Functional analysis, orthogonal polynomials and a theorem of Markov
The connection between functional analysis and the classical theory of orthogonal polynomials is explored in detail, at least in the bounded case. A functional analytic proof of Markov's theorem, the main link between the two subjects, is given. A special case of Darboux's asymptotic metho...
- Autores:
-
Charris Castañeda, Jairo Antonio
Gómez, Luis A.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1988
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43213
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43213
http://bdigital.unal.edu.co/33311/
- Palabra clave:
- 51 Matemáticas / Mathematics
Functional analysis
theory of orthogonal polynomials
Markov theorem
asymptotic method of Darboux
Análisis funcional
teoría de polinomios ortogonales
teorema de Markov
método asintótico de Darboux
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | The connection between functional analysis and the classical theory of orthogonal polynomials is explored in detail, at least in the bounded case. A functional analytic proof of Markov's theorem, the main link between the two subjects, is given. A special case of Darboux's asymptotic method is presented, and an example showing the ~ower of asymptotic methods to determine orthogonality measures of systems defined by three terms recurrence relations is included. |
---|