeneration
Axons
description ilustraciones, fotografías, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-06T14:20:31Z
dc.date.available.none.fl_str_mv 2022-09-06T14:20:31Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82254
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82254
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Vol. 7, Frontiers in Bioengineering and Biotechnology. 2019.
Patent US. Method for producing porous structures [Internet]. United States; US 6,447,701 B1, 2008. p. 1–12. Available from: https://patentimages.storage.googleapis.com/13/7e/28/2eaffa567acc26/US6447701.pdf
Song S, Wang X, Wang T, Yu Q, Hou Z, Zhu Z, et al. Additive Manufacturing of Nerve Guidance Conduits for Regeneration of Injured Peripheral Nerves. Front Bioeng Biotechnol [Internet]. 2020 Sep 25;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.590596/full
Pawelec KM, Koffler J, Shahriari D, Galvan A, Tuszynski MH, Sakamoto J. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds. Biomed Mater [Internet]. 2018 Apr 25;13(4):044104. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/aaad85
Gustafson KJ, Pinault GCJ, Neville JJ, Syed I, Davis JA, Jean-Claude J, et al. Fascicular anatomy of human femoral nerve: Implications for neural prostheses using nerve cuff electrodes. J Rehabil Res Dev. 2009;46(7):973–84.
Brill NA, Tyler DJ. Quantification of human upper extremity nerves and fascicular anatomy. Muscle and Nerve. 2017;56(3):463–71.
Huang L, Zhu L, Shi X, Xia B, Liu Z, Zhu S, et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater [Internet]. 2018 Mar;68:223–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706117307663
Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: Bridging the peripheral nerve gap and enhancing functional recovery. Vol. 9, Journal of the Royal Society Interface. 2012. p. 202–21.
Salvatore L, Madaghiele M, Parisi C, Gatti F, Sannino A. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life. J Biomed Mater Res Part A [Internet]. 2014 Feb;n/a-n/a. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.35124
Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: A review. Iran Polym J (English Ed. 2010;19(5):375–98.
Chang H-I, Wang Y. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In: Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. 2011. p. 569–88.
Forest PO, Karoum R, Gagnieu CH. Influence of gradual introduction of hydrophobic groups (stearic acid) in denatured atelocollagen on fibroblasts behavior in vitro. Vol. 80, Journal of Biomedical Materials Research - Part A. 2007. p. 758–67.
Topp KS, Boyd BS. Structure and biomechanics of peripheral nerves: Nerve responses to physical stresses and implications for physical therapist practice. Vol. 86, Physical Therapy. 2006. p. 92–109.
Borschel GH, Kia KF, Kuzon WM, Dennis RG. Mechanical properties of acellular peripheral nerve. J Surg Res. 2003;114(2):133–9.
Dadsetan M, Knight AM, Lu L, Windebank AJ, Yaszemski MJ. Stimulation of neurite outgrowth using positively charged hydrogels. Biomaterials. 2009;30(23–24):3874– 81.
Kim J, Kim DH, Lim KT, Seonwoo H, Park SH, Kim YR, et al. Charged nanomatrices as efficient platforms for modulating cell adhesion and shape. Tissue Eng - Part C Methods. 2012;18(12):913–23.
Reid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience. 2011;199:515–22.
Rebowe R, Rogers A, Yang X, Kundu S, Smith T, Li Z. Nerve Repair with Nerve Conduits: Problems, Solutions, and Future Directions. J Hand Microsurg. 2018;10(02):61–5.
Wojtkiewicz DM, Saunders J, Domeshek L, Novak CB, Kaskutas V, Mackinnon SE. Social Impact of Peripheral Nerve Injuries. HAND [Internet]. 2015 Jun 25;10(2):161–7. Available from: http://journals.sagepub.com/doi/10.1007/s11552-014-9692-0
Rasulić L, Savić A, Vitošević F, Samardžić M, Živković B, Mićović M, et al. Iatrogenic Peripheral Nerve Injuries—Surgical Treatment and Outcome: 10 Years’ Experience. World Neurosurg [Internet]. 2017 Jul;103:841-851.e6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1878875017306071
Grinsell D, Keating CP. Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies. Biomed Res Int [Internet]. 2014;2014:1–13. Available from: http://www.hindawi.com/journals/bmri/2014/698256/
Sachanandani NF, Pothula A, Tung TH. Nerve gaps. Plast Reconstr Surg. 2014;133(2):313–9.
Tos P, Artiaco S, Papalia I, Marcoccio I, Geuna S, Battiston B. Chapter 14 End‐to‐Side Nerve Regeneration. In 2009. p. 281–94. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0074774209870141
Sunderland IRP, Brenner MJ, Singham J, Rickman SR, Hunter DA, Mackinnon SE. Effect of tension on nerve regeneration in rat sciatic nerve transection model. Ann Plast Surg. 2004;53(4):382–7.
Mobini S, Spearman BS, Lacko CS, Schmidt CE. Recent advances in strategies for peripheral nerve tissue engineering. Curr Opin Biomed Eng. 2017;4:134–42.
Isaacs J, Mallu S, Yan W, Little B. Consequences of oversizing: Nerve-to-nerve tube diameter mismatch. J Bone Jt Surg - Am Vol. 2014;96(17):1461–7.
Stang F, Keilhoff G, Fansa H. Biocompatibility of different nerve tubes. Vol. 2, Materials. 2009. p. 1480–507.
Arslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci V. Peripheral nerve conduits: Technology update. Vol. 7, Medical Devices: Evidence and Research. 2014. p. 405–24.
Moore AM, Macewan M, Santosa KB, Chenard KE, Ray WZ, Hunter DA, et al. Acellular nerve allografts in peripheral nerve regeneration: A comparative study. Muscle Nerve [Internet]. 2011 Aug;44(2):221–34. Available from: http://doi.wiley.com/10.1002/mus.22033
Kornfeld T, Vogt PM, Radtke C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wiener Medizinische Wochenschrift. 2018;169(9):240–251.
Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Vol. 43, Injury. 2012. p. 553–72.
Taras JS, Jacoby SM, Lincoski CJ. Reconstruction of digital nerves with collagen conduits. J Hand Surg Am. 2011;36(9):1441–6.
Bąk M, Gutlowska O, Wagner E, Gosk J. The role of chitin and chitosan in peripheral nerve reconstruction. Polym Med. 2017;47(1):43–7.
Wangensteen KJ, Kalliainen LK. Collagen tube conduits in peripheral nerve repair: A retrospective analysis. Hand. 2010;5(3):273–7.
Boni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci. 2018;25(1):1–21.
Du J, Chen H, Qing L, Yang X, Jia X. Biomimetic neural scaffolds: A crucial step towards optimal peripheral nerve regeneration. Vol. 6, Biomaterials Science. 2018. p. 1299–311.
Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Vol. 131, Progress in Neurobiology. 2015. p. 87–104.
Kim Y tae, Haftel VK, Kumar S, Bellamkonda R V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 2008;29(21):3117–27.
Spivey EC, Khaing ZZ, Shear JB, Schmidt CE. The fundamental role of subcellular topography in peripheral nerve repair therapies. Vol. 33, Biomaterials. 2012. p. 4264–76.
Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials. 2008;29(6):653–61.
Wang Y, Wang W, Wo Y, Gui T, Zhu H, Mo X, et al. Orientated guidance of peripheral nerve regeneration using conduits with a microtube array sheet (MTAS). ACS Appl Mater Interfaces. 2015;7(16):8437–50.
Bozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, et al. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 2007;13(12):2971–9.
Bozkurt A, Lassner F, O’Dey D, Deumens R, Böcker A, Schwendt T, et al. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials. 2012;33(5):1363–75.
Suesca E, Dias AMA, Braga MEM, de Sousa HC, Fontanilla MR. Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Mater Sci Eng C. 2017;77:333–41.
Barrett KE, Barman SM, Boitano S, Brooks HL. Tejido excitable: nervios. In: Fisiología médica. 27th ed. 2016. p. 85–97.
Schmidt CE, Leach JB. Neural Tissue Engineering: Strategies for Repair and Regeneration. Annu Rev Biomed Eng. 2003;5(1):293–347.
Verkhratsky A, Ho MS, Zorec R, Parpura V. The Concept of Neuroglia. In 2019. p. 1–13. Available from: http://link.springer.com/10.1007/978-981-13-9913-8_1
Raasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells [Internet]. 2020 Feb 18;9(2):470. Available from: https://www.mdpi.com/2073-4409/9/2/470
Cermenati G, Mitro N, Audano M, Melcangi RC, Crestani M, De Fabiani E, et al. Lipids in the nervous system: From biochemistry and molecular biology to patho-physiology. Biochim Biophys Acta - Mol Cell Biol Lipids [Internet]. 2015 Jan;1851(1):51–60. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1388198114001668
Poitelon Y, Kopec AM, Belin S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells [Internet]. 2020 Mar 27;9(4):812. Available from: https://www.mdpi.com/2073-4409/9/4/812
Reina MA, Sala-Blanch X, Arriazu R, Machés F. Microscopic Morphology and Ultrastructure of Human Peripheral Nerves. In: Nerves and Nerve Injuries [Internet]. Elsevier; 2015. p. 91–106. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012410390000007X
Kaemmer D, Bozkurt A, Otto J, Junge K, Klink C, Weis J, et al. Evaluation of tissue components in the peripheral nervous system using Sirius red staining and immunohistochemistry: A comparative study (human, pig, rat). J Neurosci Methods. 2010;190(1):112–6.
Pavelka M, Roth J. Peripheral Nerve: Connective Tissue Components. In: Functional Ultrastructure [Internet]. Vienna: Springer Vienna; 2010. p. 324–5. Available from: http://link.springer.com/10.1007/978-3-211-99390-3_166
Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: Experimental strategies and future perspectives. Vol. 82, Advanced Drug Delivery Reviews. 2015. p. 160–7.
Hart AM, Terenghi G, Wiberg M. Neuronal death after peripheral nerve injury and experimental strategies for neuroprotection. Neurol Res [Internet]. 2008 Dec 19;30(10):999–1011. Available from: http://www.tandfonline.com/doi/full/10.1179/174313208X362479
Seddon HJ. Three types of nerve injury. Brain [Internet]. 1943;66(4):237–88. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/66.4.237
Ryu J, Beimesch CF, Lalli TJ. (iii) Peripheral nerve repair. Orthop Trauma. 2011;25(3):174–80.
Deumens R, Bozkurt A, Meek MF, Marcus MAE, Joosten EAJ, Weis J, et al. Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol [Internet]. 2010 Nov;92(3):245–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301008210001723
Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain [Internet]. 1951;74(4):491–516. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/74.4.491
Wolfla CE, Resnick DK, editors. 68 Surgical Techniques for Peripheral Nerve Repair. In: Spine and Peripheral Nerves [Internet]. Stuttgart: Georg Thieme Verlag; 2007. Available from: http://www.thieme-connect.de/products/ebooks/abstract/10.1055/b-0034-84037
Millesi H. Bridging defects: autologous nerve grafts. Vol. 100, Acta neurochirurgica. Supplement. 2007. p. 37–8.
Hussain G, Wang J, Rasul A, Anwar H, Qasim M, Zafar S, et al. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int J Biol Sci [Internet]. 2020;16(1):116–34. Available from: http://www.ijbs.com/v16p0116.htm
Lundborg G. A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance. J Hand Surg Am. 2000;25(3):391–414.
Philips C, Cornelissen M, Carriel V. Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J Neural Eng [Internet]. 2018 Apr 1;15(2):021003. Available from: https://doi.org/10.1088/1741-2552/aaa21a
Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng [Internet]. 2004 Nov;10(9–10):1346–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15588395
Brooks DN, Weber R V., Chao JD, Rinker BD, Zoldos J, Robichaux MR, et al. Processed nerve allografts for peripheral nerve reconstruction: A multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery [Internet]. 2012 Jan;32(1):1–14. Available from: http://doi.wiley.com/10.1002/micr.20975
Means KR, Rinker BD, Higgins JP, Payne SH, Merrell GA, Wilgis EFS. A Multicenter, Prospective, Randomized, Pilot Study of Outcomes for Digital Nerve Repair in the Hand Using Hollow Conduit Compared With Processed Allograft Nerve. HAND [Internet]. 2016 Jun 17;11(2):144–51. Available from: http://journals.sagepub.com/doi/10.1177/1558944715627233
Muheremu A, Ao Q. Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury. Biomed Res Int [Internet]. 2015;2015:1–6. Available from: http://www.hindawi.com/journals/bmri/2015/237507/
Konofaos P, Ver Halen J. Nerve Repair by Means of Tubulization: Past, Present, Future. J Reconstr Microsurg [Internet]. 2013 Jan 9;29(03):149–64. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0032-1333316
Yang Y, Yuan X, Ding F, Yao D, Gu Y, Liu J, et al. Repair of Rat Sciatic Nerve Gap by a Silk Fibroin-Based Scaffold Added with Bone Marrow Mesenchymal Stem Cells. Tissue Eng - Part A. 2011;17(17–18):2231–44.
Tang X, Xue C, Wang Y, Ding F, Yang Y, Gu X. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold. Biomaterials [Internet]. 2012 May;33(15):3860–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961212001731
Mosahebi A, Wiberg M, Terenghi G. Addition of Fibronectin to Alginate Matrix Improves Peripheral Nerve Regeneration in Tissue-Engineered Conduits. Tissue Eng [Internet]. 2003 Apr;9(2):209–18. Available from: https://www.liebertpub.com/doi/10.1089/107632703764664684
Ding F, Wu J, Yang Y, Hu W, Zhu Q, Tang X, et al. Use of Tissue-Engineered Nerve Grafts Consisting of a Chitosan/Poly(lactic- co -glycolic acid)-Based Scaffold Included with Bone Marrow Mesenchymal Cells for Bridging 50-mm Dog Sciatic Nerve Gaps. Tissue Eng Part A [Internet]. 2010 Dec;16(12):3779–90. Available from: https://www.liebertpub.com/doi/10.1089/ten.tea.2010.0299
Frattini F, Pereira Lopes FR, Almeida FM, Rodrigues RF, Boldrini LC, Tomaz MA, et al. Mesenchymal Stem Cells in a Polycaprolactone Conduit Promote Sciatic Nerve Regeneration and Sensory Neuron Survival after Nerve Injury. Tissue Eng Part A [Internet]. 2012 Oct;18(19–20):2030–9. Available from: https://www.liebertpub.com/doi/10.1089/ten.tea.2011.0496
Kornfeld T, Vogt PM, Radtke C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wiener Medizinische Wochenschrift [Internet]. 2019 Jun 13;169(9–10):240–51. Available from: http://link.springer.com/10.1007/s10354-018-0675-6
Lavorato A, Raimondo S, Boido M, Muratori L, Durante G, Cofano F, et al. Mesenchymal Stem Cell Treatment Perspectives in Peripheral Nerve Regeneration: Systematic Review. Int J Mol Sci [Internet]. 2021 Jan 8;22(2):572. Available from: https://www.mdpi.com/1422-0067/22/2/572
Kim HA, Maurel P. Primary Schwann Cell Cultures. In: Doering LC, editor. Protocols for Neural Cell Culture, Springer Protocols Handbooks. 4th ed. 2009. p. 253–68.
Schuh CMAP, Sandoval-Castellanos AM, De Gregorio C, Contreras-Kallens P, Haycock JW. The Role of Schwann Cells in Peripheral Nerve Function, Injury, and Repair. In: Cell Engineering and Regeneration [Internet]. Cham: Springer International Publishing; 2020. p. 1–22. Available from: http://link.springer.com/10.1007/978-3-319-37076-7_5-1
Yi S ZY, Gu X HL, K Z, Qian T GX. Application of stem cells in peripheral nerve regeneration. Burn Trauma [Internet]. 2020;27(8). Available from: http://fdslive.oup.com/www.oup.com/pdf/production_in_progress.pdf
Jiang L, Jones S, Jia X. Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities. Int J Mol Sci [Internet]. 2017 Jan 5;18(1):94. Available from: http://www.mdpi.com/1422-0067/18/1/94
Gu Y, Li Z, Huang J, Wang H, Gu X, Gu J. Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering. J Tissue Eng Regen Med [Internet]. 2017 Aug;11(8):2250–60. Available from: http://doi.wiley.com/10.1002/term.2123
Ricard-Blum S. The Collagen Family. Cold Spring Harb Perspect Biol [Internet]. 2011 Jan 1;3(1):a004978–a004978. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a004978
Lin K, Zhang D, Macedo MH, Cui W, Sarmento B, Shen G. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv Funct Mater [Internet]. 2019 Jan;29(3):1804943. Available from: http://doi.wiley.com/10.1002/adfm.201804943
Kagan HM, Li W. Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem [Internet]. 2003 Mar 1;88(4):660–72. Available from: http://doi.wiley.com/10.1002/jcb.10413
Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35(24):6143–56.
Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol [Internet]. 2020 Oct 16;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.554257/full
Kim Y, Haftel VK, Kumar S, Bellamkonda R V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials [Internet]. 2008 Jul;29(21):3117–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961208002263
Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater [Internet]. 2020 Apr;106:54–69. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706120300817
https://www.integralife.com/neurawrap-nerve-protector/product/nerve-tendon-neurawrap-nerve-protector.
Bustos RH, Suesca E, Millán D, González JM, Fontanilla MR. Real-Time Quantification of Proteins Secreted by Artificial Connective Tissue Made from Uni- Or Multidirectional Collagen I Scaffolds and Oral Mucosa Fibroblasts. Anal Chem [Internet]. 2014 Mar 4;86(5):2421–8. Available from: https://pubs.acs.org/doi/10.1021/ac4033164
Fontanilla MR, Suesca E, Jiménez RA. Procedimiento para la preparación de colágeno tipo 1 y de soportes unidireccionales y multidireccionales que lo contienen. [Internet]. Colombia; WO/2016/071876, 2016. Available from: https://patents.google.com/patent/WO2016071876A1/es?oq=WO%2F2016%2F071876
Suesca E. Optimización de la obtención de soportes de colágeno y estudio del efecto de su microestructura en el desarrollo de mucosa oral artificial. 2013.
Belbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 2009;395(3):829–37.
De Campos Vidal B, Mello MLS. Collagen type I amide I band infrared spectroscopy. Micron. 2011;42(3):283–9.
Reddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Vol. 33, Trends in Biotechnology. 2015. p. 362–9.
Zhu S-ML. European Patent Office. Method and apparatus for rapidly assaying aldehyde-containing disinfectant [Internet]. EP1256799A2, 2002. Available from: https://patentimages.storage.googleapis.com/49/90/7d/1097d57b3e735c/EP1256799A2.pdf
Williams DF. On the mechanisms of biocompatibility. Biomaterials [Internet]. 2008 Jul;29(20):2941–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961208002676
Ferrari M, Cirisano F, Morán MC. Mammalian Cell Behavior on Hydrophobic Substrates: Influence of Surface Properties. Colloids and Interfaces. 2019;3(2):48.
Grundke K, Pöschel K, Synytska A, Frenzel R, Drechsler A, Nitschke M, et al. Experimental studies of contact angle hysteresis phenomena on polymer surfaces — Toward the understanding and control of wettability for different applications. Adv Colloid Interface Sci [Internet]. 2015 Aug;222:350–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001868614002905
Metwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater Sci Eng C [Internet]. 2019 Nov;104:109883. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493119304576
Andersen ND, Srinivas S, Piñero G, Monje P V. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves. Sci Rep [Internet]. 2016 Aug 23;6(1):31781. Available from: http://www.nature.com/articles/srep31781
Araña M, Mazo M, Aranda P, Pelacho B, Prosper F. Adipose tissue-derived mesenchymal stem cells: Isolation, expansion, and characterization. In: Methods in Molecular Biology [Internet]. 2013. p. 47–61. Available from: http://link.springer.com/10.1007/978-1-62703-511-8_4
ISO 10993-5, Biological evaluation of medical devices - Part 5: in vitro cytotoxicity tests. 3rd Edition. [Internet]. 2009 [cited 2020 Jun 6]. Available from: https:/www.iso.org/standard/36406.html.
Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials [Internet]. 2015 Jan;37:242–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961214010564
Sun X, Zhu Y, Yin HY, Guo ZY, Xu F, Xiao B, et al. Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: Potential advantage of cellular transient memory function. Stem Cell Res Ther [Internet]. 2018 Dec 11;9(1):133. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-018-0884-3
Kilkenny C, Browne W, Cuthill I, Emerson M, Altman D. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. Animals [Internet]. 2014 Feb 3;4(1):35–44. Available from: http://www.mdpi.com/2076-2615/4/1/35
Morton D, Griffiths P. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet Rec [Internet]. 1985 Apr 20;116(16):431–6. Available from: https://veterinaryrecord.bmj.com/lookup/doi/10.1136/vr.116.16.431
Guide for the Care and Use of Laboratory Animals [Internet]. Guide for the Care and Use of Laboratory Animals. Washington, D.C.: National Academies Press; 2011. Available from: https://doi.org/10.17226/12910.
Costa L, Simoes M, Mauricio A, Varejao A. International Review of Neurobiology. Essays on Peripheral Nerve Repair and Regeneration. In: Elsevier, editor. International Review of Neurobiology. 2009. p. 127–36.
Ma F, Xiao Z, Meng D, Hou X, Zhu J, Dai J, et al. Use of natural neural scaffolds consisting of engineered vascular endothelial growth factor immobilized on ordered collagen fibers filled in a collagen tube for peripheral nerve regeneration in rats. Int J Mol Sci. 2014;15(10):18593–609.
van Neerven SGA, Haastert-Talini K, Boecker A, Schriever T, Dabhi C, Claeys K, et al. Two-component collagen nerve guides support axonal regeneration in the rat peripheral nerve injury model. J Tissue Eng Regen Med. 2017;11(12):3349–61.
AVMA. 2000 Report of the AVMA Panel on Euthanasia. J Am Vet Med Assoc [Internet]. 2001 Mar;218(5):669–96. Available from: http://avmajournals.avma.org/doi/abs/10.2460/javma.2001.218.669
Nair M, Best SM, Cameron RE. Crosslinking Collagen Constructs: Achieving Cellular Selectivity Through Modifications of Physical and Chemical Properties. Appl Sci [Internet]. 2020 Oct 2;10(19):6911. Available from: https://www.mdpi.com/2076-3417/10/19/6911
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F., Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy [Internet]. 2006;8(4):315–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1465324906708817
Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Vol. 7, Frontiers in Bioengineering and Biotechnology. 2019.
Patent US. Method for producing porous structures [Internet]. United States; US 6,447,701 B1, 2008. p. 1–12. Available from: https://patentimages.storage.googleapis.com/13/7e/28/2eaffa567acc26/US6447701.pdf
https://www.integralife.com/neurawrap-nerve-protector/product/nerve-tendon-neurawrap-nerve-protector sitio consultado el 22/02/2020.
Song S, Wang X, Wang T, Yu Q, Hou Z, Zhu Z, et al. Additive Manufacturing of Nerve Guidance Conduits for Regeneration of Injured Peripheral Nerves. Front Bioeng Biotechnol [Internet]. 2020 Sep 25;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.590596/full
Pawelec KM, Koffler J, Shahriari D, Galvan A, Tuszynski MH, Sakamoto J. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds. Biomed Mater [Internet]. 2018 Apr 25;13(4):044104. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/aaad85
Gustafson KJ, Pinault GCJ, Neville JJ, Syed I, Davis JA, Jean-Claude J, et al. Fascicular anatomy of human femoral nerve: Implications for neural prostheses using nerve cuff electrodes. J Rehabil Res Dev. 2009;46(7):973–84.
Brill NA, Tyler DJ. Quantification of human upper extremity nerves and fascicular anatomy. Muscle and Nerve. 2017;56(3):463–71.
Huang L, Zhu L, Shi X, Xia B, Liu Z, Zhu S, et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater [Internet]. 2018 Mar;68:223–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706117307663
Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: Bridging the peripheral nerve gap and enhancing functional recovery. Vol. 9, Journal of the Royal Society Interface. 2012. p. 202–21.
Salvatore L, Madaghiele M, Parisi C, Gatti F, Sannino A. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life. J Biomed Mater Res Part A [Internet]. 2014 Feb;n/a-n/a. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.35124
Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: A review. Iran Polym J (English Ed. 2010;19(5):375–98.
Chang H-I, Wang Y. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In: Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. 2011. p. 569–88.
Forest PO, Karoum R, Gagnieu CH. Influence of gradual introduction of hydrophobic groups (stearic acid) in denatured atelocollagen on fibroblasts behavior in vitro. Vol. 80, Journal of Biomedical Materials Research - Part A. 2007. p. 758–67.
Topp KS, Boyd BS. Structure and biomechanics of peripheral nerves: Nerve responses to physical stresses and implications for physical therapist practice. Vol. 86, Physical Therapy. 2006. p. 92–109.
Borschel GH, Kia KF, Kuzon WM, Dennis RG. Mechanical properties of acellular peripheral nerve. J Surg Res. 2003;114(2):133–9.
Dadsetan M, Knight AM, Lu L, Windebank AJ, Yaszemski MJ. Stimulation of neurite outgrowth using positively charged hydrogels. Biomaterials. 2009;30(23–24):3874–81.
Kim J, Kim DH, Lim KT, Seonwoo H, Park SH, Kim YR, et al. Charged nanomatrices as efficient platforms for modulating cell adhesion and shape. Tissue Eng - Part C Methods. 2012;18(12):913–23.
Reid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience. 2011;199:515–22.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 139 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Biotecnología
dc.publisher.department.spa.fl_str_mv Instituto de Biotecnología (IBUN)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82254/3/52748725.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82254/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82254/5/52748725.2022.pdf.jpg
bitstream.checksum.fl_str_mv 5fee004ea6de88ba0383f16cef59dd79
b577153cc0e11f0aeb5fc5005dc82d8a
29eca937275635f475dd0fda3076e7f2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090123280646144
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fontanilla Duque, Martha Raquelf299f62941972508549340696d2c4908Millán Cortés, Diana Milena45bf4c05f435cacca5c063b81ecc23c8Grupo de Trabajo en Ingeniería de Tejidos2022-09-06T14:20:31Z2022-09-06T14:20:31Z2022https://repositorio.unal.edu.co/handle/unal/82254Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasLa carencia de nervios donantes ha conducido al desarrollo de conductos nerviosos para conectar los muñones nerviosos periféricos seccionados y ayudar a prevenir la formación de neuromas. A menudo, los diámetros estándar de estos dispositivos no se pueden adaptar en el momento de la cirugía al diámetro del nervio lesionado. En este trabajo, se desarrollaron soportes para formar conductos nerviosos rellenos con una matriz interna con canales unidireccionales cubiertos por una zona porosa multidireccional. Con tal fin, dos dispersiones de colágeno tipo I (5 mg/g y 8 mg/g) se congelaron secuencialmente utilizando diferentes métodos para obtener seis soportes laminares (NC, P1 a P5) formados por una zona con poros unidireccionales (U) adyacente a una zona de poros multidireccionales (M). Las propiedades fisicoquímicas y microestructurales de los soportes se determinaron y compararon, así como, su biodegradabilidad, el contenido de glutaraldehído residual y su citocompatibilidad. Adicionalmente, a los conductos obtenidos al enrollar los soportes desde la zona unidireccional a la multidireccional se les determinó el módulo de Young. Teniendo en cuenta los resultados de las evaluaciones mencionadas, se escogió el soporte P3 para determinar la proliferación y diferenciación de células mesenquimales de tejido adiposo humano (hASC). Las células sembradas en este soporte se adhirieron, alinearon en la misma dirección que las fibras unidireccionales del soporte, proliferaron y diferenciaron a células de Schwann. Los conductos P3 ajustables elaborados con el soporte P3 se implantaron en lesiones de nervio ciático de 10 mm en un modelo murino de lesión de nervio periférico. En estos ensayos se incluyeron lesiones injertadas con nervio ciático autólogo - considerado el tratamiento estándar - como control. Los resultados in vivo demostraron que el conducto P3 adaptado al diámetro de los muñones nerviosos sirve como guía del crecimiento axonal y promueve la regeneración nerviosa. (Texto tomado de la fuente)Shortness of donor nerves has led to the development of nerve conduits that connect sectioned peripheral nerve stumps and help to prevent the formation of neuromas. Often, the standard diameters of these devices cannot be adapted at the time of surgery to the diameter of the nerve injured. In this work, scaffolds were developed to form filled nerve conduits with an inner matrix with unidirectional channels covered by a multidirectional pore zone. Collagen type I dispersions (5 mg/g and 8 mg/g) were sequentially frozen using different methods to obtain six laminar scaffolds (P1 to P5) formed by a unidirectional (U) pore/channel zone adjacent to a multidirectional (M) pore zone. The physicochemical and microstructural properties of the scaffolds were determined and compared, as well as their biodegradability, residual glutaraldehyde and cytocompatibility. Also, the Young’s modulus of the conduits made by rolling up the bizonal scaffolds from the unidirectional to the multidirectional zone was determined. Based on these comparisons, the proliferation and differentiation of hASC were assessed only in the P3 scaffolds. The cells adhered, aligned in the same direction as the unidirectional porous fibers, proliferated, and differentiated into Schwann-like cells. Adjustable conduits made with the P3 scaffold were implanted in rats 10 mm sciatic nerve lesions to compare their performance with that of autologous sciatic nerve grafted lesions. The in vivo results demonstrated that the tested conduit can be adapted to the diameter of the nerve stumps to guide their growth and promote their regeneration.MinCiencias Grand RC 838-2015DoctoradoDoctor en BiotecnologíaEstudios experimentales in vitro e in vivo.Ingeniería de Tejidos139 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en BiotecnologíaInstituto de Biotecnología (IBUN)Facultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva públicaNervios PeriféricosColágeno Tipo IPeripheral NervesCollagen Type IConductos nerviososNervio periféricoIngeniería de tejidosRegeneraciónAxonesPeripheral nerveNerve conduitsRegenerationAxonsDesarrollo de conductos bifásicos laminares de colágeno tipo I para usar en regeneración de nervio periféricoDevelopment of laminar biphasic conduits of type I collagen for use in peripheral nerve regenerationTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDRedColLaReferenciaCarvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Vol. 7, Frontiers in Bioengineering and Biotechnology. 2019.Patent US. Method for producing porous structures [Internet]. United States; US 6,447,701 B1, 2008. p. 1–12. Available from: https://patentimages.storage.googleapis.com/13/7e/28/2eaffa567acc26/US6447701.pdfSong S, Wang X, Wang T, Yu Q, Hou Z, Zhu Z, et al. Additive Manufacturing of Nerve Guidance Conduits for Regeneration of Injured Peripheral Nerves. Front Bioeng Biotechnol [Internet]. 2020 Sep 25;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.590596/fullPawelec KM, Koffler J, Shahriari D, Galvan A, Tuszynski MH, Sakamoto J. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds. Biomed Mater [Internet]. 2018 Apr 25;13(4):044104. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/aaad85Gustafson KJ, Pinault GCJ, Neville JJ, Syed I, Davis JA, Jean-Claude J, et al. Fascicular anatomy of human femoral nerve: Implications for neural prostheses using nerve cuff electrodes. J Rehabil Res Dev. 2009;46(7):973–84.Brill NA, Tyler DJ. Quantification of human upper extremity nerves and fascicular anatomy. Muscle and Nerve. 2017;56(3):463–71.Huang L, Zhu L, Shi X, Xia B, Liu Z, Zhu S, et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater [Internet]. 2018 Mar;68:223–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706117307663Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: Bridging the peripheral nerve gap and enhancing functional recovery. Vol. 9, Journal of the Royal Society Interface. 2012. p. 202–21.Salvatore L, Madaghiele M, Parisi C, Gatti F, Sannino A. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life. J Biomed Mater Res Part A [Internet]. 2014 Feb;n/a-n/a. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.35124Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: A review. Iran Polym J (English Ed. 2010;19(5):375–98.Chang H-I, Wang Y. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In: Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. 2011. p. 569–88.Forest PO, Karoum R, Gagnieu CH. Influence of gradual introduction of hydrophobic groups (stearic acid) in denatured atelocollagen on fibroblasts behavior in vitro. Vol. 80, Journal of Biomedical Materials Research - Part A. 2007. p. 758–67.Topp KS, Boyd BS. Structure and biomechanics of peripheral nerves: Nerve responses to physical stresses and implications for physical therapist practice. Vol. 86, Physical Therapy. 2006. p. 92–109.Borschel GH, Kia KF, Kuzon WM, Dennis RG. Mechanical properties of acellular peripheral nerve. J Surg Res. 2003;114(2):133–9.Dadsetan M, Knight AM, Lu L, Windebank AJ, Yaszemski MJ. Stimulation of neurite outgrowth using positively charged hydrogels. Biomaterials. 2009;30(23–24):3874– 81.Kim J, Kim DH, Lim KT, Seonwoo H, Park SH, Kim YR, et al. Charged nanomatrices as efficient platforms for modulating cell adhesion and shape. Tissue Eng - Part C Methods. 2012;18(12):913–23.Reid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience. 2011;199:515–22.Rebowe R, Rogers A, Yang X, Kundu S, Smith T, Li Z. Nerve Repair with Nerve Conduits: Problems, Solutions, and Future Directions. J Hand Microsurg. 2018;10(02):61–5.Wojtkiewicz DM, Saunders J, Domeshek L, Novak CB, Kaskutas V, Mackinnon SE. Social Impact of Peripheral Nerve Injuries. HAND [Internet]. 2015 Jun 25;10(2):161–7. Available from: http://journals.sagepub.com/doi/10.1007/s11552-014-9692-0Rasulić L, Savić A, Vitošević F, Samardžić M, Živković B, Mićović M, et al. Iatrogenic Peripheral Nerve Injuries—Surgical Treatment and Outcome: 10 Years’ Experience. World Neurosurg [Internet]. 2017 Jul;103:841-851.e6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1878875017306071Grinsell D, Keating CP. Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies. Biomed Res Int [Internet]. 2014;2014:1–13. Available from: http://www.hindawi.com/journals/bmri/2014/698256/Sachanandani NF, Pothula A, Tung TH. Nerve gaps. Plast Reconstr Surg. 2014;133(2):313–9.Tos P, Artiaco S, Papalia I, Marcoccio I, Geuna S, Battiston B. Chapter 14 End‐to‐Side Nerve Regeneration. In 2009. p. 281–94. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0074774209870141Sunderland IRP, Brenner MJ, Singham J, Rickman SR, Hunter DA, Mackinnon SE. Effect of tension on nerve regeneration in rat sciatic nerve transection model. Ann Plast Surg. 2004;53(4):382–7.Mobini S, Spearman BS, Lacko CS, Schmidt CE. Recent advances in strategies for peripheral nerve tissue engineering. Curr Opin Biomed Eng. 2017;4:134–42.Isaacs J, Mallu S, Yan W, Little B. Consequences of oversizing: Nerve-to-nerve tube diameter mismatch. J Bone Jt Surg - Am Vol. 2014;96(17):1461–7.Stang F, Keilhoff G, Fansa H. Biocompatibility of different nerve tubes. Vol. 2, Materials. 2009. p. 1480–507.Arslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci V. Peripheral nerve conduits: Technology update. Vol. 7, Medical Devices: Evidence and Research. 2014. p. 405–24.Moore AM, Macewan M, Santosa KB, Chenard KE, Ray WZ, Hunter DA, et al. Acellular nerve allografts in peripheral nerve regeneration: A comparative study. Muscle Nerve [Internet]. 2011 Aug;44(2):221–34. Available from: http://doi.wiley.com/10.1002/mus.22033Kornfeld T, Vogt PM, Radtke C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wiener Medizinische Wochenschrift. 2018;169(9):240–251.Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Vol. 43, Injury. 2012. p. 553–72.Taras JS, Jacoby SM, Lincoski CJ. Reconstruction of digital nerves with collagen conduits. J Hand Surg Am. 2011;36(9):1441–6.Bąk M, Gutlowska O, Wagner E, Gosk J. The role of chitin and chitosan in peripheral nerve reconstruction. Polym Med. 2017;47(1):43–7.Wangensteen KJ, Kalliainen LK. Collagen tube conduits in peripheral nerve repair: A retrospective analysis. Hand. 2010;5(3):273–7.Boni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci. 2018;25(1):1–21.Du J, Chen H, Qing L, Yang X, Jia X. Biomimetic neural scaffolds: A crucial step towards optimal peripheral nerve regeneration. Vol. 6, Biomaterials Science. 2018. p. 1299–311.Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Vol. 131, Progress in Neurobiology. 2015. p. 87–104.Kim Y tae, Haftel VK, Kumar S, Bellamkonda R V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 2008;29(21):3117–27.Spivey EC, Khaing ZZ, Shear JB, Schmidt CE. The fundamental role of subcellular topography in peripheral nerve repair therapies. Vol. 33, Biomaterials. 2012. p. 4264–76.Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials. 2008;29(6):653–61.Wang Y, Wang W, Wo Y, Gui T, Zhu H, Mo X, et al. Orientated guidance of peripheral nerve regeneration using conduits with a microtube array sheet (MTAS). ACS Appl Mater Interfaces. 2015;7(16):8437–50.Bozkurt A, Brook GA, Moellers S, Lassner F, Sellhaus B, Weis J, et al. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 2007;13(12):2971–9.Bozkurt A, Lassner F, O’Dey D, Deumens R, Böcker A, Schwendt T, et al. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials. 2012;33(5):1363–75.Suesca E, Dias AMA, Braga MEM, de Sousa HC, Fontanilla MR. Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Mater Sci Eng C. 2017;77:333–41.Barrett KE, Barman SM, Boitano S, Brooks HL. Tejido excitable: nervios. In: Fisiología médica. 27th ed. 2016. p. 85–97.Schmidt CE, Leach JB. Neural Tissue Engineering: Strategies for Repair and Regeneration. Annu Rev Biomed Eng. 2003;5(1):293–347.Verkhratsky A, Ho MS, Zorec R, Parpura V. The Concept of Neuroglia. In 2019. p. 1–13. Available from: http://link.springer.com/10.1007/978-981-13-9913-8_1Raasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells [Internet]. 2020 Feb 18;9(2):470. Available from: https://www.mdpi.com/2073-4409/9/2/470Cermenati G, Mitro N, Audano M, Melcangi RC, Crestani M, De Fabiani E, et al. Lipids in the nervous system: From biochemistry and molecular biology to patho-physiology. Biochim Biophys Acta - Mol Cell Biol Lipids [Internet]. 2015 Jan;1851(1):51–60. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1388198114001668Poitelon Y, Kopec AM, Belin S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells [Internet]. 2020 Mar 27;9(4):812. Available from: https://www.mdpi.com/2073-4409/9/4/812Reina MA, Sala-Blanch X, Arriazu R, Machés F. Microscopic Morphology and Ultrastructure of Human Peripheral Nerves. In: Nerves and Nerve Injuries [Internet]. Elsevier; 2015. p. 91–106. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012410390000007XKaemmer D, Bozkurt A, Otto J, Junge K, Klink C, Weis J, et al. Evaluation of tissue components in the peripheral nervous system using Sirius red staining and immunohistochemistry: A comparative study (human, pig, rat). J Neurosci Methods. 2010;190(1):112–6.Pavelka M, Roth J. Peripheral Nerve: Connective Tissue Components. In: Functional Ultrastructure [Internet]. Vienna: Springer Vienna; 2010. p. 324–5. Available from: http://link.springer.com/10.1007/978-3-211-99390-3_166Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: Experimental strategies and future perspectives. Vol. 82, Advanced Drug Delivery Reviews. 2015. p. 160–7.Hart AM, Terenghi G, Wiberg M. Neuronal death after peripheral nerve injury and experimental strategies for neuroprotection. Neurol Res [Internet]. 2008 Dec 19;30(10):999–1011. Available from: http://www.tandfonline.com/doi/full/10.1179/174313208X362479Seddon HJ. Three types of nerve injury. Brain [Internet]. 1943;66(4):237–88. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/66.4.237Ryu J, Beimesch CF, Lalli TJ. (iii) Peripheral nerve repair. Orthop Trauma. 2011;25(3):174–80.Deumens R, Bozkurt A, Meek MF, Marcus MAE, Joosten EAJ, Weis J, et al. Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol [Internet]. 2010 Nov;92(3):245–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301008210001723Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain [Internet]. 1951;74(4):491–516. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/74.4.491Wolfla CE, Resnick DK, editors. 68 Surgical Techniques for Peripheral Nerve Repair. In: Spine and Peripheral Nerves [Internet]. Stuttgart: Georg Thieme Verlag; 2007. Available from: http://www.thieme-connect.de/products/ebooks/abstract/10.1055/b-0034-84037Millesi H. Bridging defects: autologous nerve grafts. Vol. 100, Acta neurochirurgica. Supplement. 2007. p. 37–8.Hussain G, Wang J, Rasul A, Anwar H, Qasim M, Zafar S, et al. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int J Biol Sci [Internet]. 2020;16(1):116–34. Available from: http://www.ijbs.com/v16p0116.htmLundborg G. A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance. J Hand Surg Am. 2000;25(3):391–414.Philips C, Cornelissen M, Carriel V. Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J Neural Eng [Internet]. 2018 Apr 1;15(2):021003. Available from: https://doi.org/10.1088/1741-2552/aaa21aHudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng [Internet]. 2004 Nov;10(9–10):1346–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15588395Brooks DN, Weber R V., Chao JD, Rinker BD, Zoldos J, Robichaux MR, et al. Processed nerve allografts for peripheral nerve reconstruction: A multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery [Internet]. 2012 Jan;32(1):1–14. Available from: http://doi.wiley.com/10.1002/micr.20975Means KR, Rinker BD, Higgins JP, Payne SH, Merrell GA, Wilgis EFS. A Multicenter, Prospective, Randomized, Pilot Study of Outcomes for Digital Nerve Repair in the Hand Using Hollow Conduit Compared With Processed Allograft Nerve. HAND [Internet]. 2016 Jun 17;11(2):144–51. Available from: http://journals.sagepub.com/doi/10.1177/1558944715627233Muheremu A, Ao Q. Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury. Biomed Res Int [Internet]. 2015;2015:1–6. Available from: http://www.hindawi.com/journals/bmri/2015/237507/Konofaos P, Ver Halen J. Nerve Repair by Means of Tubulization: Past, Present, Future. J Reconstr Microsurg [Internet]. 2013 Jan 9;29(03):149–64. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0032-1333316Yang Y, Yuan X, Ding F, Yao D, Gu Y, Liu J, et al. Repair of Rat Sciatic Nerve Gap by a Silk Fibroin-Based Scaffold Added with Bone Marrow Mesenchymal Stem Cells. Tissue Eng - Part A. 2011;17(17–18):2231–44.Tang X, Xue C, Wang Y, Ding F, Yang Y, Gu X. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold. Biomaterials [Internet]. 2012 May;33(15):3860–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961212001731Mosahebi A, Wiberg M, Terenghi G. Addition of Fibronectin to Alginate Matrix Improves Peripheral Nerve Regeneration in Tissue-Engineered Conduits. Tissue Eng [Internet]. 2003 Apr;9(2):209–18. Available from: https://www.liebertpub.com/doi/10.1089/107632703764664684Ding F, Wu J, Yang Y, Hu W, Zhu Q, Tang X, et al. Use of Tissue-Engineered Nerve Grafts Consisting of a Chitosan/Poly(lactic- co -glycolic acid)-Based Scaffold Included with Bone Marrow Mesenchymal Cells for Bridging 50-mm Dog Sciatic Nerve Gaps. Tissue Eng Part A [Internet]. 2010 Dec;16(12):3779–90. Available from: https://www.liebertpub.com/doi/10.1089/ten.tea.2010.0299Frattini F, Pereira Lopes FR, Almeida FM, Rodrigues RF, Boldrini LC, Tomaz MA, et al. Mesenchymal Stem Cells in a Polycaprolactone Conduit Promote Sciatic Nerve Regeneration and Sensory Neuron Survival after Nerve Injury. Tissue Eng Part A [Internet]. 2012 Oct;18(19–20):2030–9. Available from: https://www.liebertpub.com/doi/10.1089/ten.tea.2011.0496Kornfeld T, Vogt PM, Radtke C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wiener Medizinische Wochenschrift [Internet]. 2019 Jun 13;169(9–10):240–51. Available from: http://link.springer.com/10.1007/s10354-018-0675-6Lavorato A, Raimondo S, Boido M, Muratori L, Durante G, Cofano F, et al. Mesenchymal Stem Cell Treatment Perspectives in Peripheral Nerve Regeneration: Systematic Review. Int J Mol Sci [Internet]. 2021 Jan 8;22(2):572. Available from: https://www.mdpi.com/1422-0067/22/2/572Kim HA, Maurel P. Primary Schwann Cell Cultures. In: Doering LC, editor. Protocols for Neural Cell Culture, Springer Protocols Handbooks. 4th ed. 2009. p. 253–68.Schuh CMAP, Sandoval-Castellanos AM, De Gregorio C, Contreras-Kallens P, Haycock JW. The Role of Schwann Cells in Peripheral Nerve Function, Injury, and Repair. In: Cell Engineering and Regeneration [Internet]. Cham: Springer International Publishing; 2020. p. 1–22. Available from: http://link.springer.com/10.1007/978-3-319-37076-7_5-1Yi S ZY, Gu X HL, K Z, Qian T GX. Application of stem cells in peripheral nerve regeneration. Burn Trauma [Internet]. 2020;27(8). Available from: http://fdslive.oup.com/www.oup.com/pdf/production_in_progress.pdfJiang L, Jones S, Jia X. Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities. Int J Mol Sci [Internet]. 2017 Jan 5;18(1):94. Available from: http://www.mdpi.com/1422-0067/18/1/94Gu Y, Li Z, Huang J, Wang H, Gu X, Gu J. Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering. J Tissue Eng Regen Med [Internet]. 2017 Aug;11(8):2250–60. Available from: http://doi.wiley.com/10.1002/term.2123Ricard-Blum S. The Collagen Family. Cold Spring Harb Perspect Biol [Internet]. 2011 Jan 1;3(1):a004978–a004978. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a004978Lin K, Zhang D, Macedo MH, Cui W, Sarmento B, Shen G. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv Funct Mater [Internet]. 2019 Jan;29(3):1804943. Available from: http://doi.wiley.com/10.1002/adfm.201804943Kagan HM, Li W. Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem [Internet]. 2003 Mar 1;88(4):660–72. Available from: http://doi.wiley.com/10.1002/jcb.10413Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35(24):6143–56.Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol [Internet]. 2020 Oct 16;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.554257/fullKim Y, Haftel VK, Kumar S, Bellamkonda R V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials [Internet]. 2008 Jul;29(21):3117–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961208002263Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater [Internet]. 2020 Apr;106:54–69. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706120300817https://www.integralife.com/neurawrap-nerve-protector/product/nerve-tendon-neurawrap-nerve-protector.Bustos RH, Suesca E, Millán D, González JM, Fontanilla MR. Real-Time Quantification of Proteins Secreted by Artificial Connective Tissue Made from Uni- Or Multidirectional Collagen I Scaffolds and Oral Mucosa Fibroblasts. Anal Chem [Internet]. 2014 Mar 4;86(5):2421–8. Available from: https://pubs.acs.org/doi/10.1021/ac4033164Fontanilla MR, Suesca E, Jiménez RA. Procedimiento para la preparación de colágeno tipo 1 y de soportes unidireccionales y multidireccionales que lo contienen. [Internet]. Colombia; WO/2016/071876, 2016. Available from: https://patents.google.com/patent/WO2016071876A1/es?oq=WO%2F2016%2F071876Suesca E. Optimización de la obtención de soportes de colágeno y estudio del efecto de su microestructura en el desarrollo de mucosa oral artificial. 2013.Belbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 2009;395(3):829–37.De Campos Vidal B, Mello MLS. Collagen type I amide I band infrared spectroscopy. Micron. 2011;42(3):283–9.Reddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Vol. 33, Trends in Biotechnology. 2015. p. 362–9.Zhu S-ML. European Patent Office. Method and apparatus for rapidly assaying aldehyde-containing disinfectant [Internet]. EP1256799A2, 2002. Available from: https://patentimages.storage.googleapis.com/49/90/7d/1097d57b3e735c/EP1256799A2.pdfWilliams DF. On the mechanisms of biocompatibility. Biomaterials [Internet]. 2008 Jul;29(20):2941–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961208002676Ferrari M, Cirisano F, Morán MC. Mammalian Cell Behavior on Hydrophobic Substrates: Influence of Surface Properties. Colloids and Interfaces. 2019;3(2):48.Grundke K, Pöschel K, Synytska A, Frenzel R, Drechsler A, Nitschke M, et al. Experimental studies of contact angle hysteresis phenomena on polymer surfaces — Toward the understanding and control of wettability for different applications. Adv Colloid Interface Sci [Internet]. 2015 Aug;222:350–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001868614002905Metwally S, Stachewicz U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater Sci Eng C [Internet]. 2019 Nov;104:109883. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493119304576Andersen ND, Srinivas S, Piñero G, Monje P V. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves. Sci Rep [Internet]. 2016 Aug 23;6(1):31781. Available from: http://www.nature.com/articles/srep31781Araña M, Mazo M, Aranda P, Pelacho B, Prosper F. Adipose tissue-derived mesenchymal stem cells: Isolation, expansion, and characterization. In: Methods in Molecular Biology [Internet]. 2013. p. 47–61. Available from: http://link.springer.com/10.1007/978-1-62703-511-8_4ISO 10993-5, Biological evaluation of medical devices - Part 5: in vitro cytotoxicity tests. 3rd Edition. [Internet]. 2009 [cited 2020 Jun 6]. Available from: https:/www.iso.org/standard/36406.html.Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials [Internet]. 2015 Jan;37:242–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961214010564Sun X, Zhu Y, Yin HY, Guo ZY, Xu F, Xiao B, et al. Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: Potential advantage of cellular transient memory function. Stem Cell Res Ther [Internet]. 2018 Dec 11;9(1):133. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-018-0884-3Kilkenny C, Browne W, Cuthill I, Emerson M, Altman D. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. Animals [Internet]. 2014 Feb 3;4(1):35–44. Available from: http://www.mdpi.com/2076-2615/4/1/35Morton D, Griffiths P. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet Rec [Internet]. 1985 Apr 20;116(16):431–6. Available from: https://veterinaryrecord.bmj.com/lookup/doi/10.1136/vr.116.16.431Guide for the Care and Use of Laboratory Animals [Internet]. Guide for the Care and Use of Laboratory Animals. Washington, D.C.: National Academies Press; 2011. Available from: https://doi.org/10.17226/12910.Costa L, Simoes M, Mauricio A, Varejao A. International Review of Neurobiology. Essays on Peripheral Nerve Repair and Regeneration. In: Elsevier, editor. International Review of Neurobiology. 2009. p. 127–36.Ma F, Xiao Z, Meng D, Hou X, Zhu J, Dai J, et al. Use of natural neural scaffolds consisting of engineered vascular endothelial growth factor immobilized on ordered collagen fibers filled in a collagen tube for peripheral nerve regeneration in rats. Int J Mol Sci. 2014;15(10):18593–609.van Neerven SGA, Haastert-Talini K, Boecker A, Schriever T, Dabhi C, Claeys K, et al. Two-component collagen nerve guides support axonal regeneration in the rat peripheral nerve injury model. J Tissue Eng Regen Med. 2017;11(12):3349–61.AVMA. 2000 Report of the AVMA Panel on Euthanasia. J Am Vet Med Assoc [Internet]. 2001 Mar;218(5):669–96. Available from: http://avmajournals.avma.org/doi/abs/10.2460/javma.2001.218.669Nair M, Best SM, Cameron RE. Crosslinking Collagen Constructs: Achieving Cellular Selectivity Through Modifications of Physical and Chemical Properties. Appl Sci [Internet]. 2020 Oct 2;10(19):6911. Available from: https://www.mdpi.com/2076-3417/10/19/6911Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F., Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy [Internet]. 2006;8(4):315–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1465324906708817Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Vol. 7, Frontiers in Bioengineering and Biotechnology. 2019.Patent US. Method for producing porous structures [Internet]. United States; US 6,447,701 B1, 2008. p. 1–12. Available from: https://patentimages.storage.googleapis.com/13/7e/28/2eaffa567acc26/US6447701.pdfhttps://www.integralife.com/neurawrap-nerve-protector/product/nerve-tendon-neurawrap-nerve-protector sitio consultado el 22/02/2020.Song S, Wang X, Wang T, Yu Q, Hou Z, Zhu Z, et al. Additive Manufacturing of Nerve Guidance Conduits for Regeneration of Injured Peripheral Nerves. Front Bioeng Biotechnol [Internet]. 2020 Sep 25;8. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.590596/fullPawelec KM, Koffler J, Shahriari D, Galvan A, Tuszynski MH, Sakamoto J. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds. Biomed Mater [Internet]. 2018 Apr 25;13(4):044104. Available from: https://iopscience.iop.org/article/10.1088/1748-605X/aaad85Gustafson KJ, Pinault GCJ, Neville JJ, Syed I, Davis JA, Jean-Claude J, et al. Fascicular anatomy of human femoral nerve: Implications for neural prostheses using nerve cuff electrodes. J Rehabil Res Dev. 2009;46(7):973–84.Brill NA, Tyler DJ. Quantification of human upper extremity nerves and fascicular anatomy. Muscle and Nerve. 2017;56(3):463–71.Huang L, Zhu L, Shi X, Xia B, Liu Z, Zhu S, et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater [Internet]. 2018 Mar;68:223–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706117307663Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: Bridging the peripheral nerve gap and enhancing functional recovery. Vol. 9, Journal of the Royal Society Interface. 2012. p. 202–21.Salvatore L, Madaghiele M, Parisi C, Gatti F, Sannino A. Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life. J Biomed Mater Res Part A [Internet]. 2014 Feb;n/a-n/a. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.35124Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: A review. Iran Polym J (English Ed. 2010;19(5):375–98.Chang H-I, Wang Y. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In: Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. 2011. p. 569–88.Forest PO, Karoum R, Gagnieu CH. Influence of gradual introduction of hydrophobic groups (stearic acid) in denatured atelocollagen on fibroblasts behavior in vitro. Vol. 80, Journal of Biomedical Materials Research - Part A. 2007. p. 758–67.Topp KS, Boyd BS. Structure and biomechanics of peripheral nerves: Nerve responses to physical stresses and implications for physical therapist practice. Vol. 86, Physical Therapy. 2006. p. 92–109.Borschel GH, Kia KF, Kuzon WM, Dennis RG. Mechanical properties of acellular peripheral nerve. J Surg Res. 2003;114(2):133–9.Dadsetan M, Knight AM, Lu L, Windebank AJ, Yaszemski MJ. Stimulation of neurite outgrowth using positively charged hydrogels. Biomaterials. 2009;30(23–24):3874–81.Kim J, Kim DH, Lim KT, Seonwoo H, Park SH, Kim YR, et al. Charged nanomatrices as efficient platforms for modulating cell adhesion and shape. Tissue Eng - Part C Methods. 2012;18(12):913–23.Reid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience. 2011;199:515–22.EstudiantesInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesORIGINAL52748725.2022.pdf52748725.2022.pdfTesis de Doctorado en Biotecnologíaapplication/pdf13766078https://repositorio.unal.edu.co/bitstream/unal/82254/3/52748725.2022.pdf5fee004ea6de88ba0383f16cef59dd79MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84675https://repositorio.unal.edu.co/bitstream/unal/82254/4/license.txtb577153cc0e11f0aeb5fc5005dc82d8aMD54THUMBNAIL52748725.2022.pdf.jpg52748725.2022.pdf.jpgGenerated Thumbnailimage/jpeg4272https://repositorio.unal.edu.co/bitstream/unal/82254/5/52748725.2022.pdf.jpg29eca937275635f475dd0fda3076e7f2MD55unal/82254oai:repositorio.unal.edu.co:unal/822542024-08-05 23:10:49.793Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUGFydGUgMS4gIFTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yLCBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhLCBsaW1pdGFkYSB5IGdyYXR1aXRhIHNvYnJlIGxhIG9icmEgcXVlIHNlIGludGVncmEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgYmFqbyBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6CgoKYSkJTG9zIGF1dG9yZXMgeS9vIGxvcyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhIHBhcmEgcmVhbGl6YXIgbG9zIHNpZ3VpZW50ZXMgYWN0b3Mgc29icmUgbGEgb2JyYTogaSkgcmVwcm9kdWNpciBsYSBvYnJhIGRlIG1hbmVyYSBkaWdpdGFsLCBwZXJtYW5lbnRlIG8gdGVtcG9yYWwsIGluY2x1eWVuZG8gZWwgYWxtYWNlbmFtaWVudG8gZWxlY3Ryw7NuaWNvLCBhc8OtIGNvbW8gY29udmVydGlyIGVsIGRvY3VtZW50byBlbiBlbCBjdWFsIHNlIGVuY3VlbnRyYSBjb250ZW5pZGEgbGEgb2JyYSBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gZXhpc3RlbnRlIGEgbGEgZmVjaGEgZGUgbGEgc3VzY3JpcGNpw7NuIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhLCB5IGlpKSBjb211bmljYXIgYWwgcMO6YmxpY28gbGEgb2JyYSBwb3IgY3VhbHF1aWVyIG1lZGlvIG8gcHJvY2VkaW1pZW50bywgZW4gbWVkaW9zIGFsw6FtYnJpY29zIG8gaW5hbMOhbWJyaWNvcywgaW5jbHV5ZW5kbyBsYSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZW4gYWNjZXNvIGFiaWVydG8uIEFkaWNpb25hbCBhIGxvIGFudGVyaW9yLCBlbCBhdXRvciB5L28gdGl0dWxhciBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHBhcmEgcXVlLCBlbiBsYSByZXByb2R1Y2Npw7NuIHkgY29tdW5pY2FjacOzbiBhbCBww7pibGljbyBxdWUgbGEgVW5pdmVyc2lkYWQgcmVhbGljZSBzb2JyZSBsYSBvYnJhLCBoYWdhIG1lbmNpw7NuIGRlIG1hbmVyYSBleHByZXNhIGFsIHRpcG8gZGUgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBiYWpvIGxhIGN1YWwgZWwgYXV0b3IgeS9vIHRpdHVsYXIgZGVzZWEgb2ZyZWNlciBzdSBvYnJhIGEgbG9zIHRlcmNlcm9zIHF1ZSBhY2NlZGFuIGEgZGljaGEgb2JyYSBhIHRyYXbDqXMgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIGN1YW5kbyBzZWEgZWwgY2Fzby4gRWwgYXV0b3IgeS9vIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIHByZXNlbnRlIGxpY2VuY2lhIG1lZGlhbnRlIHNvbGljaXR1ZCBlbGV2YWRhIGEgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYS4gCgpiKSAJTG9zIGF1dG9yZXMgeS9vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBsYSBsaWNlbmNpYSBzZcOxYWxhZGEgZW4gZWwgbGl0ZXJhbCBhKSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHBvciBlbCB0aWVtcG8gZGUgcHJvdGVjY2nDs24gZGUgbGEgb2JyYSBlbiB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8sIGVzdG8gZXMsIHNpbiBsaW1pdGFjacOzbiB0ZXJyaXRvcmlhbCBhbGd1bmEuCgpjKQlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgbWFuaWZpZXN0YW4gZXN0YXIgZGUgYWN1ZXJkbyBjb24gcXVlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHNlIG90b3JnYSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgcmVudW5jaWFuIGEgcmVjaWJpciBjdWFscXVpZXIgcmV0cmlidWNpw7NuIGVjb27Ds21pY2EgbyBlbW9sdW1lbnRvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGNvbiBxdWUgc2UgcHVibGljYS4KCmQpCVF1aWVuZXMgZmlybWFuIGVsIHByZXNlbnRlIGRvY3VtZW50byBkZWNsYXJhbiBxdWUgcGFyYSBsYSBjcmVhY2nDs24gZGUgbGEgb2JyYSwgbm8gc2UgaGFuIHZ1bG5lcmFkbyBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLCBpbmR1c3RyaWFsLCBtb3JhbGVzIHkgcGF0cmltb25pYWxlcyBkZSB0ZXJjZXJvcy4gRGUgb3RyYSBwYXJ0ZSwgIHJlY29ub2NlbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZSB5IHNlIGVuY3VlbnRyYSBleGVudGEgZGUgY3VscGEgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGfDum4gdGlwbyBkZSByZWNsYW1hY2nDs24gZW4gbWF0ZXJpYSBkZSBkZXJlY2hvcyBkZSBhdXRvciBvIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBnZW5lcmFsLiBQb3IgbG8gdGFudG8sIGxvcyBmaXJtYW50ZXMgIGFjZXB0YW4gcXVlIGNvbW8gdGl0dWxhcmVzIMO6bmljb3MgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGFzdW1pcsOhbiB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlIGxhIG9icmEuICAKCmYpCUF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3MgYWdyZWdhZG9yZXMgZGUgY29udGVuaWRvcywgYnVzY2Fkb3JlcyBhY2Fkw6ltaWNvcywgbWV0YWJ1c2NhZG9yZXMsIMOtbmRpY2VzIHkgZGVtw6FzIG1lZGlvcyBxdWUgc2UgZXN0aW1lbiBuZWNlc2FyaW9zIHBhcmEgcHJvbW92ZXIgZWwgYWNjZXNvIHkgY29uc3VsdGEgZGUgbGEgbWlzbWEuIAoKZykJRW4gZWwgY2FzbyBkZSBsYXMgdGVzaXMgY3JlYWRhcyBwYXJhIG9wdGFyIGRvYmxlIHRpdHVsYWNpw7NuLCBsb3MgZmlybWFudGVzIHNlcsOhbiBsb3MgcmVzcG9uc2FibGVzIGRlIGNvbXVuaWNhciBhIGxhcyBpbnN0aXR1Y2lvbmVzIG5hY2lvbmFsZXMgbyBleHRyYW5qZXJhcyBlbiBjb252ZW5pbywgbGFzIGxpY2VuY2lhcyBkZSBhY2Nlc28gYWJpZXJ0byBDcmVhdGl2ZSBDb21tb25zIHkgYXV0b3JpemFjaW9uZXMgYXNpZ25hZGFzIGEgc3Ugb2JyYSBwYXJhIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwgZGUgYWN1ZXJkbyBjb24gbGFzIGRpcmVjdHJpY2VzIGRlIGxhIFBvbMOtdGljYSBHZW5lcmFsIGRlIGxhIEJpYmxpb3RlY2EgRGlnaXRhbC4KCgpoKQlTZSBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMsIGRlIGFjdWVyZG8gY29uIGxhIGxleSAxNTgxIGRlIDIwMTIgZW50ZW5kaWVuZG8gcXVlIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQsIHkgc3UgdHJhdGFtaWVudG8gdGllbmUgdW5hIGZpbmFsaWRhZCBoaXN0w7NyaWNhLCBlc3RhZMOtc3RpY2EgbyBjaWVudMOtZmljYSBzZWfDum4gbG8gZGlzcHVlc3RvIGVuIGxhIFBvbMOtdGljYSBkZSBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLgoKCgpQYXJ0ZSAyLiBBdXRvcml6YWNpw7NuIHBhcmEgcHVibGljYXIgeSBwZXJtaXRpciBsYSBjb25zdWx0YSB5IHVzbyBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpTZSBhdXRvcml6YSBsYSBwdWJsaWNhY2nDs24gZWxlY3Ryw7NuaWNhLCBjb25zdWx0YSB5IHVzbyBkZSBsYSBvYnJhIHBvciBwYXJ0ZSBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IGRlIHN1cyB1c3VhcmlvcyBkZSBsYSBzaWd1aWVudGUgbWFuZXJhOgoKYS4JQ29uY2VkbyBsaWNlbmNpYSBlbiBsb3MgdMOpcm1pbm9zIHNlw7FhbGFkb3MgZW4gbGEgcGFydGUgMSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBjb24gZWwgb2JqZXRpdm8gZGUgcXVlIGxhIG9icmEgZW50cmVnYWRhIHNlYSBwdWJsaWNhZGEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0byBwYXJhIHN1IGNvbnN1bHRhIHBvciBsb3MgdXN1YXJpb3MgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgIGEgdHJhdsOpcyBkZSBpbnRlcm5ldC4KCg==