Síntesis y optimización de propiedades de películas delgadas de MAPbI3 con estructura perovskita, depositadas secuencialmente usando una nueva ruta de dos pasos

En este trabajo se reportan los principales aportes realizados para cumplir los objetivos de esta propuesta de tesis, donde se hizo especial énfasis en la síntesis y el estudio de propiedades ópticas, eléctricas, morfológicas y estructurales de películas delgadas del compuesto híbrido (orgánico/inor...

Full description

Autores:
Abella Vaca, María Camila
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79351
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79351
Palabra clave:
530 - Física::537 - Electricidad y electrónica
Películas delgadas de CH3NH3PbI3
Perovskitas
Physical Vapor Deposition
Dipp coating
Celdas solares
Energía solar
Tecnología de materiales
Materials engineering
Solar energy
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_3a821bf5c4d0405eb625d6a5ee7903d6
oai_identifier_str oai:repositorio.unal.edu.co:unal/79351
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.none.fl_str_mv Síntesis y optimización de propiedades de películas delgadas de MAPbI3 con estructura perovskita, depositadas secuencialmente usando una nueva ruta de dos pasos
title Síntesis y optimización de propiedades de películas delgadas de MAPbI3 con estructura perovskita, depositadas secuencialmente usando una nueva ruta de dos pasos
spellingShingle Síntesis y optimización de propiedades de películas delgadas de MAPbI3 con estructura perovskita, depositadas secuencialmente usando una nueva ruta de dos pasos
530 - Física::537 - Electricidad y electrónica
Películas delgadas de CH3NH3PbI3
Perovskitas
Physical Vapor Deposition
Dipp coating
Celdas solares
Energía solar
Tecnología de materiales
Materials engineering
Solar energy
title_short Síntesis y optimización de propiedades de películas delgadas de MAPbI3 con estructura perovskita, depositadas secuencialmente usando una nueva ruta de dos pasos
title_full Síntesis y optimización de propiedades de películas delgadas de MAPbI3 con estructura perovskita, depositadas secuencialmente usando una nueva ruta de dos pasos
title_fullStr Síntesis y optimización de propiedades de películas delgadas de MAPbI3 con estructura perovskita, depositadas secuencialmente usando una nueva ruta de dos pasos
title_full_unstemmed Síntesis y optimización de propiedades de películas delgadas de MAPbI3 con estructura perovskita, depositadas secuencialmente usando una nueva ruta de dos pasos
title_sort Síntesis y optimización de propiedades de películas delgadas de MAPbI3 con estructura perovskita, depositadas secuencialmente usando una nueva ruta de dos pasos
dc.creator.fl_str_mv Abella Vaca, María Camila
dc.contributor.advisor.none.fl_str_mv Gordillo Guzmán, Gerardo
Otálora Bastidas, Camilo Andrés
dc.contributor.author.none.fl_str_mv Abella Vaca, María Camila
dc.contributor.researchgroup.spa.fl_str_mv Grupo de materiales semiconductores y energía solar
dc.subject.ddc.spa.fl_str_mv 530 - Física::537 - Electricidad y electrónica
topic 530 - Física::537 - Electricidad y electrónica
Películas delgadas de CH3NH3PbI3
Perovskitas
Physical Vapor Deposition
Dipp coating
Celdas solares
Energía solar
Tecnología de materiales
Materials engineering
Solar energy
dc.subject.proposal.none.fl_str_mv Películas delgadas de CH3NH3PbI3
Perovskitas
Physical Vapor Deposition
Dipp coating
Celdas solares
dc.subject.unesco.none.fl_str_mv Energía solar
Tecnología de materiales
Materials engineering
Solar energy
description En este trabajo se reportan los principales aportes realizados para cumplir los objetivos de esta propuesta de tesis, donde se hizo especial énfasis en la síntesis y el estudio de propiedades ópticas, eléctricas, morfológicas y estructurales de películas delgadas del compuesto híbrido (orgánico/inorgánico) CH3NH3PbI3 (MAPbI3) crecido con estructura Perovskita, usando una nueva ruta de síntesis en dos etapas donde inicialmente se deposita por evaporación del precursor inorgánico PbI2 en ambiente de alto vacío y luego en una segunda etapa se deposita el precursor orgánico CH3NH3I (MAI) por dip- coating; el propósito es crecer este material con propiedades adecuadas para usarlo posteriormente como capa activa de celdas solares. En primera instancia se adecuo el reactor para sintetizar las películas de PbI2, el cual incluye facilidades para monitorear y controlar en forma automática el proceso de deposición de películas delgadas de PbI2 a través de un sistema electrónico desarrollado usando el concepto de Instrumentación virtual (VI); en particular este sistema permite hacer un control electrónico de la temperatura de las fuentes de evaporación del precursor, así como también de la tasa de deposición del material sobre el sustrato usando algoritmos PID (proporcional integral diferencial) y PWM (Pulse-Width-Modulated en inglés) desarrollados con el software Labview. El control automático del reactor permite preparar películas del PbI2 con un alto grado de reproducibilidad del espesor y de sus propiedades. Después de automatizar el reactor, se realizó el estudio de los parámetros de síntesis en tres fases. En la primera se estudió el efecto del espesor y de la temperatura y tiempo de recocido del PbI2 sobre las propiedades del compuesto MAPbI3; en la segunda fase se estudió el efecto de solventes usados en la etapa de dip-coating, de la concentración del CH3NH3I y de la temperatura y tiempo de deposición de la capa de MAI, sobre la formación de la capa de MAPbI3 , y en la tercera fase se llevó a cabo el estudio del efecto de tiempo y temperatura de recocido de la película de MAPbI3 obtenida en la fase anterior. El efecto de estos parámetros de síntesis sobre las propiedades estructurales, morfológicas, ópticas y eléctricas del material crecido a partir de los precursores PbI2 y CH3NH3I depositados secuencialmente mediante el método de dos pasos fueron evaluados mediante difracción de rayos X en donde se encontró que las muestras preparadas presentan mayoritariamente la fase MAPbI3; de otro lado, a través de medidas de reflectancia difusa se determinó el coeficiente de absorción α y el gap de energía Eg, cuyos valores son del orden de 105 cm-1 y 1,58 eV respectivamente, los cuales son adecuados para usar este material como capa activa de celdas solares. Adicionalmente las muestras de MAPbI3 fabricadas se analizaron usando Microscopia Electrónica de Barrido (SEM) cuyos resultados mostraron que estas presentan una morfología constituida por granos de tamaño cercanos a 1μm, con lo cual se garantiza un buen transporte eléctrico. Finalmente, después de optimizar los parámetros de síntesis del compuesto MAPbI3, se fabricaron celdas solares con arquitectura Au/TiO2/ MAPbI3/P3HT/Au, y se evaluó su desempeño a través de medidas de la característica J-V.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-03-12T15:11:45Z
dc.date.available.none.fl_str_mv 2021-03-12T15:11:45Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79351
url https://repositorio.unal.edu.co/handle/unal/79351
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Renewable Energy Policy Network for the 21st Century (REN21). Global Status Report 2016. http://www.ren21.net/gsr.
A. Goetzberger et al., Materials Science and Engineering R., 40 (2003) 1– 6
First Solar press release, Second Quarter 2010 Financial Results, [http://investor.firstsolar.com]
Nam-Gyu Park, OrganometalPerovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, Journal Phys. Chem.Lett. (2013), 4, 2423−2429
J.H. Heo, et al. Nature Photonics 7 (2013) 486.
Jung EH, Jeon NJ, Park EY, et al. Efficient, stable and scalable perovskite solar cells using poly(3‐hexylthiophene). Nature. 2019;567(7749):511‐515
Woon Seok Yang, Byung-Wook Park, Eui Hyuk Jung, Nam Joong Jeon, Young Chan Kim, Dong Uk Lee, Seong Sik Shin, Jangwon Seo, Eun Kyu Kim, Jun Hong Noh, Sang Il Seok. Iodide management in formamidiniumleadhalide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)
J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Gratzel and A. Hagfeldt, Energy Environ. Sci., 2015, 8, 2928–2934
H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim and J. Y. Kim, Nano Energy, 2014, 7, 80–85.
Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, (2017)
Green, M. A. et al. Solar cell efficiency tables (Version 55). Prog. Photovoltaics Res. Appl. 28, 3–15 (2020)
Nakamura, M. et al. Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovoltaics 9, 1863–1867 (2019).
Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html.
Wang, W. et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1–5 (2014).
Zhao, J. et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, (2016).
Zhang, F. & Zhu, K. Additive Engineering for Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 10, 1–26 (2020).
Hao, M. et al. Ligand-assisted cation-exchange engineering for high- efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020).
T, M., A, K., K, T. & Y, S. Organometal halide perovskites as visible- light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–1 (2009).
Im, J. H., Lee, C. R., Lee, J. W., Park, S. W. & Park, N. G. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 3, 4088–4093 (2011).
Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1–7 (2012).
Podolsky, B. et al. References and Notes 1. 338, 643–648 (2012).
Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).
Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).
Jeon, N. J. et al. Solvent engineering for high-performance inorganic- organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).
Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science (80-. ). 348, 1234– 1237 (2015).
Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science (80-. ). 345, 542–546 (2014).
Yang, W. S. et al. Iodide management in formamidinium-lead-halide- based perovskite layers for efficient solar cells. Science (80-). 356, 1376– 1379 (2017).
Reinoso, M. (2016). Fabricación de celdas solares hibridas con arquitectura planar basadas en compuestos metal-orgánicos con estructura perovskita. Doctorado. Universidad Nacional de Colombia.
Eperon, G. E. et al. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015).
Chen, Y., Zhang, L., Zhang, Y., Gao, H. & Yan, H. Large-area perovskite solar cells-a review of recent progress and issues. RSC Adv. 8, 10489– 10508 (2018).
Ozaki, M. et al. Iodine-rich mixed composition perovskites optimised for tin(iv) oxide transport layers: The influence of halide ion ratio, annealing time, and ambient air aging on solar cell performance. J. Mater. Chem. A 7, 16947–16953 (2019).
Cristalografía. Dispersión y difracción. Ley de Bragg. https://www.xtal.iqfr.csic.es/Cristalografia/parte_05_5.html.
Mahjabin, S. et al. Perceiving of Defect Tolerance in Perovskite Absorber Layer for Efficient Perovskite Solar Cell. IEEE Access 8, 106346–106353 (2020)
Limits to Resolution in the Electron Microscope. https://www.ou.edu/research/electron/bmz5364/resolutn.html.
Murphy, A. B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007).
Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials Part II: Nonhomogeneous Layers*. J. Opt. Soc. Am. 44, 330 (1954).
Elouafi, A. et al. Effects of Ru doping and of oxygen vacancies on the optical properties in α-Fe2O3 powders. Appl. Phys. A Mater. Sci. Process. 126, 1–7 (2020)
A. W. P. Sanches, M. A. T. Da Silva, N. J. A. Cordeiro, A. Urbano, and S. A. Lourenço, “Effect of intermediate phases on the optical properties of PbI2-rich CH3NH3PbI3 organic-inorganic hybrid perovskite,” Phys. Chem. Chem. Phys., vol. 21, no. 9, pp. 5253–5261, 2019, doi: 10.1039/c8cp06916f.
T. Oku, “Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells,” Sol. Cells - New Approaches Rev., 2015, doi: 10.5772/59284.
S. De Wolf et al., “Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance,” J. Phys. Chem. Lett., vol. 5, no. 6, pp. 1035–1039, 2014, doi: 10.1021/jz500279b.
G. D. Cody, “Urbach edge of crystalline and amorphous silicon: a personal review,” J. Non. Cryst. Solids, vol. 141, no. C, pp. 3–15, 1992, doi: 10.1016/S0022-3093(05)80513-7.
P. Mialhe, J. P. Charles, A. Khoury, and G. Bordure, “The diode quality factor of solar cells under illumination,” J. Phys. D. Appl. Phys., vol. 19, no. 3, pp. 483–492, Mar. 1986, doi: 10.1088/0022-3727/19/3/018.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en línea (60 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Departamento de Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79351/1/Tesis%20Ms%20Maria%20Camila%20Abella%20Vaca.pdf
https://repositorio.unal.edu.co/bitstream/unal/79351/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79351/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79351/4/Tesis%20Ms%20Maria%20Camila%20Abella%20Vaca.pdf.jpg
bitstream.checksum.fl_str_mv 7e2fbea80d13052e73910e7ebf46ac7f
cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
ba0e21d073dc6085312e167d761073b3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089311457378304
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gordillo Guzmán, Gerardoaa9076c7-cb15-4bc6-884d-a8c8ebe2eab0Otálora Bastidas, Camilo Andrés5a3d67d5-471a-4bba-a289-2ed0fc31a6ccAbella Vaca, María Camila47c6cbf0-a1d5-4763-84de-822401da90eaGrupo de materiales semiconductores y energía solar2021-03-12T15:11:45Z2021-03-12T15:11:45Z2020https://repositorio.unal.edu.co/handle/unal/79351En este trabajo se reportan los principales aportes realizados para cumplir los objetivos de esta propuesta de tesis, donde se hizo especial énfasis en la síntesis y el estudio de propiedades ópticas, eléctricas, morfológicas y estructurales de películas delgadas del compuesto híbrido (orgánico/inorgánico) CH3NH3PbI3 (MAPbI3) crecido con estructura Perovskita, usando una nueva ruta de síntesis en dos etapas donde inicialmente se deposita por evaporación del precursor inorgánico PbI2 en ambiente de alto vacío y luego en una segunda etapa se deposita el precursor orgánico CH3NH3I (MAI) por dip- coating; el propósito es crecer este material con propiedades adecuadas para usarlo posteriormente como capa activa de celdas solares. En primera instancia se adecuo el reactor para sintetizar las películas de PbI2, el cual incluye facilidades para monitorear y controlar en forma automática el proceso de deposición de películas delgadas de PbI2 a través de un sistema electrónico desarrollado usando el concepto de Instrumentación virtual (VI); en particular este sistema permite hacer un control electrónico de la temperatura de las fuentes de evaporación del precursor, así como también de la tasa de deposición del material sobre el sustrato usando algoritmos PID (proporcional integral diferencial) y PWM (Pulse-Width-Modulated en inglés) desarrollados con el software Labview. El control automático del reactor permite preparar películas del PbI2 con un alto grado de reproducibilidad del espesor y de sus propiedades. Después de automatizar el reactor, se realizó el estudio de los parámetros de síntesis en tres fases. En la primera se estudió el efecto del espesor y de la temperatura y tiempo de recocido del PbI2 sobre las propiedades del compuesto MAPbI3; en la segunda fase se estudió el efecto de solventes usados en la etapa de dip-coating, de la concentración del CH3NH3I y de la temperatura y tiempo de deposición de la capa de MAI, sobre la formación de la capa de MAPbI3 , y en la tercera fase se llevó a cabo el estudio del efecto de tiempo y temperatura de recocido de la película de MAPbI3 obtenida en la fase anterior. El efecto de estos parámetros de síntesis sobre las propiedades estructurales, morfológicas, ópticas y eléctricas del material crecido a partir de los precursores PbI2 y CH3NH3I depositados secuencialmente mediante el método de dos pasos fueron evaluados mediante difracción de rayos X en donde se encontró que las muestras preparadas presentan mayoritariamente la fase MAPbI3; de otro lado, a través de medidas de reflectancia difusa se determinó el coeficiente de absorción α y el gap de energía Eg, cuyos valores son del orden de 105 cm-1 y 1,58 eV respectivamente, los cuales son adecuados para usar este material como capa activa de celdas solares. Adicionalmente las muestras de MAPbI3 fabricadas se analizaron usando Microscopia Electrónica de Barrido (SEM) cuyos resultados mostraron que estas presentan una morfología constituida por granos de tamaño cercanos a 1μm, con lo cual se garantiza un buen transporte eléctrico. Finalmente, después de optimizar los parámetros de síntesis del compuesto MAPbI3, se fabricaron celdas solares con arquitectura Au/TiO2/ MAPbI3/P3HT/Au, y se evaluó su desempeño a través de medidas de la característica J-V.In this work, the main contributions made to meet the objectives of this thesis proposal are reported, where special emphasis was placed on the synthesis and study of optical, electrical, morphological and structural properties of thin films of the hybrid compound (organic / inorganic) CH3NH3PbI3 (MAPbI3) grown with Perovskite structure, using a new synthesis route in two stages where initially the inorganic precursor PbI2 is deposited by evaporation in a high vacuum environment and then in a second stage the organic precursor CH3NH3I (MAI) is deposited by dip - coating; The purpose is to grow this material with suitable properties for later use as an active layer of solar cells. In the first instance, the reactor was adapted to synthesize the PbI2 films, which includes facilities to automatically monitor and control the process of deposition of thin films of PbI2 through an electronic system developed using the concept of Virtual Instrumentation (VI). ; In particular, this system allows electronic control of the temperature of the evaporation sources of the precursor, as well as the rate of deposition of the material on the substrate using PID (proportional differential integral) and PWM (Pulse-Width-Modulated in English) developed with Labview software. The automatic control of the reactor makes it possible to prepare films of PbI2 with a high degree of reproducibility of the thickness and its properties. After automating the reactor, the study of the synthesis parameters was carried out in three phases. In the first, the effect of the thickness and the temperature and annealing time of PbI2 on the properties of the compound MAPbI3 was studied; In the second phase, the effect of solvents used in the dip-coating stage, of the concentration of CH3NH3I and of the temperature and deposition time of the MAI layer, on the formation of the MAPbI3 layer, and on the In the third phase, the study of the annealing time and temperature effect of the MAPbI3 film obtained in the previous phase was carried out. The effect of these synthesis parameters on the structural, morphological, optical and electrical properties of the material grown from the PbI2 and CH3NH3I precursors deposited sequentially by the two-step method were evaluated by X-ray diffraction where it was found that the samples prepared mainly show the MAPbI3 phase; On the other hand, through diffuse reflectance measurements, the absorption coefficient α and the energy gap Eg were determined, whose values ​​are of the order of 105 cm-1 and 1.58 eV respectively, which are suitable for using this material. as an active layer of solar cells. Additionally, the manufactured MAPbI3 samples were analyzed using Scanning Electron Microscopy (SEM), the results of which showed that they present a morphology made up of grains with a size close to 1μm, which guarantees good electrical transport. Finally, after optimizing the synthesis parameters of the compound MAPbI3, solar cells with Au / TiO2 / MAPbI3 / P3HT / Au architecture were manufactured, and their performance was evaluated through measurements of the J-V characteristic.MaestríaLínea de Investigación: Semiconductores1 recurso en línea (60 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotáUniversidad Nacional de Colombia - Sede Bogotá530 - Física::537 - Electricidad y electrónicaPelículas delgadas de CH3NH3PbI3PerovskitasPhysical Vapor DepositionDipp coatingCeldas solaresEnergía solarTecnología de materialesMaterials engineeringSolar energySíntesis y optimización de propiedades de películas delgadas de MAPbI3 con estructura perovskita, depositadas secuencialmente usando una nueva ruta de dos pasosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRenewable Energy Policy Network for the 21st Century (REN21). Global Status Report 2016. http://www.ren21.net/gsr.A. Goetzberger et al., Materials Science and Engineering R., 40 (2003) 1– 6First Solar press release, Second Quarter 2010 Financial Results, [http://investor.firstsolar.com]Nam-Gyu Park, OrganometalPerovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, Journal Phys. Chem.Lett. (2013), 4, 2423−2429J.H. Heo, et al. Nature Photonics 7 (2013) 486.Jung EH, Jeon NJ, Park EY, et al. Efficient, stable and scalable perovskite solar cells using poly(3‐hexylthiophene). Nature. 2019;567(7749):511‐515Woon Seok Yang, Byung-Wook Park, Eui Hyuk Jung, Nam Joong Jeon, Young Chan Kim, Dong Uk Lee, Seong Sik Shin, Jangwon Seo, Eun Kyu Kim, Jun Hong Noh, Sang Il Seok. Iodide management in formamidiniumleadhalide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Gratzel and A. Hagfeldt, Energy Environ. Sci., 2015, 8, 2928–2934H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim and J. Y. Kim, Nano Energy, 2014, 7, 80–85.Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, (2017)Green, M. A. et al. Solar cell efficiency tables (Version 55). Prog. Photovoltaics Res. Appl. 28, 3–15 (2020)Nakamura, M. et al. Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovoltaics 9, 1863–1867 (2019).Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html.Wang, W. et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1–5 (2014).Zhao, J. et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, (2016).Zhang, F. & Zhu, K. Additive Engineering for Efficient and Stable Perovskite Solar Cells. Adv. Energy Mater. 10, 1–26 (2020).Hao, M. et al. Ligand-assisted cation-exchange engineering for high- efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020).T, M., A, K., K, T. & Y, S. Organometal halide perovskites as visible- light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–1 (2009).Im, J. H., Lee, C. R., Lee, J. W., Park, S. W. & Park, N. G. 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 3, 4088–4093 (2011).Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1–7 (2012).Podolsky, B. et al. References and Notes 1. 338, 643–648 (2012).Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).Jeon, N. J. et al. Solvent engineering for high-performance inorganic- organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science (80-. ). 348, 1234– 1237 (2015).Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science (80-. ). 345, 542–546 (2014).Yang, W. S. et al. Iodide management in formamidinium-lead-halide- based perovskite layers for efficient solar cells. Science (80-). 356, 1376– 1379 (2017).Reinoso, M. (2016). Fabricación de celdas solares hibridas con arquitectura planar basadas en compuestos metal-orgánicos con estructura perovskita. Doctorado. Universidad Nacional de Colombia.Eperon, G. E. et al. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015).Chen, Y., Zhang, L., Zhang, Y., Gao, H. & Yan, H. Large-area perovskite solar cells-a review of recent progress and issues. RSC Adv. 8, 10489– 10508 (2018).Ozaki, M. et al. Iodine-rich mixed composition perovskites optimised for tin(iv) oxide transport layers: The influence of halide ion ratio, annealing time, and ambient air aging on solar cell performance. J. Mater. Chem. A 7, 16947–16953 (2019).Cristalografía. Dispersión y difracción. Ley de Bragg. https://www.xtal.iqfr.csic.es/Cristalografia/parte_05_5.html.Mahjabin, S. et al. Perceiving of Defect Tolerance in Perovskite Absorber Layer for Efficient Perovskite Solar Cell. IEEE Access 8, 106346–106353 (2020)Limits to Resolution in the Electron Microscope. https://www.ou.edu/research/electron/bmz5364/resolutn.html.Murphy, A. B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007).Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials Part II: Nonhomogeneous Layers*. J. Opt. Soc. Am. 44, 330 (1954).Elouafi, A. et al. Effects of Ru doping and of oxygen vacancies on the optical properties in α-Fe2O3 powders. Appl. Phys. A Mater. Sci. Process. 126, 1–7 (2020)A. W. P. Sanches, M. A. T. Da Silva, N. J. A. Cordeiro, A. Urbano, and S. A. Lourenço, “Effect of intermediate phases on the optical properties of PbI2-rich CH3NH3PbI3 organic-inorganic hybrid perovskite,” Phys. Chem. Chem. Phys., vol. 21, no. 9, pp. 5253–5261, 2019, doi: 10.1039/c8cp06916f.T. Oku, “Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells,” Sol. Cells - New Approaches Rev., 2015, doi: 10.5772/59284.S. De Wolf et al., “Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance,” J. Phys. Chem. Lett., vol. 5, no. 6, pp. 1035–1039, 2014, doi: 10.1021/jz500279b.G. D. Cody, “Urbach edge of crystalline and amorphous silicon: a personal review,” J. Non. Cryst. Solids, vol. 141, no. C, pp. 3–15, 1992, doi: 10.1016/S0022-3093(05)80513-7.P. Mialhe, J. P. Charles, A. Khoury, and G. Bordure, “The diode quality factor of solar cells under illumination,” J. Phys. D. Appl. Phys., vol. 19, no. 3, pp. 483–492, Mar. 1986, doi: 10.1088/0022-3727/19/3/018.ORIGINALTesis Ms Maria Camila Abella Vaca.pdfTesis Ms Maria Camila Abella Vaca.pdfapplication/pdf3463755https://repositorio.unal.edu.co/bitstream/unal/79351/1/Tesis%20Ms%20Maria%20Camila%20Abella%20Vaca.pdf7e2fbea80d13052e73910e7ebf46ac7fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79351/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79351/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAILTesis Ms Maria Camila Abella Vaca.pdf.jpgTesis Ms Maria Camila Abella Vaca.pdf.jpgGenerated Thumbnailimage/jpeg4787https://repositorio.unal.edu.co/bitstream/unal/79351/4/Tesis%20Ms%20Maria%20Camila%20Abella%20Vaca.pdf.jpgba0e21d073dc6085312e167d761073b3MD54unal/79351oai:repositorio.unal.edu.co:unal/793512024-07-22 23:39:13.575Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==