Un método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las Cosas

ilustraciones, diagramas, tablas

Autores:
Parra Jiménez, Jhon Alexander
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81148
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81148
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
Computer Storage Devices
Dispositivos de almacenamiento (Computadores)
Firewalls (Computer science)
Firewalls (Computadores)
Internet de las Cosas
Ciberseguridad
Aprendizaje Profundo
Amenazas
Redes Convolucionales
Redes Recurrentes
IoT
Cibersecurity
Deep Learning
DoS
Convolutional Neural Network
Recurrent Neural Network
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_3a1f9349f446fda885bfad6ef54605de
oai_identifier_str oai:repositorio.unal.edu.co:unal/81148
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Un método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las Cosas
dc.title.translated.eng.fl_str_mv A Method Based on Deep Learning for the Early Detection and Characterization of Cybersecurity Incidents in Internet of Things Devices
title Un método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las Cosas
spellingShingle Un método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las Cosas
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
Computer Storage Devices
Dispositivos de almacenamiento (Computadores)
Firewalls (Computer science)
Firewalls (Computadores)
Internet de las Cosas
Ciberseguridad
Aprendizaje Profundo
Amenazas
Redes Convolucionales
Redes Recurrentes
IoT
Cibersecurity
Deep Learning
DoS
Convolutional Neural Network
Recurrent Neural Network
title_short Un método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las Cosas
title_full Un método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las Cosas
title_fullStr Un método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las Cosas
title_full_unstemmed Un método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las Cosas
title_sort Un método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las Cosas
dc.creator.fl_str_mv Parra Jiménez, Jhon Alexander
dc.contributor.advisor.none.fl_str_mv Gutiérrez Betancur, Sergio Armando
Branch Bedoya, John Willian
dc.contributor.author.none.fl_str_mv Parra Jiménez, Jhon Alexander
dc.contributor.researchgroup.spa.fl_str_mv Gidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificial
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
Computer Storage Devices
Dispositivos de almacenamiento (Computadores)
Firewalls (Computer science)
Firewalls (Computadores)
Internet de las Cosas
Ciberseguridad
Aprendizaje Profundo
Amenazas
Redes Convolucionales
Redes Recurrentes
IoT
Cibersecurity
Deep Learning
DoS
Convolutional Neural Network
Recurrent Neural Network
dc.subject.lemb.none.fl_str_mv Computer Storage Devices
Dispositivos de almacenamiento (Computadores)
Firewalls (Computer science)
Firewalls (Computadores)
dc.subject.proposal.spa.fl_str_mv Internet de las Cosas
Ciberseguridad
Aprendizaje Profundo
Amenazas
Redes Convolucionales
Redes Recurrentes
dc.subject.proposal.eng.fl_str_mv IoT
Cibersecurity
Deep Learning
DoS
Convolutional Neural Network
Recurrent Neural Network
description ilustraciones, diagramas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-01
dc.date.accessioned.none.fl_str_mv 2022-03-08T14:48:28Z
dc.date.available.none.fl_str_mv 2022-03-08T14:48:28Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81148
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81148
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbas, S., Faisal, M., Rahman, H. U., Khan, M. Z., Merabti, M., & Khan, A. U. (2018). Masquerading attacks detection in mobile ad hoc networks. IEEE Access, 55013- 55025.
Alaba, F. A., Othman, M., Hashem, I. A., & Alotaibi, F. (2017). Internet of Things security: A survey. Journal of Network and Computer Applications, 10-28.
Al-Garadi, M. A., Mohamed, A., Al-Ali, A., Du, X., & Guizani, M. (2020). A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security. IEEE Communications Surveys & Tutorials.
Alguliyev, R., Imamverdiyev, Y., & Sukhostat, L. (2018). Cyber-physical systems and their security issues. Computers in Industry, 100, 212-223.
Amanullah, M. A., Habeeb, R. A., Nasaruddin, F. H., Gani, A., Ahmed, E., Nainar, A. S., . . . Imran, M. (2020). Deep learning and big data technologies for IoT security. Computer Communications.
Anand, P., Singh, Y., Selwal, A., Alazab, M., Tanwar, S., & Kumar, N. (2020). IoT Vulnerability Assessment for Sustainable Computing: Threats, Current Solutions, and Open Challenges. IEEE Access, 168825-168853.
Baig, Z. A., Sanguanpong, S., Firdous, S. N., Vo, V. N., Nguyen, T. G., & So-In, C. (2020). Averaged dependence estimators for DoS attack detection in IoT networks. Future Generation Computer Systems, 102, 198-209.
Biswas, S., Sajal, M., Afrin, T., Bhuiyan, T., & Hassan, M. (2018). A study on remote code execution vulnerability in web applications. International Conference on Cyber Security and Computer Science (ICONCS 2018). Safranbolu.
Bošnjak, L., Sreš, J., & Brumen, B. (2018). Brute-force and dictionary attack on hashed real-world passwords. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (págs. 1161-1166). IEEE.
Brun, O., Yin, Y., Gelenbe, E., Kadioglu, Y. M., Augusto-Gonzalez, J., & Ramos, M. (2018). Deep Learning with Dense Random Neural Networks for Detecting Attacks Against IoT-Connected Home Environments. International ISCIS Security Workshop (págs. 79-89). Springer.
Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., & Faruki, P. (2018). Network Intrusion Detection for IoT Security based on Learning Techniques. IEEE Communications Surveys & Tutorials, 2671-2701.
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition (págs. 1251-1258). IEEE.
Cui, L., Yang, S., Chen, F., Ming, Z., Lu, N., & Qin, J. (2018). A survey on application of machine learning for Internet of Things. International Journal of Machine Learning and Cybernetics.
Deogirikar, J., & Vidhate, A. (2017). Security attacks in IoT: A survey. 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), (págs. 32-37).
Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems, 761-768.
Doshi, R., Apthorpe, N., & Feamster, N. (2018). Machine Learning DDoS Detection for Consumer Internet of Things Devices. 2018 IEEE Security and Privacy Workshops (SPW), 29-35.
Elrawy, M. F., Awad, A. I., & Hamed, H. F. (2018). Intrusion detection systems for IoT- based smart environments: a survey. Journal of Cloud Computing, 1-20.
Frustaci, M., Pace, P., Aloi, G., & Fortino, G. (2017). Evaluating critical security issues of the IoT world: Present and future challenges. IEEE Internet of things journal, 5(4), 2483-2495.
Galeano-Brajones, J., Carmona-Murillo, J., Valenzuela-Valdés, J. F., & Luna-Valero, F. (2020). Detection and Mitigation of DoS and DDoS Attacks in IoT-Based Stateful SDN: An Experimental Approach. Sensors.
Garg, S., Aujla, G. S., Kumar, N., & Batra, S. (2019). Tree-based attack--defense model for risk assessment in multi-UAV networks. IEEE Consumer Electronics Magazine, 35-41.
Haddad Pajouh, H., & Parizi, R. (2019). A Survey on Internet of Things Security: Requirements, Challenges, and Solutions. Internet of Things.
Hameed, A., & Alomary, A. (2019). Security Issues in IoT: A Survey. International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (págs. 1-5). IEEE.
Hasan, M., Islam, M. M., Zarif, M. I., & Hashem, M. (2019). Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet of Things.
Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures. IEEE Access, 7, 82721-82743.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. European conference on computer vision (págs. 630-645). Springer.
Humayed, A., Lin, J., Li, F., & Luo, B. (2017). Cyber-Physical Systems Security – A Survey. IEEE Internet of Things Journal, 4(6), 1802-1831.
Hussain, F., Abbas, S. G., Husnain, M., Fayyaz, U. U., Shahzad, F., & Shah, G. A. (2020). IoT DoS and DDoS Attack Detection using ResNet. arXiv preprint arXiv:2012.01971.
Hussain, F., Hussain, R., Hassan, S. A., & Hossain, E. (2020). Machine Learning in IoT Security: Current Solutions and Future Challenges. IEEE Communications Surveys & Tutorials.
Ibitoye, O., Shafiq, O., & Matrawy, A. (2019). Analyzing adversarial attacks against deep learning for intrusion detection in IoT networks. 2019 IEEE Global Communications Conference (GLOBECOM) (págs. 1-6). IEEE.
Icontec. (2017). NTC-ISO-IEC Tecnología de la información. Técnicas de seguridad. Sistemas de gestión de seguridad de la información (SGSI). Visión general y vocabulario.
Injadat, M., Moubayed, A., & Shami, A. (2020). Detecting botnet attacks in IoT environments: an optimized machine learning approach. arXiv preprint arXiv:2012.11325.
Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82, 395-411.
Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical report, Keele University and Durham University.
Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2019). Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Generation Computer Systems, 779-796.
Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet of Things Journal, 1125-1142.
Liu, Y., Peng, Y., Wang, B., Yao, S., & Liu, Z. (2017). Review on Cyber-physical Systems. IEEE/CAA Journal of Automatica SINICA, 4(1), 27-40.
Keras. (s.f.). Keras. Recuperado el 2 de Mayo de 2021, de https://keras.io/api/applications/
Lu, Y., & Da Xu, L. (2018). Internet of Things (IoT) Cybersecurity Research: A Review of Current Research Topics. IEEE Internet of Things Journal, 6(2), 2103-2115.
Makhdoom, I., Abolhasan, M., Lipman, J., Liu, R. P., & Ni, W. (2018). Anatomy of Threats to the Internet of Things. IEEE Communications Surveys & Tutorials, 1636-1675.
Meneghello, F., Calore, M., Zucchetto, D., Polese, M., & Zanella, A. (2019). IoT: Internet of Threats? A survey of practical security vulnerabilities in real IoT devices. IEEE Internet of Things Journal, 6(5), 8182-8201.
Miloslavskaya, N., & Tolstoy, A. (2018). Internet of Things: information security challenges and solutions. Cluster Computing, 103-119.
Mohanta, B. K., Jena, D., Satapathy, U., & Patnaik, S. (2020). Survey on IoT Security:Challenges and Solution using Machine Learning, Artificial Intelligence and Blockchain Technology. Internet of Things, 100227.
Mossberger, K., Tolbert, C., & McNeal, R. S. (2007). Digital citizenship: The Internet, society, and participation. MIT Press.
Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., & Ghani, N. (2019). Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-scale IoT Exploitations. IEEE Communications Surveys & Tutorials, 2702-2733.
Parviainen, P., Tihinen, M., M., Kääriäinen, J., & Tep. (2017). Tackling the digitalization challenge: how to benefit from digitalization in practice. International journal of information systems and project management, 5(1), 63-67.
Paudel, R., Muncy, T., & Eberle, W. (2019). Detecting DoS Attack in Smart Home IoT Devices Using a Graph-Based Approach. 2019 IEEE International Conference on Big Data (Big Data) (págs. 5249-5258). IEEE.
Pokhrel, S., Abbas, R., & Aryal, B. (2021). IoT Security: Botnet detection in IoT using Machine learning. arXiv preprint arXiv:2104.02231.
Reinsel, D., Gantz, J., & Rydning, J. (2018). Data age 2025: the digitization of the world from edge to core. (Paper Doc# US44413318), 1-29.
Roopak, M., Tian, G. Y., & Chambers, J. (2019). Deep learning models for cyber security in IoT networks. IEEE 9th annual computing and communication workshop and conference (CCWC) (págs. 0452-0457). IEEE.
Roopak, M., Tian, G. Y., & Chambers, J. (2020). An Intrusion Detection System Against DDoS Attacks in loT Networks. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC) (págs. 0562-0567). IEEE.
Shafiq, M., Tian, Z., Bashir, A. K., Du, X., & Guizani, M. (2020). IoT malicious traffic identification using wrapper-based feature selection mechanisms. Computers & Security, 101863.
Smith, R., Palin, D., Ioulianou, P. P., Vassilakis, V. G., & Shahandashti, S. F. (2020). Battery draining attacks against edge computing nodes in IoT networks. Cyber- Physical Systems, 96-116.
Statista Research. (2020). Internet of Things (IoT) active device connections installed base worldwide from 2015 to 2025. Obtenido de https://www.statista.com/statistics/1101442/iot-number-of-connected-devices- worldwide/
Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., & Lopez, J. (2018). A Survey of IoT-Enabled Cyberattacks: Assessing Attack Paths to Critical Infrastructures and Services. IEEE Communications Surveys & Tutorials, 3453-3495.
Susilo, B., & Sari, R. F. (2020). Intrusion Detection in IoT Networks Using Deep Learning Algorithm. Information, 11(5).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition (págs. 2818-2826). IEEE.
Tahsien, S. M., Karimipour, H., & Spachos, P. (2020). Machine learning based solutions for security of Internet of Things (IoT): A survey. Journal of Network and Computer Applications.
Ujjan, R. M., Pervez, Z., Dahal, K., Bashir, A. K., Mumtaz, R., & González, J. (2020). Towards sFlow and adaptive polling sampling for deep learning based DDoS detection in SDN. Future Generation Computer Systems, 111, 763-779.
Varga, P., Plosz, S., Soos, G., & Hegedus, C. (2017). Security threats and issues in automation IoT. 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS) (págs. 1-6). IEEE.
Waheed, N., He, X., Ikram, M., Usman, M., Hashmi, S. S., & Usman, M. (2020). Security and Privacy in IoT Using Machine Learning and Blockchain: Threats and Countermeasures. ACM Computing Surveys (CSUR).
Xiao, L., Wan, X., Lu, X., Zhang, Y., & Wu, D. (2018). IoT security techniques based on machine learning: How do IoT devices use AI to enhance security? IEEE Signal Processing Magazine, 41-49.
Yang, Y., Wu, L., Yin, G., Li, L., & Zhao, H. (2017). A Survey on Security and Privacy Issues in Internet-of-Things. IEEE Internet of Things Journal, 1250-1258.
Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access, 5, 21954-21961.
Yin, D., Zhang, L., & Yang, K. (2018). A DDoS Attack Detection and Mitigation With Software-Defined Internet of Things Framework. IEEE Access, 6, 24694-24705.
Yugha, R., & Chithra, S. (2020). A survey on technologies and security protocols: Reference for future generation IoT. Journal of Network and Computer Applications.
Zeadally, S., & Jabeur, N. (2016). Cyber-physical system design with sensor networking technologies. Institution of Engineering and Technology.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 64 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Analítica
dc.publisher.department.spa.fl_str_mv Departamento de la Computación y la Decisión
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81148/1/1030660760.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81148/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81148/3/1030660760.2021.pdf.jpg
bitstream.checksum.fl_str_mv 30650c2ee436b56d338dc5ade829d519
8153f7789df02f0a4c9e079953658ab2
1cc2bff2813d0823bf1c6a8b2d8522bc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089873238261760
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gutiérrez Betancur, Sergio Armando576e9414f66eca5b522f30139d1d78c6Branch Bedoya, John Willian112eaa0bbeeaeb0d3d14dfe15d672a15Parra Jiménez, Jhon Alexander94c48523cb1c8496454a4909423f8205Gidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificial2022-03-08T14:48:28Z2022-03-08T14:48:28Z2021-12-01https://repositorio.unal.edu.co/handle/unal/81148Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl incremento en la implementación de dispositivos ciberfísicos conectados a internet en los últimos años los ha vuelto un foco de interés para posibles atacantes que ven una oportunidad para vulnerar sistemas que se componen de estos dispositivos como lo son los sistemas IoT. Debido a las condiciones particulares de dichos dispositivos como su capacidad de procesamiento, la duración de su batería, entre otros, se añade un reto adicional para poder proteger la información asociada a los sistemas IoT en términos de disponibilidad, confidencialidad e integridad. Por esto, en el presente trabajo de investigación se propone un método basado en la unión de redes neuronales convolucionales y redes neuronales recurrentes para la detección y clasificación de ataques de denegación de servicios en el contexto IoT. Para este método se transforman los flujos de datos a un formato de imágenes de tres canales, método que ha probado ser efectivo para la detección de ataques que comprometen la ciberseguridad. El modelo generado tiene resultados prometedores con una tasa de clasificación correcta de más del 99% en la detección de ataques y una tasa superior al 96% para la clasificación de los ataques abordados. (Texto tomado de la fuente)The increase in the adoption of cyber-physical devices connected to the Internet in recent years has made them a focus of interest for possible attackers who see an opportunity to violate systems that are made up with these devices, such as IoT systems. Due to the conditions of these devices such as their processing capacity, their battery life, among others, an additional challenge is added to be able to protect the information associated with IoT systems in terms of availability, confidentiality, and integrity. For this reason, in this research we propose a method based on the union of convolutional neural networks and recurrent neural networks for the detection and classification of denial-of-service attacks in the IoT context. For this method, the data flows are transformed into a three- channel image format, a method that has proven to be effective for detecting attacks that compromise cybersecurity. The generated model has promising results with an accuracy of more than 99% in the detection of attacks and a rate greater than 96% for the classification of the addressed attacks.MaestríaMagíster en Ingeniería - AnalíticaRedes neuronales artificiales, computación evolutiva, y reconocimiento de patronesÁrea Curricular de Ingeniería de Sistemas e Informáticaxii, 64 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - AnalíticaDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónComputer Storage DevicesDispositivos de almacenamiento (Computadores)Firewalls (Computer science)Firewalls (Computadores)Internet de las CosasCiberseguridadAprendizaje ProfundoAmenazasRedes ConvolucionalesRedes RecurrentesIoTCibersecurityDeep LearningDoSConvolutional Neural NetworkRecurrent Neural NetworkUn método para la identificación y prevención temprana de incidentes de ciberseguridad en dispositivos del Internet de las CosasA Method Based on Deep Learning for the Early Detection and Characterization of Cybersecurity Incidents in Internet of Things DevicesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbas, S., Faisal, M., Rahman, H. U., Khan, M. Z., Merabti, M., & Khan, A. U. (2018). Masquerading attacks detection in mobile ad hoc networks. IEEE Access, 55013- 55025.Alaba, F. A., Othman, M., Hashem, I. A., & Alotaibi, F. (2017). Internet of Things security: A survey. Journal of Network and Computer Applications, 10-28.Al-Garadi, M. A., Mohamed, A., Al-Ali, A., Du, X., & Guizani, M. (2020). A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security. IEEE Communications Surveys & Tutorials.Alguliyev, R., Imamverdiyev, Y., & Sukhostat, L. (2018). Cyber-physical systems and their security issues. Computers in Industry, 100, 212-223.Amanullah, M. A., Habeeb, R. A., Nasaruddin, F. H., Gani, A., Ahmed, E., Nainar, A. S., . . . Imran, M. (2020). Deep learning and big data technologies for IoT security. Computer Communications.Anand, P., Singh, Y., Selwal, A., Alazab, M., Tanwar, S., & Kumar, N. (2020). IoT Vulnerability Assessment for Sustainable Computing: Threats, Current Solutions, and Open Challenges. IEEE Access, 168825-168853.Baig, Z. A., Sanguanpong, S., Firdous, S. N., Vo, V. N., Nguyen, T. G., & So-In, C. (2020). Averaged dependence estimators for DoS attack detection in IoT networks. Future Generation Computer Systems, 102, 198-209.Biswas, S., Sajal, M., Afrin, T., Bhuiyan, T., & Hassan, M. (2018). A study on remote code execution vulnerability in web applications. International Conference on Cyber Security and Computer Science (ICONCS 2018). Safranbolu.Bošnjak, L., Sreš, J., & Brumen, B. (2018). Brute-force and dictionary attack on hashed real-world passwords. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (págs. 1161-1166). IEEE.Brun, O., Yin, Y., Gelenbe, E., Kadioglu, Y. M., Augusto-Gonzalez, J., & Ramos, M. (2018). Deep Learning with Dense Random Neural Networks for Detecting Attacks Against IoT-Connected Home Environments. International ISCIS Security Workshop (págs. 79-89). Springer.Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., & Faruki, P. (2018). Network Intrusion Detection for IoT Security based on Learning Techniques. IEEE Communications Surveys & Tutorials, 2671-2701.Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition (págs. 1251-1258). IEEE.Cui, L., Yang, S., Chen, F., Ming, Z., Lu, N., & Qin, J. (2018). A survey on application of machine learning for Internet of Things. International Journal of Machine Learning and Cybernetics.Deogirikar, J., & Vidhate, A. (2017). Security attacks in IoT: A survey. 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), (págs. 32-37).Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for Internet of Things. Future Generation Computer Systems, 761-768.Doshi, R., Apthorpe, N., & Feamster, N. (2018). Machine Learning DDoS Detection for Consumer Internet of Things Devices. 2018 IEEE Security and Privacy Workshops (SPW), 29-35.Elrawy, M. F., Awad, A. I., & Hamed, H. F. (2018). Intrusion detection systems for IoT- based smart environments: a survey. Journal of Cloud Computing, 1-20.Frustaci, M., Pace, P., Aloi, G., & Fortino, G. (2017). Evaluating critical security issues of the IoT world: Present and future challenges. IEEE Internet of things journal, 5(4), 2483-2495.Galeano-Brajones, J., Carmona-Murillo, J., Valenzuela-Valdés, J. F., & Luna-Valero, F. (2020). Detection and Mitigation of DoS and DDoS Attacks in IoT-Based Stateful SDN: An Experimental Approach. Sensors.Garg, S., Aujla, G. S., Kumar, N., & Batra, S. (2019). Tree-based attack--defense model for risk assessment in multi-UAV networks. IEEE Consumer Electronics Magazine, 35-41.Haddad Pajouh, H., & Parizi, R. (2019). A Survey on Internet of Things Security: Requirements, Challenges, and Solutions. Internet of Things.Hameed, A., & Alomary, A. (2019). Security Issues in IoT: A Survey. International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (págs. 1-5). IEEE.Hasan, M., Islam, M. M., Zarif, M. I., & Hashem, M. (2019). Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet of Things.Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures. IEEE Access, 7, 82721-82743.He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. European conference on computer vision (págs. 630-645). Springer.Humayed, A., Lin, J., Li, F., & Luo, B. (2017). Cyber-Physical Systems Security – A Survey. IEEE Internet of Things Journal, 4(6), 1802-1831.Hussain, F., Abbas, S. G., Husnain, M., Fayyaz, U. U., Shahzad, F., & Shah, G. A. (2020). IoT DoS and DDoS Attack Detection using ResNet. arXiv preprint arXiv:2012.01971.Hussain, F., Hussain, R., Hassan, S. A., & Hossain, E. (2020). Machine Learning in IoT Security: Current Solutions and Future Challenges. IEEE Communications Surveys & Tutorials.Ibitoye, O., Shafiq, O., & Matrawy, A. (2019). Analyzing adversarial attacks against deep learning for intrusion detection in IoT networks. 2019 IEEE Global Communications Conference (GLOBECOM) (págs. 1-6). IEEE.Icontec. (2017). NTC-ISO-IEC Tecnología de la información. Técnicas de seguridad. Sistemas de gestión de seguridad de la información (SGSI). Visión general y vocabulario.Injadat, M., Moubayed, A., & Shami, A. (2020). Detecting botnet attacks in IoT environments: an optimized machine learning approach. arXiv preprint arXiv:2012.11325.Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82, 395-411.Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical report, Keele University and Durham University.Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2019). Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Generation Computer Systems, 779-796.Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet of Things Journal, 1125-1142.Liu, Y., Peng, Y., Wang, B., Yao, S., & Liu, Z. (2017). Review on Cyber-physical Systems. IEEE/CAA Journal of Automatica SINICA, 4(1), 27-40.Keras. (s.f.). Keras. Recuperado el 2 de Mayo de 2021, de https://keras.io/api/applications/Lu, Y., & Da Xu, L. (2018). Internet of Things (IoT) Cybersecurity Research: A Review of Current Research Topics. IEEE Internet of Things Journal, 6(2), 2103-2115.Makhdoom, I., Abolhasan, M., Lipman, J., Liu, R. P., & Ni, W. (2018). Anatomy of Threats to the Internet of Things. IEEE Communications Surveys & Tutorials, 1636-1675.Meneghello, F., Calore, M., Zucchetto, D., Polese, M., & Zanella, A. (2019). IoT: Internet of Threats? A survey of practical security vulnerabilities in real IoT devices. IEEE Internet of Things Journal, 6(5), 8182-8201.Miloslavskaya, N., & Tolstoy, A. (2018). Internet of Things: information security challenges and solutions. Cluster Computing, 103-119.Mohanta, B. K., Jena, D., Satapathy, U., & Patnaik, S. (2020). Survey on IoT Security:Challenges and Solution using Machine Learning, Artificial Intelligence and Blockchain Technology. Internet of Things, 100227.Mossberger, K., Tolbert, C., & McNeal, R. S. (2007). Digital citizenship: The Internet, society, and participation. MIT Press.Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., & Ghani, N. (2019). Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-scale IoT Exploitations. IEEE Communications Surveys & Tutorials, 2702-2733.Parviainen, P., Tihinen, M., M., Kääriäinen, J., & Tep. (2017). Tackling the digitalization challenge: how to benefit from digitalization in practice. International journal of information systems and project management, 5(1), 63-67.Paudel, R., Muncy, T., & Eberle, W. (2019). Detecting DoS Attack in Smart Home IoT Devices Using a Graph-Based Approach. 2019 IEEE International Conference on Big Data (Big Data) (págs. 5249-5258). IEEE.Pokhrel, S., Abbas, R., & Aryal, B. (2021). IoT Security: Botnet detection in IoT using Machine learning. arXiv preprint arXiv:2104.02231.Reinsel, D., Gantz, J., & Rydning, J. (2018). Data age 2025: the digitization of the world from edge to core. (Paper Doc# US44413318), 1-29.Roopak, M., Tian, G. Y., & Chambers, J. (2019). Deep learning models for cyber security in IoT networks. IEEE 9th annual computing and communication workshop and conference (CCWC) (págs. 0452-0457). IEEE.Roopak, M., Tian, G. Y., & Chambers, J. (2020). An Intrusion Detection System Against DDoS Attacks in loT Networks. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC) (págs. 0562-0567). IEEE.Shafiq, M., Tian, Z., Bashir, A. K., Du, X., & Guizani, M. (2020). IoT malicious traffic identification using wrapper-based feature selection mechanisms. Computers & Security, 101863.Smith, R., Palin, D., Ioulianou, P. P., Vassilakis, V. G., & Shahandashti, S. F. (2020). Battery draining attacks against edge computing nodes in IoT networks. Cyber- Physical Systems, 96-116.Statista Research. (2020). Internet of Things (IoT) active device connections installed base worldwide from 2015 to 2025. Obtenido de https://www.statista.com/statistics/1101442/iot-number-of-connected-devices- worldwide/Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., & Lopez, J. (2018). A Survey of IoT-Enabled Cyberattacks: Assessing Attack Paths to Critical Infrastructures and Services. IEEE Communications Surveys & Tutorials, 3453-3495.Susilo, B., & Sari, R. F. (2020). Intrusion Detection in IoT Networks Using Deep Learning Algorithm. Information, 11(5).Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition (págs. 2818-2826). IEEE.Tahsien, S. M., Karimipour, H., & Spachos, P. (2020). Machine learning based solutions for security of Internet of Things (IoT): A survey. Journal of Network and Computer Applications.Ujjan, R. M., Pervez, Z., Dahal, K., Bashir, A. K., Mumtaz, R., & González, J. (2020). Towards sFlow and adaptive polling sampling for deep learning based DDoS detection in SDN. Future Generation Computer Systems, 111, 763-779.Varga, P., Plosz, S., Soos, G., & Hegedus, C. (2017). Security threats and issues in automation IoT. 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS) (págs. 1-6). IEEE.Waheed, N., He, X., Ikram, M., Usman, M., Hashmi, S. S., & Usman, M. (2020). Security and Privacy in IoT Using Machine Learning and Blockchain: Threats and Countermeasures. ACM Computing Surveys (CSUR).Xiao, L., Wan, X., Lu, X., Zhang, Y., & Wu, D. (2018). IoT security techniques based on machine learning: How do IoT devices use AI to enhance security? IEEE Signal Processing Magazine, 41-49.Yang, Y., Wu, L., Yin, G., Li, L., & Zhao, H. (2017). A Survey on Security and Privacy Issues in Internet-of-Things. IEEE Internet of Things Journal, 1250-1258.Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access, 5, 21954-21961.Yin, D., Zhang, L., & Yang, K. (2018). A DDoS Attack Detection and Mitigation With Software-Defined Internet of Things Framework. IEEE Access, 6, 24694-24705.Yugha, R., & Chithra, S. (2020). A survey on technologies and security protocols: Reference for future generation IoT. Journal of Network and Computer Applications.Zeadally, S., & Jabeur, N. (2016). Cyber-physical system design with sensor networking technologies. Institution of Engineering and Technology.Público generalORIGINAL1030660760.2021.pdf1030660760.2021.pdfTesis de Maestría en Ingeniería - Analíticaapplication/pdf1432719https://repositorio.unal.edu.co/bitstream/unal/81148/1/1030660760.2021.pdf30650c2ee436b56d338dc5ade829d519MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81148/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1030660760.2021.pdf.jpg1030660760.2021.pdf.jpgGenerated Thumbnailimage/jpeg5004https://repositorio.unal.edu.co/bitstream/unal/81148/3/1030660760.2021.pdf.jpg1cc2bff2813d0823bf1c6a8b2d8522bcMD53unal/81148oai:repositorio.unal.edu.co:unal/811482024-08-04 23:10:00.723Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK