Functional analysis, orthogonal polynomials and a theorem of Markov

The connection between functional analysis and the classical theory of orthogonal polynomials is explored in detail, at least in the bounded case. A functional analytic proof of Markov's theorem, the main link between the two subjects, is given. A special case of Darboux's asymptotic metho...

Full description

Autores:
Charris Castañeda, Jairo Antonio
Gómez, Luis A.
Tipo de recurso:
Article of journal
Fecha de publicación:
1988
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43213
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43213
http://bdigital.unal.edu.co/33311/
Palabra clave:
51 Matemáticas / Mathematics
Functional analysis
theory of orthogonal polynomials
Markov theorem
asymptotic method of Darboux
Análisis funcional
teoría de polinomios ortogonales
teorema de Markov
método asintótico de Darboux
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:The connection between functional analysis and the classical theory of orthogonal polynomials is explored in detail, at least in the bounded case. A functional analytic proof of Markov's theorem, the main link between the two subjects, is given. A special case of Darboux's asymptotic method is presented, and an example showing the ~ower of asymptotic methods to determine orthogonality measures of systems defined by three terms recurrence relations is included.