Evaluación de la actividad fotocatalítica de FexOy/TiO2 obtenido a partir de ilmenita proveniente de residuos mineros para la degradación de cianuro disuelto en agua

ilustraciones a color, diagramas, fotografías

Autores:
Henao Hoyos, Yuli Marcela
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86481
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86481
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::549 - Mineralogía
Fotocatálisis
Nanopartículas
Catálisis heterogéneas
Cianuros -- Análisis
Residuos de la minería
Espectrofotometría
Photocatalysis
Nanoparticles
Heterogeneous catalysis
Cyanides -- Analysis
Waste mining
Spectrophotometry
Fotocatálisis heterogénea
Dióxido de titanio
Hierro
Oxidación fotocatalítica
Cianuro
Heterogenous photocatalysis
Titanium dioxide
Iron
Photocatalytic oxidation
Cyanide
Ilmenita
Ilmenite
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_39cf861132317135da7daec7d38c7ec5
oai_identifier_str oai:repositorio.unal.edu.co:unal/86481
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la actividad fotocatalítica de FexOy/TiO2 obtenido a partir de ilmenita proveniente de residuos mineros para la degradación de cianuro disuelto en agua
dc.title.translated.spa.fl_str_mv Assessment of the photocatalytic activity of FexOy/TiO2 synthesized from ilmenite sourced from mining wastes for the degradation of cyanide dissolved water
title Evaluación de la actividad fotocatalítica de FexOy/TiO2 obtenido a partir de ilmenita proveniente de residuos mineros para la degradación de cianuro disuelto en agua
spellingShingle Evaluación de la actividad fotocatalítica de FexOy/TiO2 obtenido a partir de ilmenita proveniente de residuos mineros para la degradación de cianuro disuelto en agua
540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::549 - Mineralogía
Fotocatálisis
Nanopartículas
Catálisis heterogéneas
Cianuros -- Análisis
Residuos de la minería
Espectrofotometría
Photocatalysis
Nanoparticles
Heterogeneous catalysis
Cyanides -- Analysis
Waste mining
Spectrophotometry
Fotocatálisis heterogénea
Dióxido de titanio
Hierro
Oxidación fotocatalítica
Cianuro
Heterogenous photocatalysis
Titanium dioxide
Iron
Photocatalytic oxidation
Cyanide
Ilmenita
Ilmenite
title_short Evaluación de la actividad fotocatalítica de FexOy/TiO2 obtenido a partir de ilmenita proveniente de residuos mineros para la degradación de cianuro disuelto en agua
title_full Evaluación de la actividad fotocatalítica de FexOy/TiO2 obtenido a partir de ilmenita proveniente de residuos mineros para la degradación de cianuro disuelto en agua
title_fullStr Evaluación de la actividad fotocatalítica de FexOy/TiO2 obtenido a partir de ilmenita proveniente de residuos mineros para la degradación de cianuro disuelto en agua
title_full_unstemmed Evaluación de la actividad fotocatalítica de FexOy/TiO2 obtenido a partir de ilmenita proveniente de residuos mineros para la degradación de cianuro disuelto en agua
title_sort Evaluación de la actividad fotocatalítica de FexOy/TiO2 obtenido a partir de ilmenita proveniente de residuos mineros para la degradación de cianuro disuelto en agua
dc.creator.fl_str_mv Henao Hoyos, Yuli Marcela
dc.contributor.advisor.spa.fl_str_mv Carriazo Baños, José Gregorio
Márquez Godoy, Marco Antonio
dc.contributor.author.spa.fl_str_mv Henao Hoyos, Yuli Marcela
dc.contributor.researchgroup.spa.fl_str_mv Diseño y Reactividad de Estructuras Sólidas (Lab DRES)
Mineralogía aplicada y bioprocesos (GMAB)
dc.contributor.orcid.spa.fl_str_mv Henao-Hoyos, Yuli Marcela [0000000268628668]
dc.contributor.cvlac.spa.fl_str_mv Henao Hoyos, Yuli Marcela [0001529361]
dc.contributor.researchgate.spa.fl_str_mv Henao-Hoyos, Yuli Marcela
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::549 - Mineralogía
topic 540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::549 - Mineralogía
Fotocatálisis
Nanopartículas
Catálisis heterogéneas
Cianuros -- Análisis
Residuos de la minería
Espectrofotometría
Photocatalysis
Nanoparticles
Heterogeneous catalysis
Cyanides -- Analysis
Waste mining
Spectrophotometry
Fotocatálisis heterogénea
Dióxido de titanio
Hierro
Oxidación fotocatalítica
Cianuro
Heterogenous photocatalysis
Titanium dioxide
Iron
Photocatalytic oxidation
Cyanide
Ilmenita
Ilmenite
dc.subject.lemb.spa.fl_str_mv Fotocatálisis
Nanopartículas
Catálisis heterogéneas
Cianuros -- Análisis
Residuos de la minería
Espectrofotometría
dc.subject.lemb.eng.fl_str_mv Photocatalysis
Nanoparticles
Heterogeneous catalysis
Cyanides -- Analysis
Waste mining
Spectrophotometry
dc.subject.proposal.spa.fl_str_mv Fotocatálisis heterogénea
Dióxido de titanio
Hierro
Oxidación fotocatalítica
Cianuro
dc.subject.proposal.eng.fl_str_mv Heterogenous photocatalysis
Titanium dioxide
Iron
Photocatalytic oxidation
Cyanide
dc.subject.wikidata.spa.fl_str_mv Ilmenita
dc.subject.wikidata.eng.fl_str_mv Ilmenite
description ilustraciones a color, diagramas, fotografías
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-16T20:09:15Z
dc.date.available.none.fl_str_mv 2024-07-16T20:09:15Z
dc.date.issued.none.fl_str_mv 2024-07-08
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86481
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86481
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agency for Toxic Substances and Desease Registry. (2006). Potential for Human Exposure. In Toxicological Profile for Cyanide (pp. 153–199).
Ajmal, A., Majeed, I., Malik, R. N., Idriss, H., & Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO 2 based photocatalysts: a comparative overview. RSC Advances, 4(70), 37003. https://doi.org/10.1039/C4RA06658H
Ali, T., Tripathi, P., Azam, A., Raza, W., Ahmed, A. S., Ahmed, A., & Muneer, M. (2017). Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Materials Research Express, 4(1). https://doi.org/10.1088/2053-1591/aa576d
Amat, A. M., Arques, A., Santos-Juanes, L., Silvestre, M., & Vicente, R. (2008). Eliminación de efluentes industriales cianurados. I Simposio Iberoamericano de Ingeniería de Residuos.
Amor, C., Marchão, L., Lucas, M. S., & Peres, J. A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020205
Anucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10. https://doi.org/10.1016/j.ceja.2022.100262
Armaković, S. J., Savanović, M. M., & Armaković, S. (2023). Titanium Dioxide as the Most Used Photocatalyst for Water Purification: An Overview. Catalysts, 13(1). https://doi.org/10.3390/catal13010026
Ashley, M., Dixon, M., & Prasad, K. (2014). Relationship between cigarette format and mouth-level exposure to tar and nicotine in smokers of Russian king-size cigarettes. Regulatory Toxicology and Pharmacology, 70(1), 430–437. https://doi.org/10.1016/j.yrtph.2014.08.002
Augugliaro, V., Blanco Gálvez, J., Cáceres Vázquez, J., García López, E., Loddo, V., López Muñoz, M. J., Malato Rodríguez, S., Marcì, G., Palmisano, L., Schiavello, M., & Soria Ruiz, J. (1999). Photocatalytic oxidation of cyanide in aqueous TiO 2 suspensions irradiated by sunlight in mild and strong oxidant conditions. Catalysis Today, 54(2–3), 245–253. https://doi.org/10.1016/S0920-5861(99)00186-8
Barakat, M. A., & Kumar, R. (2016). Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles. In S. K. Sharma (Ed.), GREEN CHEMISTRY FOR SUSTAINABILITY. Springer. https://doi.org/10.1007/978-3-319-24271-2
Barbosa, A. L., & Castro, I. (2012). Photocatalytic cyanide removal using TiO2, FeMoO4/TiO2, and HPMoCu/TiO2 catalysts under simulated solar light and parabolic cylindrical collector reactor. Avances En Ciencias e Ingeniería, 3(4), 69–79.
Berger, T., Sterrer, M., Diwald, O., Knözinger, E., Panayotov, D., Thompson, T. L., & Yates, J. T. (2005). Light-induced charge separation in anatase TiO 2 particles. Journal of Physical Chemistry B, 109(13), 6061–6068. https://doi.org/10.1021/jp0404293
Bloh, J. Z., & Marschall, R. (2017). Heterogeneous Photoredox Catalysis: Reactions, Materials, and Reaction Engineering. European Journal of Organic Chemistry, 2017(15), 2085–2094. https://doi.org/10.1002/ejoc.201601591
Botz, M. M., Mudder, T. I., & Akcil, A. U. (2016). Cyanide Treatment. In Gold Ore Processing. Elsevier B.V. https://doi.org/10.1016/b978-0-444-63658-4.00035-9
Braslavsky, S. E., Braun, A. M., Cassano, A. E., Emeline, A. V., Litter, M. I., Palmisano, L., Parmon, V. N., & Serpone, N. (2011). Glossary of terms used in photocatalysis and radiation catalysis (IUPAC recommendations 2011). Pure and Applied Chemistry, 83(4), 931–1014. https://doi.org/10.1351/PAC-REC-09-09-36
Bundschuh, J. (2014). Advanced Oxidation Technologies - Sustainable solutions for environmental treatments (M. I. Litter, R. J. Candal, & J. Martín Meichtry, Eds.; Volume 9). CRC Press/Balkema.
Cai, Y., & Feng, Y. P. (2016). Review on charge transfer and chemical activity of TiO2: Mechanism and applications. Progress in Surface Science, 91(4), 183–202. https://doi.org/10.1016/j.progsurf.2016.11.001
Carriazo, J. G., Ensuncho-Muñoz, A., & Almanza, O. (2014). Electron Paramagnetic Resonance (EPR) Investigation of TiO2-Delaminated Clays. Revista Mexicana de Ingeniería Química, 13(2), 473–481.
Carriazo, J. G., Moreno-Forero, M., Molina, R. A., & Moreno, S. (2010). Incorporation of titanium and titanium-iron species inside a smectite-type mineral for photocatalysis. Applied Clay Science, 50(3), 401–408. https://doi.org/10.1016/j.clay.2010.09.007
Chernet, T. (1999). Effect of mineralogy and texture in the TiO2 pigment production process of the Tellnes ilmenite concentrate. Mineralogy and Petrology, 67(1–2), 21–32. https://doi.org/10.1007/BF01165113
Clara Pinzón Iregui, M., Contreras H, C. M., Uribe Restrepo, M., & clínico, C. (2002). Envenenamiento por cianuro. Revista Colombiana de Psiquiatría, XXXI(4), 271–271. http://www.scielo.org.co/pdf/rcp/v31n4/v31n4a06.pdf
Deng, Y., & Zhao, R. (2015). Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollution Reports, 1(3), 167–176. https://doi.org/10.1007/s40726-015-0015-z
Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M. A. (2017). New perspectives for Advanced Oxidation Processes. Journal of Environmental Management, 195, 93–99. https://doi.org/10.1016/j.jenvman.2017.04.010
Duprez, D., & Cavani, F. (2014). Handbook of Advanced Methods and Processes in Oxidation Catalysis. In Handbook of Advanced Methods and Processes in Oxidation Catalysis. IMPERIAL COLLEGE PRESS. https://doi.org/10.1142/p791
Emeline, A. V., Ryabchuk, V. K., & Serpone, N. (2005). Dogmas and misconceptions in heterogeneous photocatalysis. Some enlightened reflections. Journal of Physical Chemistry B, 109(39), 18515–18521. https://doi.org/10.1021/jp0523367
Environmental Protection Agency. (1976). The Manufacture and Use of Selected Inorganic Cyanides.
Frank, S. N., & Bard, A. J. (1977). Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. Journal of Physical Chemistry, 81(15), 1484–1488. https://doi.org/10.1021/j100530a011
Friedmann, D. (2022). A General Overview of Heterogeneous Photocatalysis as a Remediation Technology for Wastewaters Containing Pharmaceutical Compounds. Water (Switzerland), 14(21). https://doi.org/10.3390/w14213588
Fujishima, A., & Honda, K. (1972). Electrochemical Photolysis of Water at a semiconductor Electrode. Nature, 238, 37–38.
Fujishima, A., & Zhang, X. (2006). Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 9(5), 750–760. https://doi.org/10.1016/j.crci.2005.02.055
Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001
Garzón-Cucaita, V., & Carriazo, J. G. (2022). Óxidos de hierro como catalizadores de procesos tipo Fenton con potencial aplicación en tecnologías de remoción de contaminantes. TecnoLógicas, 25(55), e2393. https://doi.org/10.22430/22565337.2393
Gaya, U. I. (2014a). Heterogeneous photocatalysis using inorganic semiconductor solids. In Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. Springer. https://doi.org/10.1007/978-94-007-7775-0
Glaze, W. H., Kang, J. W., & Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering, 9(4), 335–352. https://doi.org/10.1080/01919518708552148
Haggerty, S. E., & Sautter, V. (1990). Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths. Science, 248(4958), 993–996. https://doi.org/10.1126/science.248.4958.993
Henderson, M. A. (2011). A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 66, 185–297. https://doi.org/10.1016/j.surfrep.2011.01.001
Hernández-Ramírez, A., & Medina-Ramírez, I. (2015). Photocatalytic Semiconductors. In Photocatalytic Semiconductors: Synthesis, Characterization, and Environmental Applications. https://doi.org/10.1007/978-3-319-10999-2
Hoffmann, M. R., Martin, S., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69–96. https://doi.org/10.1021/cr00033a004
Howe, R. F., & Gratzel, M. (1985). EPR Observation of Trapped Electrons in Colloidal TiO. J. Phys. Chem, 89, 4495–4499.
Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T., & Thurnauer, M. C. (2003). Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO 2 Using EPR. The Journal of Physical Chemistry B, 107(19), 4545–4549. https://doi.org/10.1021/jp0273934
Ijadpanah-Saravi, H., Dehestaniathar, S., Khodadadi-Darban, A., Zolfaghari, M., & Saeedzadeh, S. (2016). Photocatalytic decomposition of cyanide in pure water by biphasic titanium dioxide nanoparticles. Desalination and Water Treatment, 57(43), 20503–20510. https://doi.org/10.1080/19443994.2015.1108239
Ijadpanah-Saravy, H., Safari, M., Khodadadi-Darban, A., & Rezaei, A. (2014). Synthesis of Titanium Dioxide Nanoparticles for Photocatalytic Degradation of Cyanide in Wastewater. Analytical Letters, 47(10), 1772–1782. https://doi.org/10.1080/00032719.2014.880170
Jaszczak, E., Polkowska, Ż., Narkowicz, S., & Namieśnik, J. (2017). Cyanides in the environment—analysis—problems and challenges. Environmental Science and Pollution Research, 24(19), 15929–15948. https://doi.org/10.1007/s11356-017-9081-7
Jia, X., & Wang, M. (2018). Surface Photocatalytic Research of Fe -doped TiO2 (001) Based On the First-principles. IOP Conference Series: Materials Science and Engineering, 392(3). https://doi.org/10.1088/1757-899X/392/3/032040
Johnson, C. A. (2015). The fate of cyanide in leach wastes at gold mines: An environmental perspective. Applied Geochemistry, 57, 194–205. https://doi.org/10.1016/j.apgeochem.2014.05.023
Kanjana, N., Maiaugree, W., & Laokul, P. (2022). Photocatalytic activity of nanocrystalline Fe3+-doped anatase TiO2 hollow spheres in a methylene blue solution under visible-light irradiation. Journal of Materials Science: Materials in Electronics, 33(7), 4659–4680. https://doi.org/10.1007/s10854-021-07654-z
Kapridaki, C., Xynidis, N., Vazgiouraki, E., Kallithrakas-Kontos, N., & Maravelaki-Kalaitzaki, P. (2019). Characterization of photoactive Fe-TiO2 lime coatings for building protection: The role of Iron content. Materials, 12(11), 1–16. https://doi.org/10.3390/ma12111847
Karlsson, H. L. (2004). Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles. Science of the Total Environment, 334–335, 125–132. https://doi.org/10.1016/j.scitotenv.2004.04.061
Karunakaran, C., Gomathisankar, P., & Manikandan, G. (2011). Solar photocatalytic detoxification of cyanide by different forms of TiO 2. Korean Journal of Chemical Engineering, 28(5), 1214–1220. https://doi.org/10.1007/s11814-010-0503-1
Kerguelen Kerguelen, J. L. (2016). Caracterización y Aprovechamiento de Recursos Minerales en Colas de Terrazas Aluviales del Distrito Bagre-Nechí [Maestría en Recursos Minerales, Universidad Nacional de Colombia]. https://doi.org/10.1109/TDEI.2012.6215089
Khan, M. S., Shah, J. A., Riaz, N., Butt, T. A., Khan, A. J., Khalifa, W., Gasmi, H. H., Latifee, E. R., Arshad, M., Al-Naghi, A. A. A., Ul-Hamid, A., Arshad, M., & Bilal, M. (2021). Synthesis and characterization of Fe-Tio2 nanomaterial: Performance evaluation for rb5 decolorization and in vitro antibacterial studies. Nanomaterials, 11(2), 1–19. https://doi.org/10.3390/nano11020436
Kianinia, Y., Khalesi, M., Abdollahy, M., Hefter, G., Senanayake, G., Hnedkovsky, L., Khodadadi Darban, A., & Shahbazi, M. (2018). Predicting Cyanide Consumption in Gold Leaching: A Kinetic and Thermodynamic Modeling Approach. Minerals, 8(3), 110. https://doi.org/10.3390/min8030110
Kim, S. H., Lee, S. W., Lee, G. M., Lee, B. T., Yun, S. T., & Kim, S. O. (2016). Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate. Chemosphere, 143, 106–114. https://doi.org/10.1016/j.chemosphere.2015.07.006
Kirk, R. E., & Othmer, D. F. (2004). Encyclopedia of Chemical Technology (4th Edition, Vol. 5). John Wiley & Sons.
Kisch, H. (2013). Semiconductor photocatalysis - Mechanistic and synthetic aspects. Angewandte Chemie - International Edition, 52(3), 812–847. https://doi.org/10.1002/anie.201201200
Klein, C., & Hurlbut, C. S. (1997). Manual de Mineralogía (Reverté, Ed.; 4th ed.).
Komaraiah, D., Radha, E., Kalarikkal, N., Sivakumar, J., Ramana Reddy, M. V., & Sayanna, R. (2019). Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceramics International, 45(18), 25060–25068. https://doi.org/10.1016/j.ceramint.2019.03.170
Kordzadeh-Kermani, V., Schaffie, M., Hashemipour Rafsanjani, H., & Ranjbar, M. (2020). A modified process for leaching of ilmenite and production of TiO2 nanoparticles. Hydrometallurgy, 198(August 2019), 105507. https://doi.org/10.1016/j.hydromet.2020.105507
Kruanetr, S., & Wanchanthuek, R. (2017). Studies on preparation and characterization of Fe/TiO2 catalyst in photocatalysis applications. Materials Research Express, 4(7). https://doi.org/10.1088/2053-1591/aa75f2
Kumar, S. G., & Rao, K. S. R. K. (2017). Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3and ZnO). Applied Surface Science, 391, 124–148. https://doi.org/10.1016/j.apsusc.2016.07.081
Kuyucak, N., & Akcil, A. (2013). Cyanide and removal options from effluents in gold mining and metallurgical processes. Minerals Engineering, 50–51, 13–29. https://doi.org/10.1016/j.mineng.2013.05.027
Lamus Molina, C. M. (2005). Mineralogía aplicada al uso y aprovechamiento de las arenas negras (El Bagre, Antioquia) [Maestría en Ingeniería de materiales y Procesos]. Universidad Nacional de Colombia.
Linsebigler, A. L., Lu, G., & Yates, J. T. (1995a). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735–758. https://doi.org/10.1021/cr00035a013
Linsebigler, A. L., Lu, G., & Yates, J. T. (1995b). Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results. In Chem. Rev (Vol. 95).
Liu, B., Zhao, X., Terashima, C., Fujishima, A., & Nakata, K. (2014). Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Physical Chemistry Chemical Physics, 16(19), 8751. https://doi.org/10.1039/c3cp55317e
Mahendran, V., & Gogate, P. R. (2021). Degradation of Acid Scarlet 3R dye using oxidation strategies involving photocatalysis based on Fe doped TiO2 photocatalyst, ultrasound and hydrogen peroxide. Separation and Purification Technology, 274. https://doi.org/10.1016/j.seppur.2021.119011
Mancuso, A., Sacco, O., Vaiano, V., Bonelli, B., Esposito, S., Freyria, F. S., Blangetti, N., & Sannino, D. (2021). Visible light-driven photocatalytic activity and kinetics of fe-doped tio2 prepared by a three-block copolymer templating approach. Materials, 14(11). https://doi.org/10.3390/ma14113105
Mendis, A., Thambiliyagodage, C., Ekanayake, G., Liyanaarachchi, H., Jayanetti, M., & Vigneswaran, S. (2023). Fabrication of Naturally Derived Chitosan and Ilmenite Sand-Based TiO2/Fe2O3/Fe-N-Doped Graphitic Carbon Composite for Photocatalytic Degradation of Methylene Blue under Sunlight. Molecules, 28(7). https://doi.org/10.3390/molecules28073154
Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042
Mimic, O. I., Zhang, Y., Cromack, K. R., Trifunac, A. D., & Thurnauer, M. C. (1993). Trapped Holes on TiO2 Colloids Studied by Electron Paramagnetic Resonance. The Journal of Physical Chemistry, 97(28), 7277–7283.
Mishra, A., Verma, V., Khan, A., Kumar, D., Khan, T. S., Amoli, V., & Sinha, A. K. (2023). Waste ilmenite sludge-derived low-cost mesoporous Fe-doped TiO2: A versatile photocatalyst for enhanced visible light photocatalysis without a cocatalyst. Journal of Environmental Chemical Engineering, 11(5). https://doi.org/10.1016/j.jece.2023.110319
Mudder, T. I., Michael, M., Botz, P. E., & Smith, A. (2001). Chemistry and Treatment of Cyanidation Wastes (T. I. Mudder, M. M. Botz, & A. Smith, Eds.; Second). Mining Journal Books Ltd.
Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
Nolan, N. T., Seery, M. K., & Pillai, S. C. (2009). Spectroscopic investigation of the anatase-to-rutile transformation of sol-gel-synthesized TiO2 photocatalysts. Journal of Physical Chemistry C, 113(36), 16151–16157. https://doi.org/10.1021/jp904358g
Ohtani, B. (2011). Photocatalysis by inorganic solid materials: Revisiting its definition, concepts, and experimental procedures. In Advances in Inorganic Chemistry (Vol. 63). https://doi.org/10.1016/B978-0-12-385904-4.00001-9
Ohtani, B. (2010). Photocatalysis A to Z-What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157–178. https://doi.org/10.1016/j.jphotochemrev.2011.02.001
Ohtani, B. (2014). Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics. Phys. Chem. Chem. Phys., 16(5), 1788–1797. https://doi.org/10.1039/C3CP53653J
Paredes-Quevedo, L. C., González-Caicedo, C., Torres-Luna, J. A., & Carriazo, J. G. (2021). Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay. Water, Air, and Soil Pollution, 232(1). https://doi.org/10.1007/s11270-020-04968-2
Pedraza-Avella, J. A. (2009). Oxidación fotocatalítica de cianuro con nanopartículas de óxido de titanio(IV) dopado con metales de transición sintetizadas por el método sol-gel [Doctoral Thesis]. Universidad Industrial de Santander.
Pedraza-Avella, J. A., Acevedo-Peña, P., & Pedraza-Rosas, J. E. (2008). Photocatalytic oxidation of cyanide on TiO2: An electrochemical approach. Catalysis Today, 133–135(1–4), 611–618. https://doi.org/10.1016/j.cattod.2007.12.063
Peiró, A. M., Colombo, C., Doyle, G., Nelson, J., Mills, A., & Durrant, J. R. (2006). Photochemical reduction of oxygen adsorbed to nanocrystalline TiO2 films: A transient absorption and oxygen scavenging study of different TiO2 preparations. Journal of Physical Chemistry B, 110(46), 23255–23263. https://doi.org/10.1021/jp064591c
Pelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O’Shea, K., Entezari, M. H., & Dionysiou, D. D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331–349. https://doi.org/10.1016/j.apcatb.2012.05.036
Pinto Rosso, J. M. (2016). Tratamiento fotocatalítico de aguas de cianuración provenientes del proceso de beneficio del oro en una zona minera del sur de Bolívar-Colombia [Ingeniería Ambiental]. Universidad de Córdoba.
Pourbaix, M. (1967). Atlas of electrochemical equilibria in aqueous solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 13(4), 471. https://doi.org/10.1016/0022-0728(67)80059-7
Putri, R. A., Tursiloadi, S., Nurrahmah, E. F., Liandi, A. R., & Arutanti, O. (2023). Synthesis of TiO2-Based Photocatalyst from Indonesia Ilmenite Ore for Photodegradation of Eriochrome Black-T Dye. Water, Air, and Soil Pollution, 234(8). https://doi.org/10.1007/s11270-023-06584-2
Ramírez-Sánchez, I. M., & Bandala, E. R. (2018). Photocatalytic degradation of estriol using iron-doped TiO2 under high and low UV irradiation. Catalysts, 8(12). https://doi.org/10.3390/catal8120625
Saida, S., Gorai, D. K., & Kundu, T. K. (2023). A green process for the synthesis of porous TiO 2 from ilmenite ore using molten salt alkali decomposition for photocatalytic applications . RSC Sustainability, 1(3), 592–598. https://doi.org/10.1039/d3su00009e
Salvador, P. (1985). Kinetic Approach to the Photocurrent Transients in Water Photoelectrolysis at n-TiO, Electrodes. 1. Analysis of the Ratio of the Instantaneous to Steady-State Photocurrent. The Journal of Physical Chemistry, 89(18), 3863–3869.
Salvador, P., & Gutierrez, C. (1984). On the Nature of Surface States Involved in the Photo- and Electroluminescensce Spectra of n-TiO2 Electrodes. The Journal of Physical Chemistry, 88(16), 3696–3698.
Sasikumar, C., Rao, D. S., Srikanth, S., Mukhopadhyay, N. K., & Mehrotra, S. P. (2007). Dissolution studies of mechanically activated Manavalakurichi ilmenite with HCl and H2SO4. Hydrometallurgy, 88(1–4), 154–169. https://doi.org/10.1016/j.hydromet.2007.03.013
Serpone, N., & Salinaro, A. (1999). Terminology, Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis. Part I: Suggested Protocol. Pure & Appl. Chem, 71(2), 1996–1999.
Shao, S., Yu, J., Love, J. B., & Fan, X. (2021). An economic approach to produce iron doped TiO2 nanorods from ilmenite for photocatalytic applications. Journal of Alloys and Compounds, 858. https://doi.org/10.1016/j.jallcom.2020.158388
Shayegan, Z., Haghighat, F., & Lee, C. S. (2021). Anatase/brookite biphasic surface fluorinated Fe–TiO2 photocatalysts to enhance photocatalytic removal of VOCs under visible and UV light. Journal of Cleaner Production, 287, 125462. https://doi.org/10.1016/j.jclepro.2020.125462
Shirzad Siboni, M., Samarghandi, M. R., Yang, J. K., & Lee, S. M. (2011). Photocatalytic removal of cyanide with illuminated TiO2. Water Science and Technology, 64(7), 1383–1387. https://doi.org/10.2166/wst.2011.738
Smith, Y. R., Joseph Antony Raj, K., Ravi Subramanian, V., & Viswanathan, B. (2010). Sulfated Fe2O3-TiO2 synthesized from ilmenite ore: A visible light active photocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367(1–3), 140–147. https://doi.org/10.1016/j.colsurfa.2010.07.001
Sohrabi, S., & Akhlaghian, F. (2016). Surface investigation and catalytic activity of iron-modified TiO2. Journal of Nanostructure in Chemistry, 6(1), 93–102. https://doi.org/10.1007/s40097-015-0182-x
Solano Pizarro, R. A., & Herrera Barros, A. P. (2020). Cypermethrin elimination using Fe-TiO2 nanoparticles supported on coconut palm spathe in a solar flat plate photoreactor. Advanced Composites Letters, 28, 1–13. https://doi.org/10.1177/2633366X20906164
Sood, S., Umar, A., Mehta, S. K., & Kansal, S. K. (2015). Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. Journal of Colloid and Interface Science, 450, 213–223. https://doi.org/10.1016/j.jcis.2015.03.018
Resolución 631 de 2015, Pub. L. No. 631, 174 (2015).
Stefan, M. I. (2018). Advanced Oxidation Processes for Water Treatment: Fundamentals and applications (M. I. Stefan, Ed.; First). IWA Publishing.
Szczepankiewicz, S. H., Colussi, A. J., & Hoffmann, M. R. (2000). Infrared spectra of photoinduced species on hydroxylated titania surfaces. Journal of Physical Chemistry B, 104(42), 9842–9850. https://doi.org/10.1021/jp0007890
Tarasevich, M. R., Sadkowski, A., & Yeager, E. (1983). Oxygen Electrochemistry. In B. E. Conway, J. O. Bockris, E. Yeager, S. U. M. Khan, & R. E. White (Eds.), Comprehensive Treatise of Electrochemistry (1st edition, pp. 301–398). Plenum Press.
Taylor, J., Roney, N., Harper, C., Fransen, M. E., & Swarts, S. (2006). Toxicological Profile for Cyanide. In A. Gregory, M. Jacobs, & J. Withey (Eds.), ATSDR’s Toxicological Profiles (Issue July). Agency for Toxic Substances and Disease Registry (ATSDR). https://doi.org/10.1201/9781420061888_ch68
Tchobanoglous, G., Burton, F. L., & David Stensel, H. (2003). Wastewater Engineering: An Overview. In G. Tchobanoglous, F. L. Burton, & H. David Stensel (Eds.), Wastewater Engineering Treatment and Reuse (Fourth Edition). McGraw-HIll.
Thambiliyagodage, C., Usgodaarachchi, L., Mirihana, S., Wijesekera, R., Lansakara, B., & Bakker, M. (2021). Efficient photodegradation activity of α-Fe2O3/Fe2TiO5/TiO2 and Fe2TiO5/TiO2 nanocomposites synthesized from natural ilmenite. Results in Materials, 12, 100219. https://doi.org/10.1016/j.rinma.2021.100219
Thambiliyagodage, C., Wijesekera, R., & Bakker, M. G. (2021). Leaching of ilmenite to produce titanium based materials: a review. Discover Materials, 1(1). https://doi.org/10.1007/s43939-021-00020-0
Torres-Luna, J. A., Giraldo-Gómez, G. I., Sanabria-González, N. R., & Carriazo, J. G. (2019). Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite. Bulletin of Materials Science, 42(4). https://doi.org/10.1007/s12034-019-1817-1
Torres-Luna, J. A., Sanabria, N. R., & Carriazo, J. G. (2016). Powders of iron(III)-doped titanium dioxide obtained by direct way from a natural ilmenite. Powder Technology, 302, 254–260. https://doi.org/10.1016/j.powtec.2016.08.056
Turchi, C. S., & Ollis, D. F. (1990). Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J.Calatysis, 122, 178–192. https://doi.org/10.1016/0021-9517(90)90269-P
Valero-Romero, M. J., Santaclara, J. G., Oar-Arteta, L., van Koppen, L., Osadchii, D. Y., Gascon, J., & Kapteijn, F. (2019). Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis. Chemical Engineering Journal, 360, 75–88. https://doi.org/10.1016/j.cej.2018.11.132
Wang, H., Li, X., Zhao, X., Li, C., Song, X., Zhang, P., & Huo, P. (2022). A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chinese Journal of Catalysis, 43(2), 178–214. https://doi.org/10.1016/S1872-2067(21)63910-4
Welham, N. J., & Williams, J. S. (1999). Carbothermic Reduction of Ilmenite (FeTiO3) and Rutile (TiO2). Metallurgical and Materials Transactions B, 30B, 1075–1081.
Wilson, N. C., Muscat, J., Mkhonto, D., Ngoepe, P. E., & Harrison, N. M. (2005). Structure and properties of ilmenite from first principles. Physical Review B - Condensed Matter and Materials Physics, 71(7), 075202–1, 075202–075209. https://doi.org/10.1103/PhysRevB.71.075202
Yao, X., Jin, H., Liu, C., & Chuang, S. S. C. (2020). TiO2-based photocatalytic conversion processes: insights from in situ infrared spectroscopy. In Current Developments in Photocatalysis and Photocatalytic Materials (Issue C). Elsevier Inc. https://doi.org/10.1016/b978-0-12-819000-5.00005-9
Yoshihara, T., Katoh, R., Furube, A., Tamaki, Y., Murai, M., Hara, K., Murata, S., Arakawa, H., & Tachiya, M. (2004). Identification of Reactive Species in Photoexcited Nanocrystalline TiO2 Films by Wide-Wavelength-Range (400-2500 nm) Transient Absorption Spectroscopy. Journal of Physical Chemistry B, 108(12), 3817–3823. https://doi.org/10.1021/jp031305d
Zeng, G., Zhang, Q., Liu, Y., Zhang, S., & Guo, J. (2019). Preparation of TiO2 and Fe-TiO2 with an impinging stream-rotating packed bed by the precipitation method for the photodegradation of gaseous toluene. Nanomaterials, 9(8). https://doi.org/10.3390/nano9081173
Zhang, C., & Lindan, P. J. D. (2003). Multilayer water adsorption on rutile TiO2(110): A first-principles study. Journal of Chemical Physics, 118(10), 4620–4630. https://doi.org/10.1063/1.1543983
Abidov, A., Allabergenov, B., Lee, J., Jeon, H.-W., Jeong, S.-W., & Kim, S. (2013). X-Ray Photoelectron Spectroscopy Characterization of Fe Doped TiO2 Photocatalyst. International Journal of Materials, Mechanics and Manufacturing, February 2016, 294–296. https://doi.org/10.7763/ijmmm.2013.v1.63
Barbosa López, A. L., & Castro, I. M. (2020). Niobium-Titanium-Based Photocatalysts: Its Potentials for Free Cyanide Oxidation in Residual Aqueous Effluent. Frontiers in Chemistry, 8(March). https://doi.org/10.3389/fchem.2020.00099
Baumanis, C., Bloh, J. Z., Dillert, R., & Bahnemann, D. W. (2011). Hematite photocatalysis: Dechlorination of 2,6-dichloroindophenol and oxidation of water. Journal of Physical Chemistry C, 115(51), 25442–25450. https://doi.org/10.1021/jp210279r
Cardona Castaño, A. L., & Echeverri Pineda, J. A. (1996). Recuperación de Minerales Pesados a partir de Arenas Negras Aluviales [Trabajo de grado]. Universidad Nacional de Colombia.
Castillo, J., Rodriguez, F., López-Malo, A., Sanchez-Mora, E., Quiroz, M., & Bandala, E. (2015). Synthesis, Structural Characterization and Photocatalytic Activity of Iron-Doped Titanium Dioxide Nanopowders. Journal of Technology Innovations in Renewable Energy, 4(1), 1–9. https://doi.org/10.6000/1929-6002.2015.04.01.1
Chen, D., Jiang, Z., Geng, J., Wang, Q., & Yang, D. (2007). Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Industrial & Engineering Chemistry Research, 46(9), 2741–2746.
Chukanov, N. V. (2014). Infrared spectra of mineral species. In Infrared spectra of mineral species: Extended library (Vol. 1). http://link.springer.com/10.1007/978-94-007-7128-4
Colmenares, J. C. (2016). Heterogenous Photocatalysis. In J. C. Colmenares & Y.-J. Xu (Eds.), Green Chemistry and Sustainable Technology Series (Vol. 93, Issue 1). Springer. https://doi.org/10.1007/978-3-662-48719-8_7
Demeestere, K., Dewulf, J., Ohno, T., Salgado, P. H., & Van Langenhove, H. (2005). Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Applied Catalysis B: Environmental, 61(1–2), 140–149. https://doi.org/10.1016/j.apcatb.2005.04.017
Fujishima, A., Rao, T., & Tryk, D. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology. http://www.sciencedirect.com/science/article/pii/S1389556700000022
Ganesh, I., Kumar, P., Gupta, A., Sekhar, P., Radha, K., Padmanabham, G., & Sundararajan, G. (2012). Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications. Processing and Application of Ceramics, 6(1), 21–36. https://doi.org/10.2298/pac1201021g
García-Muñoz, P., Pliego, G., Zazo, J. A., Bahamonde, A., & Casas, J. A. (2016). Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes. Journal of Environmental Chemical Engineering, 4(1), 542–548. https://doi.org/10.1016/j.jece.2015.11.037
Ginting, L. I. B., Manaf, A., Astuti, W., Supriyatna, Y. I., & Bahfie, F. (2023). Study of Titanium Dioxide (TiO2) Extraction Process from Ilmenite Banten. IOP Conference Series: Earth and Environmental Science, 1201(1). https://doi.org/10.1088/1755-1315/1201/1/012092
Goswami, P., & Ganguli, J. N. (2012). Evaluating the potential of a new titania precursor for the synthesis of mesoporous Fe-doped titania with enhanced photocatalytic activity. Materials Research Bulletin, 47(8), 2077–2084. https://doi.org/10.1016/j.materresbull.2012.03.037
Grzmil, B. U., Grela, D., & Kic, B. (2008). Hydrolysis of titanium sulphate compounds. Chemical Papers, 62(1), 18–25. https://doi.org/10.2478/s11696-007-0074-8
Hanaor, D. A. H., & Sorrell, C. C. (2011). Review of the anatase to rutile phase transformation. Journal of Materials Science, 46(4), 855–874. https://doi.org/10.1007/s10853-010-5113-0
Hung, W. C., Chen, Y. C., Chu, H., & Tseng, T. K. (2008). Synthesis and characterization of TiO 2 and Fe/TiO 2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane. Applied Surface Science, 255(5 PART 1), 2205–2213. https://doi.org/10.1016/j.apsusc.2008.07.079
Ismael, M. (2020). Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles. Journal of Environmental Chemical Engineering, 8(2), 103676. https://doi.org/10.1016/j.jece.2020.103676
Jung, S. M., Dupont, O., & Grange, P. (2001). TiO2-SiO2 mixed oxide modified with H2SO4. I. Characterization of the microstructure of metal oxide and sulfate. Applied Catalysis A: General, 208(1–2), 393–401. https://doi.org/10.1016/S0926-860X(00)00737-7
Kawahara, T., Ozawa, T., Iwasaki, M., Tada, H., & Ito, S. (2003). Photocatalytic activity of rutile-anatase coupled TiO2 particles prepared by a dissolution-reprecipitation method. Journal of Colloid and Interface Science, 267(2), 377–381. https://doi.org/10.1016/S0021-9797(03)00755-0
Khan, M. S., Shah, J. A., Riaz, N., Butt, T. A., Khan, A. J., Khalifa, W., Gasmi, H. H., Latifee, E. R., Arshad, M., Al-Naghi, A. A. A., Ul-Hamid, A., Arshad, M., & Bilal, M. (2021). Synthesis and characterization of Fe-Tio2 nanomaterial: Performance evaluation for rb5 decolorization and in vitro antibacterial studies. Nanomaterials, 11(2), 1–19. https://doi.org/10.3390/nano11020436
Kim, M. R., & Woo, S. I. (2006). Poisoning effect of SO2 on the catalytic activity of Au/TiO 2 investigated with XPS and in situ FT-IR. Applied Catalysis A: General, 299(1–2), 52–57. https://doi.org/10.1016/j.apcata.2005.10.030
Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41(1–3), 207–219. https://doi.org/10.1016/S0920-5861(98)00050-9
López, R., & Gómez, R. (2012). Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO 2: A comparative study. Journal of Sol-Gel Science and Technology, 61(1), 1–7. https://doi.org/10.1007/s10971-011-2582-9
Luu, C. L., Nguyen, Q. T., & Ho, S. T. (2010). Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol-gel method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1(1), 1–6. https://doi.org/10.1088/2043-6254/1/1/015008
Lv, J.-F., Zheng, Y.-X., Tong, X., Zheng, Y.-M., & Zhang, H.-P. (2017). Mineralogy, physical characterization and magnetic separation performance of a raw ilmenite concentrate for its purification. Russian Journal of Non-Ferrous Metals, 58(2), 101–108. https://doi.org/10.3103/S1067821217020067
Mahajan, J., & Jeevanandam, P. (2018). Synthesis of TiO2α-Fe2O3 core-shell heteronanostructures by thermal decomposition approach and their application towards sunlight-driven photodegradation of rhodamine B. New Journal of Chemistry, 42(4), 2616–2626. https://doi.org/10.1039/c7nj04892k
Ma, J., He, H., & Liu, F. (2015). Applied Catalysis B: Environmental Effect of Fe on the photocatalytic removal of NO x over visible light responsive Fe / TiO 2 catalysts. “Applied Catalysis B, Environmental,” 179(x), 21–28. https://doi.org/10.1016/j.apcatb.2015.05.003
MiarAlipour, S., Friedmann, D., Scott, J., & Amal, R. (2018). TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials, 341, 404–423. https://doi.org/10.1016/j.jhazmat.2017.07.070
Mineros S.A. (2023). http://www.mineros.com.co/es/institucional/quienes-somos
Nakamoto, K. (2008). Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry: Sixth Edition. In Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry: Sixth Edition. https://doi.org/10.1002/9780470405840
Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B. G., Poolton, N. R. J., & Šiller, L. (2013). Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol-gel method. Scientia Iranica, 20(3), 1018–1022. https://doi.org/10.1016/j.scient.2013.05.017
Noda, L. K., De Almeida, R. M., Gonçalves, N. S., Probst, L. F. D., & Sala, O. (2003). TiO2 with a high sulfate content - Thermogravimetric analysis, determination of acid sites by infrared spectroscopy and catalytic activity. Catalysis Today, 85(1), 69–74. https://doi.org/10.1016/S0920-5861(03)00195-0
Ochiai, T., & Fujishima, A. (2012). Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 247–262. https://doi.org/10.1016/j.ultsonch.2016.03.025
Ohno, T., Tokieda, K., Higashida, S., & Matsumura, M. (2003). Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A: General, 244(2), 383–391. https://doi.org/10.1016/S0926-860X(02)00610-5
Parrino, F., Loddo, V., Augugliaro, V., Camera-Roda, G., Palmisano, G., Palmisano, L., & Yurdakal, S. (2019). Heterogeneous photocatalysis: guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity. Catalysis Reviews - Science and Engineering, 61(2), 163–213. https://doi.org/10.1080/01614940.2018.1546445
Sasikumar, C., Rao, D. S., Srikanth, S., Ravikumar, B., Mukhopadhyay, N. K., & Mehrotra, S. P. (2004). Effect of mechanical activation on the kinetics of sulfuric acid leaching of beach sand ilmenite from Orissa, india. Hydrometallurgy, 75(1–4), 189–204. https://doi.org/10.1016/j.hydromet.2004.08.001
Shao, S., Yu, J., Love, J. B., & Fan, X. (2021). An economic approach to produce iron doped TiO2 nanorods from ilmenite for photocatalytic applications. Journal of Alloys and Compounds, 858. https://doi.org/10.1016/j.jallcom.2020.158388
Shard, A. G. (2014). Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X-rays. Surface and Interface Analysis, 46(3), 175–185. https://doi.org/10.1002/sia.5406
Solano Pizarro, R. A., & Herrera Barros, A. P. (2020). Cypermethrin elimination using Fe-TiO2 nanoparticles supported on coconut palm spathe in a solar flat plate photoreactor. Advanced Composites Letters, 28, 1–13. https://doi.org/10.1177/2633366X20906164
Stuart, B. H. (2005). Infrared Spectroscopy: Fundamentals and Applications. In Infrared Spectroscopy: Fundamentals and Applications. https://doi.org/10.1002/0470011149
Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Stat. Sol., 15, 627–637.
Thambiliyagodage, C., Usgodaarachchi, L., Mirihana, S., Wijesekera, R., Lansakara, B., & Bakker, M. (2021). Efficient photodegradation activity of α-Fe2O3/Fe2TiO5/TiO2 and Fe2TiO5/TiO2 nanocomposites synthesized from natural ilmenite. Results in Materials, 12, 100219. https://doi.org/10.1016/j.rinma.2021.100219
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
Tian, C., Huang, S., & Yang, Y. (2013). Anatase TiO2 white pigment production from unenriched industrial titanyl sulfate solution via short sulfate process. Dyes and Pigments, 96(2), 609–613. https://doi.org/10.1016/j.dyepig.2012.09.016
Tran, C. Van, Nguyen, P. T. H., Nguyen, D. A., Le, B. T., Truong, T. N., & La, D. D. (2018). Facile fabrication and characterizations of nanostructured Fe2O3-TiO2 composite from Ilmenite ore. International Journal of Advanced Engineering, Management and Science, 4(7), 574–578. https://doi.org/10.22161/ijaems.4.7.11
Wang, Q., Yang, C., Zhang, G., Hu, L., & Wang, P. (2017). Photocatalytic Fe-doped TiO2/PSF composite UF membranes: Characterization and performance on BPA removal under visible-light irradiation. Chemical Engineering Journal, 319, 39–47. https://doi.org/10.1016/j.cej.2017.02.145
Wang, X., Yu, J. C., Liu, P., Wang, X., Su, W., & Fu, X. (2006). Probing of photocatalytic surface sites on SO42-/ TiO2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption. Journal of Photochemistry and Photobiology A: Chemistry, 179(3), 339–347. https://doi.org/10.1016/j.jphotochem.2005.09.007
Wen, L., Liu, B., Zhao, X., Nakata, K., Murakami, T., & Fujishima, A. (2012). Synthesis, characterization, and photocatalysis of Fe-doped TiO 2: A combined experimental and theoretical study. International Journal of Photoenergy, 2012. https://doi.org/10.1155/2012/368750
Wu, Z., Guo, K., Cao, S., Yao, W., & Piao, L. (2020). Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy. Nano Research, 13(2), 551–556. https://doi.org/10.1007/s12274-020-2650-y
Yang, X., Cao, C., Hohn, K., Erickson, L., Maghirang, R., Hamal, D., & Klabunde, K. (2007). Highly visible-light active C- and V-doped TiO2for degradation of acetaldehyde. Journal of Catalysis, 252(2), 296–302. https://doi.org/10.1016/j.jcat.2007.09.014
Zhu, L., Lu, Q., Lv, L., Wang, Y., Hu, Y., Deng, Z., Lou, Z., Hou, Y., & Teng, F. (2017). Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Advances, 7(33), 20084–20092. https://doi.org/10.1039/c7ra00134g
American Public Health Association, American Water Works Association, & Water Environment Federation. (1999). Part 4000 Inorganic nonmetallic constituents. In Standard Methods for the Examination of Water and Wastewater (p. 733).
Augugliaro, V., Loddo, V., Marcì, G., Palmisano, L., & López-Muñoz, M. J. (1997). Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions. Journal of Catalysis, 166(2), 272–283. https://doi.org/10.1006/jcat.1997.1496
Byrne, C., Subramanian, G., & Pillai, S. C. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 6(3), 3531–3555. https://doi.org/10.1016/j.jece.2017.07.080
Castillo-Rojas, S. (2007). Actinometría: Determinación de la Intensidad de una Lámpara de UV Utilizando Oxalato Férrico. In INFORME TÉCNICO (Vol. 01).
Chiang, K., Amal, R., & Tran, T. (2003). Photocatalytic oxidation of cyanide: Kinetic and mechanistic studies. Journal of Molecular Catalysis A: Chemical, 193(1–2), 285–297. https://doi.org/10.1016/S1381-1169(02)00512-5
Collado, L., García-Tecedor, M., Gomez-Mendoza, M., Pizarro, A. H., Oropeza, F. E., Liras, M., & de la Peña O’Shea, V. A. (2023). Unravelling charge dynamic effects in photocatalytic CO2 reduction over TiO2: Anatase vs P25. Catalysis Today, 114279. https://doi.org/10.1016/j.cattod.2023.114279
Goodarzvand Chegini, Z., Hassani, A. H., Torabian, A., & Borghei, S. M. (2020). Comparing the efficacy of catalytic ozonation and photocatalytical degradation of cyanide in industrial wastewater using ACF-TiO2: catalyst characterisation, degradation kinetics, and degradation mechanism. International Journal of Environmental Analytical Chemistry, 102(13), 1–21. https://doi.org/10.1080/03067319.2020.1762874
Hatchard, C. G., & Parker, C. A. (1956). A New Sensitive Chemical Actinometer. II. Potassium Ferrioxalate as a Standard Chemical Actinometer. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 235(1203), 518–536. https://doi.org/10.1098/rspa.1956.0102
Jing, C., Meng, X., Liu, S., Baidas, S., Patraju, R., Christodoulatos, C., & Korfiatis, G. P. (2005). Surface complexation of organic arsenic on nanocrystalline titanium oxide. Journal of Colloid and Interface Science, 290(1), 14–21. https://doi.org/10.1016/j.jcis.2005.04.019
Kandiel, T. A., Dillert, R., Robben, L., & Bahnemann, D. W. (2011). Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catalysis Today, 161(1), 196–201. https://doi.org/10.1016/j.cattod.2010.08.012
Koohestani, H. (2019). Photocatalytic removal of cyanide and Cr(IV) from wastewater in the presence of each other by using TiO2 /UV. Micro and Nano Letters, 14(1), 45–50. https://doi.org/10.1049/mnl.2018.5170
Kumar, S. G., & Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. Journal of Physical Chemistry A, 115, 13211–13241. https://doi.org/10.1021/jp204364a
Mediavilla, J. J. V., Perez, B. F., De Cordoba, M. C. F., Espina, J. A., & Ania, C. O. (2019). Photochemical degradation of cyanides and thiocyanates from an industrial wastewater. Molecules, 24(7), 2–3. https://doi.org/10.3390/molecules24071373
Muñoz-Batista, M. J., Kubacka, A., Hungría, A. B., & Fernández-García, M. (2015). Heterogeneous photocatalysis: Light-matter interaction and chemical effects in quantum efficiency calculations. Journal of Catalysis, 330, 154–166. https://doi.org/10.1016/j.jcat.2015.06.021
Pala, A., Politi, R. R., Kurşun, G., Erol, M., Bakal, F., Öner, G., & Çelik, E. (2015). Photocatalytic degradation of cyanide in wastewater using new generated nano-thin film photocatalyst. Surface and Coatings Technology, 271, 207–216. https://doi.org/10.1016/j.surfcoat.2014.12.032
Serpone, N. (1997). Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 104(1–3), 1–12. https://doi.org/10.1016/S1010-6030(96)04538-8
Serpone, N., Sauvé, G., Koch, R., Tahiri, H., Pichat, P., Piccinini, P., Pelizzetti, E., & Hidaka, H. (1996). Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: Relative photonic efficiencies ζr. Journal of Photochemistry and Photobiology A: Chemistry, 94(2–3), 191–203. https://doi.org/10.1016/1010-6030(95)04223-7
Talwar, S., Sangal, V. K., & Verma, A. K. (2019). In-situ dual effect of novel Fe-TiO2 composite for the degradation of phenazone. Separation and Purification Technology, 211, 391–400. https://doi.org/10.1016/j.seppur.2018.10.007
Wang, C., Bahnemann, D. W., & Dohrmann, J. K. (2001). Determination of photonic efficiency and quantum yield of formaldehyde formation in the presence of various TiO2 photocatalysts. Water Science and Technology, 44(5), 279–286. http://iwaponline.com/wst/article-pdf/44/5/279/430415/279.pdf
Zeng, M. (2013). Influence of TiO 2 Surface Properties on Water Pollution Treatment and Photocatalytic Activity. Bulletin of the Korean Chemical Society, 34(3), 953–956. https://doi.org/10.5012/bkcs.2013.34.3.953
Arai, H., & Tomnaga, H. (1976). An Infrared Study of Nitric Oxide Adsorbed on Rhodium-Alumina Catalyst. Journal of Catalysis, 43, 131–142.
Armaroli, T., Bécue, T., & Gautier, S. (2004). Diffuse reflection infrared spectroscopy (DRIFTS): Application to the in situ analysis of catalysts. Oil and Gas Science and Technology, 59(2), 215–237. https://doi.org/10.2516/ogst:2004016
Ashley, K., Feldhelm, D. L., Parry, D. B., Samant, M. G., & Philpott, M. R. (1994). Infrared Spectroelectrochemical Study of Cyanide Adsorption and Reactions at bPlatinum Electrodes in Aqueous Perchlorate Electrolyte.
Ashley, K., Weinert, F., & Feldheim, D. L. (1991). Infrared Spectroscopy to Probe the Electrochemical Double Layer. Electrochimica Acta, 36(11/12), 1863–1868.
Ashley, K., Weinert, F., Samant, M. G., Seki, H., & Philpott, M. R. (1991). Infrared spectroelectrochemical study of cyanide adsorption on palladium surfaces. Journal of Physical Chemistry, 95(19), 7409–7414. https://doi.org/10.1021/j100172a055
Bamwenda, G. R., Ogata, A., Obuchi, A., Oi, J., Mizuno, K., & Skrzypek, J. (1995). Selective reduction of nitric oxide with propene over platinum-group based catalysts: Studies of surface species and catalytic activity. Applied Catalysis B: Environmental, 6, 311–323.
Behar, D. (1972). Esr Parameters of Intermediates in the Radiolysis of Aqueous Solutions of HCN, CN-, and HCONHZa HC( H)=h. The Journal of Physical Chemistry, 76(26). https://doi.org/10.4
Behar, D. (1974). Pulse Radiolysis Study of Aqueous Hydrogen Cyanide and Cyanide Solutions. The Journal of Physical Chemistry, 78(26), 2660–2663.
Berger Paulissen, V., & Korzeniewski, C. (1992). Infrared Spectroscopy as a Probe of the Adsorption and Electrooxidation of a Cyanide Monolayer at Platinum under Aqueous Electrochemical Conditions. J. Phys. Chem, 96, 4563–4567.
Brown, W. A., & King, D. A. (2000). NO Chemisorption and Reactions on Metal Surfaces: A New Perspective. Journal of Physical Chemistry B, 104(12), 2578–2595. https://doi.org/10.1021/jp9930907
Busca, G., Lamotte, J., Lavalley, J.-C., & Lorenzelli, V. (1987). FT-IR Study of the Adsorption and Transformation of Formaldehyde on Oxide Surfaces. J. Am. Chem. SOC, 109, 5197–5202.
Captain, D. K., & Amiridis, M. D. (1999). In situ FTIR studies of the selective catalytic reduction of NO by C3H6 over Pt/Al2O3. Journal of Catalysis, 184(2), 377–389. https://doi.org/10.1006/jcat.1999.2463
Chuang, C. C., Wu, W. C., Lee, M. X., & Lin, J. L. (2000). Adsorption and photochemistry of CH3CN and CH3CONH2 on powdered TiO2. Physical Chemistry Chemical Physics, 2(17), 3877–3882. https://doi.org/10.1039/b003227l
Coates, J. (2000). Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry (R.A. Meyer, pp. 10815–10837). John Wiley & Sons Ltd. https://doi.org/10.1097/00010694-197107000-00005
Corrigan, D. S., & Weaver, M. J. (1986). Coverage-dependent orientation of adsorbates as probed by potential-difference infrared spectroscopy: Azide, cyanate, and thiocyanate at silver electrodes. Journal of Physical Chemistry, 90(21), 5300–5306. https://doi.org/10.1021/j100412a079
Crowleyt, J. N., & Sodeau, J. R. (1989). Reaction between Hydrocyanic Acid and O('D,) or O(3P) Oxygen Atoms in Low-Temperature Matrices. In J. Phys. Chem (Vol. 93, pp. 3100–3103).
Demyk, K., Dartois, E., D’hendecourt, L., Jourdain De Muizon, M., Heras, A. M., & Breitfellner, M. (1998). Laboratory identification of the 4.62µm solid state absorption band in the ISO-SWS spectrum of RAFGL 7009S. Astron. Astrophys, 339, 553–560.
Doménech, J., & Peral, J. (1988). Removal of Toxic Cyanide from Water by Heterogeneous Photocatalytic Oxidation over ZnO. Solar Energy, 41(1), 55–59.
Dows, D. A., Haim, A., & Wilmarth, W. K. (1961). Infra-red spectroscopic detection of bridging cyanide groups. Journal of Inorganic and Nuclear Chemistry, 21(1–2), 33–37. https://doi.org/10.1016/0022-1902(61)80408-9
Ebbesen, S. D., Mojet, B. L., & Lefferts, L. (2008). In Situ attenuated total reflection infrared (ATR-IR) study of the adsorption of NO2-, NH2OH, and NH 4+ on Pd/Al2O3 and Pt/Al 2O3. Langmuir, 24(3), 869–879. https://doi.org/10.1021/la7027725
Finos, G., Collins, S., Blanco, G., Del Rio, E., Cíes, J. M., Bernal, S., & Bonivardi, A. (2012). Infrared spectroscopic study of carbon dioxide adsorption on the surface of cerium-gallium mixed oxides. Catalysis Today, 180(1), 9–18. https://doi.org/10.1016/j.cattod.2011.04.054
Freund, H. J., & Roberts, M. W. (1996). Surface chemistry of carbon dioxide. Science Reports, 25, 225–273.
Giguère, P. A., & Liu, J. D. (1952). Infrared Spectrum, Molecular Structure, and Thermodynamic Functions of Hydroxylamine. Canadian Journal of Chemistry, 30, 948–962.
Griffith, W. P. (1975). Cyanide complexes of the early transition ketals (Groups IVA-VlIA). Coordination Chemistry Reviews, 17, 177–247.
Grim, R. J. A., & Greenberg, J. M. (1987). Ions in grain mantles: The 4.62 micron absorbation by OCN- in W33A. The Astrophysical Journal, 321, L91–L96.
Guzman, F., & Chuang, S. S. C. (2010). Tracing the reaction steps involving oxygen and IR observable species in ethanol photocatalytic oxidation on TiO2. Journal of the American Chemical Society, 132(5), 1502–1503. https://doi.org/10.1021/ja907256x
Hadjiivanov, K. I. (2000). Identification of neutral and charged NxOy surface species by IR spectroscopy. Catalysis Reviews - Science and Engineering, 42(1–2), 71–144. https://doi.org/10.1081/CR-100100260
Hadjiivanov, K., & Knözinger, H. (2000). Species formed after NO adsorption and NO + O2 co-adsorption on TiO2: An FTIR spectroscopic study. Physical Chemistry Chemical Physics, 2(12), 2803–2806. https://doi.org/10.1039/b002065f
Hanusa, T. P. (2011). Cyanide Complexes of the Transition MetalsBased in part on the article Cyanide Complexes of the Transition Metals by Timothy P. Hanusa & David J. Burkey which appeared in the Encyclopedia of Inorganic Chemistry, First Edition . In Encyclopedia of Inorganic and Bioinorganic Chemistry (pp. 1–11). https://doi.org/10.1002/9781119951438.eibc0055
Henderson, J. I., Feng, S., Bein, T., & Kubiak, C. P. (2000). Adsorption of diisocyanides on gold. Langmuir, 16(15), 6183–6187. https://doi.org/10.1021/la9906323
Hofmann, J. P. (2021). In Situ Spectroscopy for Mechanistic Studies in Semiconductor Photocatalysis. Heterogeneous Photocatalysis, 51–75. https://doi.org/10.1002/9783527815296.ch3
Isapour, G., Wang, A., Han, J., Feng, Y., Grönbeck, H., Creaser, D., Olsson, L., Skoglundh, M., & Härelind, H. (2022). In situ DRIFT studies on N2O formation over Cu-functionalized zeolites during ammonia-SCR. Catalysis Science and Technology, 12(12), 3921–3936. https://doi.org/10.1039/d2cy00247g
Ismail, Z. K., Hauge, R. H., & Margrave, J. L. (1973). Infrared spectra of matrix-isolated sodium and potassium cyanides. Journal of Molecular Spectroscopy, 45(2), 304–315. https://doi.org/10.1016/0022-2852(73)90163-X
Iwata, Y., Koseki, H., & Hosoya, F. (2003). Study on decomposition of hydroxylamine/water solution. Journal of Loss Prevention in the Process Industries, 16(1), 41–53. https://doi.org/10.1016/S0950-4230(02)00072-4
Jannusch, B., & Mansfeldt, T. (2002). Charakterisierung von Cyaniden in Böden und industriellen Abfällen mit der Fourier-Transformations-Infrarot-Spektrometrie. UWSF-Z Umweltchem Ökotox, 14(2), 90–95.
Jeantelot, G., Ould-Chikh, S., Sofack-Kreutzer, J., Abou-Hamad, E., Anjum, D. H., Lopatin, S., Harb, M., Cavallo, L., & Basset, J. M. (2018). Morphology control of anatase TiO2 for well-defined surface chemistry. Physical Chemistry Chemical Physics, 20(21), 14362–14373. https://doi.org/10.1039/c8cp01983e
Jebaraj, A. J. J., De Godoi, D. R. M., & Scherson, D. (2013). The oxidation of hydroxylamine on Pt-, and Pd-modified Au electrodes in aqueous electrolytes: Electrochemical and in situ spectroscopic studies. Catalysis Today, 202(1), 44–49. https://doi.org/10.1016/j.cattod.2012.03.038
Jebaraj, A. J. J., Kumsa, D., & Scherson, D. A. (2012). Oxidation of hydroxylamine on gold electrodes in aqueous electrolytes: Rotating ring-disk and in situ infrared reflection absorption spectroscopy studies. Journal of Physical Chemistry C, 116(12), 6932–6942. https://doi.org/10.1021/jp2104566
Jones, L. H., & Penneman, R. A. (1954). Infrared absorption studies of aqueous complex ions: I. Cyanide complexes of Ag(I) and Au (I) in aqueous solution and adsorbed on anion resin. The Journal of Chemical Physics, 22(6), 965–970. https://doi.org/10.1063/1.1740315
Kim, C. S., & Korzeniewski, C. (1993). Cyanide adsorbed as a monolayer at the low-index surface planes of platinum metal electrodes: An in situ study by infrared spectroscopy. Journal of Physical Chemistry, 97(38), 9784–9787. https://doi.org/10.1021/j100140a041
King, J., Liu, C., & Chuang, S. S. C. (2019). In situ infrared approach to unravel reaction intermediates and pathways on catalyst surfaces. Research on Chemical Intermediates, 45(12), 5831–5847. https://doi.org/10.1007/s11164-019-04004-x
Kitamura, F., Takahashi, M., & Masatoki, I. (1986). Oxidación of the Cyanide Ion at a Platinum Electrode Studied by Polarization Modulation Infrared Reflection Absorption Spectroscopy. Chemical Physics Letters, 130(3), 181–184.
Knoezinger, H., & Krietenbrink, H. (1975). Infrared spectroscopic study of the adsorption of nitriles on aluminium oxide. Fermi resonance in coordinated acetonitrile. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 71, 2421–2430. https://doi.org/10.1039/F19757102421
Larkin, P. J. (2017). Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. In Elsevier. https://doi.org/10.1016/C2015-0-00806-1
Litke, A., Su, Y., Tranca, I., Weber, T., Hensen, E. J. M., & Hofmann, J. P. (2017). Role of Adsorbed Water on Charge Carrier Dynamics in Photoexcited TiO2. Journal of Physical Chemistry C, 121(13), 7514–7524. https://doi.org/10.1021/acs.jpcc.7b00472
Liu, J., Zhang, L., Yao, X., & Chuang, S. S. C. (2017). Photo-generated conduction-band and shallow-trap electrons from UV irradiation on ethanol-adsorbed TiO2 and N-TiO2: an in situ infrared study. Research on Chemical Intermediates, 43(9), 5041–5054. https://doi.org/10.1007/s11164-017-3038-9
London, J. W., & Bell, A. T. (1973). Infrared Spectra of Carbon Monoxide, Carbon Dioxide, Nitric Oxide, Nitrogen Dioxide, Nitrous Oxide, and Nitrogen Adsorbed on Copper Oxide. Journal of Catalysis, 31, 32–40.
Maki, A., & Decius, J. C. (1958). Infrared spectrum of cyanate ion as a solid solution in a potassium iodide lattice. The Journal of Chemical Physics, 28(5), 1003–1004. https://doi.org/10.1063/1.1744260
Maki, A., & Decius, J. C. (1959). Vibrational spectrum of cyanate ion in various alkali halide lattices. The Journal of Chemical Physics, 31(3), 772–782. https://doi.org/10.1063/1.1730461
Maki, A. G. (1959). The Infrared Spectrum of Cyanate Ion in Different Environments [Doctor of Philosophy]. In PhD thesis (Vol. 7, Issue June). Oregon State College.
Mozzanega, H., Herrmann, J.-M., & Pichat, P. (1979). NH3 Oxidation over UV-Irradiated TiO2 at Room Temperature. The Journal of Physical Chemistry, 83(17), 2251–2255.
Muñoz, F., Schuchmann, M. N., Olbrich, G., & Von Sonntag, C. (2000). Common intermediates in the OH-radical-induced oxidation of cyanide and formamide. Journal of the Chemical Society. Perkin Transactions 2, 4, 655–659. https://doi.org/10.1039/a909609d
Murphy, K. L., Tysoe, W. T., & Bennett, D. W. (2004). A comparative investigation of aryl isocyanides chemisorbed to palladium and gold: An ATR-IR spectroscopic study. Langmuir, 20(5), 1732–1738. https://doi.org/10.1021/la030293k
Nakamoto, K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry (K. Nakamoto, Ed.; Sixth). Jon Wiley & Sons, Inc.
Nakamoto, K. (2006). Infrared and Raman Spectra of Inorganic and Coordination Compounds. In Handbook of Vibrational Spectroscopy. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470027325.s4104
Ngo, A. B., Vuong, T. H., Atia, H., Bentrup, U., Kondratenko, V. A., Kondratenko, E. V., Rabeah, J., Ambruster, U., & Brückner, A. (2020). Effect of Formaldehyde in Selective Catalytic Reduction of NO xby Ammonia (NH3-SCR) on a Commercial V2O5-WO3/TiO2Catalyst under Model Conditions. Environmental Science and Technology, 54(19), 11753–11761. https://doi.org/10.1021/acs.est.0c00884
Nuguid, R. J. G., Elsener, M., Ferri, D., & Kröcher, O. (2021a). Operando diffuse reflectance infrared detection of cyanide intermediate species during the reaction of formaldehyde with ammonia over V2O5/WO3-TiO2. Applied Catalysis B: Environmental, 298. https://doi.org/10.1016/j.apcatb.2021.120629
Raab, T. (2017). Quick detection and quantification of iron-cyanide complexes using fourier transform infrared spectroscopy. Environmental Pollution, 227, 64–72. https://doi.org/10.1016/j.envpol.2017.04.052
Rennert, T., Kaufhold, S., & Mansfeldt, T. (2005). Sorption of iron-cyanide complexes on goethite investigated in long-term experiments. Journal of Plant Nutrition and Soil Science, 168(2), 233–237. https://doi.org/10.1002/jpln.200421602
Rennert, T., Kaufhold, S., & Mansfeldt, T. (2007). Identification of iron-cyanide complexes in contaminated soils and wastes by fourier transform infrared spectroscopy. Environmental Science and Technology, 41(15), 5266–5270. https://doi.org/10.1021/es070492g
Rennert, T., & Mansfeldt, T. (2002). Sorption of Iron-Cyanide Complexes on Goethite in the Presence of Sulfate and Desorption with Phosphate and Chloride. Journal of Environmental Quality, 31(3), 745–751. https://doi.org/10.2134/jeq2002.7450
Scholz, F., Schwudke, D., Stösser, R., & Boháček, J. (2001). The interaction of prussian blue and dissolved hexacyanoferrate ions with goethite (α-FeOOH) studied to assess the chemical stability and physical mobility of prussian blue in soils. Ecotoxicology and Environmental Safety, 49(3), 245–254. https://doi.org/10.1006/eesa.2001.2060
Solymosi, F., & Bánságl, T. (1979). Infrared Spectroscopic Study of the Adsorption of Isocyanic Acid. The Journal of Physical Chemistry, 83(4), 552–553.
Swanson, S. A., McClain, R., Lovejoy, K. S., Alamdari, N. B., Hamilton, J. S., & Scott, J. C. (2005). Self-assembled diisocyanide monolayer films on gold and palladium. Langmuir, 21(11), 5034–5039. https://doi.org/10.1021/la047284b
Tamm, S., Ingelsten, H. H., & Palmqvist, A. E. C. (2008). On the different roles of isocyanate and cyanide species in propene-SCR over silver/alumina. Journal of Catalysis, 255(2), 304–312. https://doi.org/10.1016/j.jcat.2008.02.019
Venkov, T., Hadjiivanov, K., & Klissurski, D. (2002). IR spectroscopy study of NO adsorption and NO + O2 co-adsorption on Al2O3. Physical Chemistry Chemical Physics, 4(11), 2443–2448. https://doi.org/10.1039/b111396h
Wang, Q., Wei, C., Pérez, L. M., Rogers, W. J., Hall, M. B., & Mannan, M. S. (2010). Thermal decomposition pathways of hydroxylamine: Theoretical investigation on the initial steps. Journal of Physical Chemistry A, 114(34), 9262–9269. https://doi.org/10.1021/jp104144x
Wijnja, H., & Schulthess, C. P. (2001). Carbonate Adsorption Mechanism on Goethite Studied with ATR-FTIR, DRIFT, and Proton Coadsorption Measurements. Soil Science Society of America Journal, 65(2), 324–330. https://doi.org/10.2136/sssaj2001.652324x
Wu, W. C., Liao, L. F., Chuang, C. C., & Lin, J. L. (2000). Adsorption and Photooxidation of Formamide on Powdered TiO2. Journal of Catalysis, 195(2), 416–419. https://doi.org/10.1006/jcat.2000.2997
Xin, M., Hwang, I. C., & Woo, I. (1997). In situ FTIR study of the selective catalytic reduction of NO on Pt/ZSM-5. Catalysis Today, 3, 1–7.
Yu, Z., & Chuang, S. S. C. (2007). In situ IR study of adsorbed species and photogenerated electrons during photocatalytic oxidation of ethanol on TiO2. Journal of Catalysis, 246(1), 118–126. https://doi.org/10.1016/j.jcat.2006.11.022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 220 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86481/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86481/2/1038405009.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86481/3/1038405009.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
83a5c9ec033c72d3226f6850d476610c
4548a7f48150e373d1e0b0139b3468d7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089821066362880
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carriazo Baños, José Gregorio02cd71bf0b829f5d009e0d2419729392Márquez Godoy, Marco Antoniod4e253d07a48cb9652fd6c366cf4c910600Henao Hoyos, Yuli Marcela1d4493e65049f50efca60ac71113e468Diseño y Reactividad de Estructuras Sólidas (Lab DRES)Mineralogía aplicada y bioprocesos (GMAB)Henao-Hoyos, Yuli Marcela [0000000268628668]Henao Hoyos, Yuli Marcela [0001529361]Henao-Hoyos, Yuli Marcela2024-07-16T20:09:15Z2024-07-16T20:09:15Z2024-07-08https://repositorio.unal.edu.co/handle/unal/86481Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, diagramas, fotografíasEn el presente trabajo se estudia la síntesis de catalizadores basados en estructuras de Fe(III)-TiO2 (dióxido de titanio dopado con hierro), obtenidos a partir del mineral natural ilmenita extraída de arenas negras que constituyen un tipo de residuo de la industria minera (de explotación de oro) en la región de El Bagre Antioquia-Colombia. La síntesis se desarrolló mediante la extracción ácida controlada de las especies de titanio-hierro, permitiendo la obtención de catalizadores con diferentes contenidos de hierro. Dichos materiales se estudiaron mediante caracterizaciones, estructurales, superficiales, texturales y morfológicas (DRX, XPS, UV-Vis, TEM, EDX, difracción de electrones, isotermas de adsorción de N2, entre otras). Los resultados indican variaciones importantes en los diferentes sólidos, las cuales son marcadamente relacionables con el desempeño catalítico evaluado. Adicionalmente, se caracterizaron también dos sólidos comerciales (anatasa comercial y Degussa P25), con el objetivo de comparar las diferentes propiedades estudiadas. Los resultados indicaron mejores propiedades texturales y de tamaño de partícula (mayor área y menor tamaño) para la mayoría de los sólidos sintetizados y, de acuerdo al estudio estructural, se evidenció una posible substitución de Fe(III) en la estructura de TiO2 tipo anatasa. Los diferentes catalizadores sintetizados se evaluaron en la reacción de degradación fotocatalítica del ion cianuro (CN-) en medio acuoso, tanto en presencia de luz UV como de luz visible. Los resultados se compararon con las evaluaciones fotocatalíticas de los sólidos de referencia (anatasa comercial y Desgussa P25). Aunque los resultados demostraron una actividad comparable de los sólidos sintetizados con la actividad de la anatasa comercial, e inferior a la del TiO2 Degussa, bajo radiación UV, la actividad catalítica de dichos materiales sintetizados fue superior que la de los sólidos de referencia en presencia de luz visible. Además, los estudios cinéticos realizados mostraron excelente ajuste a la cinética de pseudo-primer orden mediante el modelo de Langmuir-Hinshelwood. Finalmente, se realizó la exploración de diferentes especies químicas involucradas en el mecanismo de reacción para la degradación de cianuro. Para ello, se empleó espectroscopía FTIR en modo de reflectancia difusa, mediante ensayos in situ (método transiente). Dichos experimentos permitieron verificar la desaparición progresiva de cianuro, la aparición de especies transitorias como cianato (CNO-), HCONH2 y NH2OH, entre otras. Adicionalmente, este estudio permitió entender mejor el papel del hierro incorporado en la estructura del TiO2, revelando la participación del Fe(III) estructural en la quimiadsorción del cianuro y su transformación en la superficie. Este resultado junto con aquellos obtenidos para la cinética de reacción, sugieren la participación predominante de un mecanismo tipo Langmuir-Hinshelwood. El presente estudio también permitió comprender mejor la función de los grupos -OH superficiales en el desempeño fotocatalítico de los sólidos. (Texto tomado de la fuente)The present study focuses on the synthesis of catalysts based on structures (iron-doped titanium dioxide), derived from the natural mineral ilmenite extracted from black sands, which constitute a type of waste from the gold mining industry in the El Bagre region of Antioquia, Colombia. The synthesis process involved a controlled acid extraction of titanium-iron species, enabling the production of catalysts with different iron contents. These materials were studied by structural, surface, textural, and morphological characterizations (X-ray diffraction, X-ray photoelectron spectroscopy, UV-Visible spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron diffraction, nitrogen adsorption isotherms, among others). The results revealed significant variations among the different solids, which are closely correlated with the evaluated catalytic performance. Additionally, two commercial solids (commercial anatase and Degussa P25) were also characterized for comparing different properties. The findings indicate superior textural properties (higher surface areas) and lower particle sizes for most of the synthesized solids. Furthermore, based on structural analysis, a potential isomorphic substitution of Fe(III) in the anatase-type TiO2 structure was observed. The synthesized catalysts were assessed in the photocatalytic degradation performance of cyanide (CN-) in aqueous medium, under UV radiation, and also using visible light. The results were compared with the photocatalytic performance of the reference solids (commercial anatase and Degussa P25). The findings demonstrated a comparable photo-activity of the synthesized solids with the commercial anatase and a lower activity than TiO2 Degussa under UV irradiation, but the catalytic photo-activity of these synthesized materials surpassed that of the reference solids under visible light irradiation. On the other hand, the kinetic studies demonstrated an excellent correlation with the Langmuir-Hinshelwood model, using a pseudo-first order approximation. Finally, an exploration of different chemical species involved in the reaction mechanism for cyanide degradation was conducted. For this purpose, diffuse reflectance Fourier-transform infrared (FTIR) spectroscopy was employed by in situ measures (transient method). These experiments allowed the verification of the progressive disappearance of cyanide and the emergence of transient species such as cyanate (CNO-), HCONH2, and NH2OH, among others. Additionally, this study enhanced the understanding of the role of iron incorporated into the TiO2 structure, revealing the participation of structural Fe(III) in the chemisorption and transformation of cyanide on the catalyst surface. This result, and those obtained by the kinetic experiments, suggest the predominant occurrence of the Langmuir-Hinshelwood mechanism. This study also provided a better comprehension on the role of surface -OH groups in the photocatalytic performance of the solids. (Texto tomado de la fuente)El Ministerio de Ciencia y Tecnología a través de la convocatoria 785 de 2017 para doctorados nacionalesDoctoradoDoctor en Ciencias - QuímicaFotocatálisis heterogénea con TiO2220 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::541 - Química física540 - Química y ciencias afines::549 - MineralogíaFotocatálisisNanopartículasCatálisis heterogéneasCianuros -- AnálisisResiduos de la mineríaEspectrofotometríaPhotocatalysisNanoparticlesHeterogeneous catalysisCyanides -- AnalysisWaste miningSpectrophotometryFotocatálisis heterogéneaDióxido de titanioHierroOxidación fotocatalíticaCianuroHeterogenous photocatalysisTitanium dioxideIronPhotocatalytic oxidationCyanideIlmenitaIlmeniteEvaluación de la actividad fotocatalítica de FexOy/TiO2 obtenido a partir de ilmenita proveniente de residuos mineros para la degradación de cianuro disuelto en aguaAssessment of the photocatalytic activity of FexOy/TiO2 synthesized from ilmenite sourced from mining wastes for the degradation of cyanide dissolved waterTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAgency for Toxic Substances and Desease Registry. (2006). Potential for Human Exposure. In Toxicological Profile for Cyanide (pp. 153–199).Ajmal, A., Majeed, I., Malik, R. N., Idriss, H., & Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO 2 based photocatalysts: a comparative overview. RSC Advances, 4(70), 37003. https://doi.org/10.1039/C4RA06658HAli, T., Tripathi, P., Azam, A., Raza, W., Ahmed, A. S., Ahmed, A., & Muneer, M. (2017). Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Materials Research Express, 4(1). https://doi.org/10.1088/2053-1591/aa576dAmat, A. M., Arques, A., Santos-Juanes, L., Silvestre, M., & Vicente, R. (2008). Eliminación de efluentes industriales cianurados. I Simposio Iberoamericano de Ingeniería de Residuos.Amor, C., Marchão, L., Lucas, M. S., & Peres, J. A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020205Anucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10. https://doi.org/10.1016/j.ceja.2022.100262Armaković, S. J., Savanović, M. M., & Armaković, S. (2023). Titanium Dioxide as the Most Used Photocatalyst for Water Purification: An Overview. Catalysts, 13(1). https://doi.org/10.3390/catal13010026Ashley, M., Dixon, M., & Prasad, K. (2014). Relationship between cigarette format and mouth-level exposure to tar and nicotine in smokers of Russian king-size cigarettes. Regulatory Toxicology and Pharmacology, 70(1), 430–437. https://doi.org/10.1016/j.yrtph.2014.08.002Augugliaro, V., Blanco Gálvez, J., Cáceres Vázquez, J., García López, E., Loddo, V., López Muñoz, M. J., Malato Rodríguez, S., Marcì, G., Palmisano, L., Schiavello, M., & Soria Ruiz, J. (1999). Photocatalytic oxidation of cyanide in aqueous TiO 2 suspensions irradiated by sunlight in mild and strong oxidant conditions. Catalysis Today, 54(2–3), 245–253. https://doi.org/10.1016/S0920-5861(99)00186-8Barakat, M. A., & Kumar, R. (2016). Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles. In S. K. Sharma (Ed.), GREEN CHEMISTRY FOR SUSTAINABILITY. Springer. https://doi.org/10.1007/978-3-319-24271-2Barbosa, A. L., & Castro, I. (2012). Photocatalytic cyanide removal using TiO2, FeMoO4/TiO2, and HPMoCu/TiO2 catalysts under simulated solar light and parabolic cylindrical collector reactor. Avances En Ciencias e Ingeniería, 3(4), 69–79.Berger, T., Sterrer, M., Diwald, O., Knözinger, E., Panayotov, D., Thompson, T. L., & Yates, J. T. (2005). Light-induced charge separation in anatase TiO 2 particles. Journal of Physical Chemistry B, 109(13), 6061–6068. https://doi.org/10.1021/jp0404293Bloh, J. Z., & Marschall, R. (2017). Heterogeneous Photoredox Catalysis: Reactions, Materials, and Reaction Engineering. European Journal of Organic Chemistry, 2017(15), 2085–2094. https://doi.org/10.1002/ejoc.201601591Botz, M. M., Mudder, T. I., & Akcil, A. U. (2016). Cyanide Treatment. In Gold Ore Processing. Elsevier B.V. https://doi.org/10.1016/b978-0-444-63658-4.00035-9Braslavsky, S. E., Braun, A. M., Cassano, A. E., Emeline, A. V., Litter, M. I., Palmisano, L., Parmon, V. N., & Serpone, N. (2011). Glossary of terms used in photocatalysis and radiation catalysis (IUPAC recommendations 2011). Pure and Applied Chemistry, 83(4), 931–1014. https://doi.org/10.1351/PAC-REC-09-09-36Bundschuh, J. (2014). Advanced Oxidation Technologies - Sustainable solutions for environmental treatments (M. I. Litter, R. J. Candal, & J. Martín Meichtry, Eds.; Volume 9). CRC Press/Balkema.Cai, Y., & Feng, Y. P. (2016). Review on charge transfer and chemical activity of TiO2: Mechanism and applications. Progress in Surface Science, 91(4), 183–202. https://doi.org/10.1016/j.progsurf.2016.11.001Carriazo, J. G., Ensuncho-Muñoz, A., & Almanza, O. (2014). Electron Paramagnetic Resonance (EPR) Investigation of TiO2-Delaminated Clays. Revista Mexicana de Ingeniería Química, 13(2), 473–481.Carriazo, J. G., Moreno-Forero, M., Molina, R. A., & Moreno, S. (2010). Incorporation of titanium and titanium-iron species inside a smectite-type mineral for photocatalysis. Applied Clay Science, 50(3), 401–408. https://doi.org/10.1016/j.clay.2010.09.007Chernet, T. (1999). Effect of mineralogy and texture in the TiO2 pigment production process of the Tellnes ilmenite concentrate. Mineralogy and Petrology, 67(1–2), 21–32. https://doi.org/10.1007/BF01165113Clara Pinzón Iregui, M., Contreras H, C. M., Uribe Restrepo, M., & clínico, C. (2002). Envenenamiento por cianuro. Revista Colombiana de Psiquiatría, XXXI(4), 271–271. http://www.scielo.org.co/pdf/rcp/v31n4/v31n4a06.pdfDeng, Y., & Zhao, R. (2015). Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Current Pollution Reports, 1(3), 167–176. https://doi.org/10.1007/s40726-015-0015-zDewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M. A. (2017). New perspectives for Advanced Oxidation Processes. Journal of Environmental Management, 195, 93–99. https://doi.org/10.1016/j.jenvman.2017.04.010Duprez, D., & Cavani, F. (2014). Handbook of Advanced Methods and Processes in Oxidation Catalysis. In Handbook of Advanced Methods and Processes in Oxidation Catalysis. IMPERIAL COLLEGE PRESS. https://doi.org/10.1142/p791Emeline, A. V., Ryabchuk, V. K., & Serpone, N. (2005). Dogmas and misconceptions in heterogeneous photocatalysis. Some enlightened reflections. Journal of Physical Chemistry B, 109(39), 18515–18521. https://doi.org/10.1021/jp0523367Environmental Protection Agency. (1976). The Manufacture and Use of Selected Inorganic Cyanides.Frank, S. N., & Bard, A. J. (1977). Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. Journal of Physical Chemistry, 81(15), 1484–1488. https://doi.org/10.1021/j100530a011Friedmann, D. (2022). A General Overview of Heterogeneous Photocatalysis as a Remediation Technology for Wastewaters Containing Pharmaceutical Compounds. Water (Switzerland), 14(21). https://doi.org/10.3390/w14213588Fujishima, A., & Honda, K. (1972). Electrochemical Photolysis of Water at a semiconductor Electrode. Nature, 238, 37–38.Fujishima, A., & Zhang, X. (2006). Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 9(5), 750–760. https://doi.org/10.1016/j.crci.2005.02.055Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001Garzón-Cucaita, V., & Carriazo, J. G. (2022). Óxidos de hierro como catalizadores de procesos tipo Fenton con potencial aplicación en tecnologías de remoción de contaminantes. TecnoLógicas, 25(55), e2393. https://doi.org/10.22430/22565337.2393Gaya, U. I. (2014a). Heterogeneous photocatalysis using inorganic semiconductor solids. In Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. Springer. https://doi.org/10.1007/978-94-007-7775-0Glaze, W. H., Kang, J. W., & Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering, 9(4), 335–352. https://doi.org/10.1080/01919518708552148Haggerty, S. E., & Sautter, V. (1990). Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths. Science, 248(4958), 993–996. https://doi.org/10.1126/science.248.4958.993Henderson, M. A. (2011). A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 66, 185–297. https://doi.org/10.1016/j.surfrep.2011.01.001Hernández-Ramírez, A., & Medina-Ramírez, I. (2015). Photocatalytic Semiconductors. In Photocatalytic Semiconductors: Synthesis, Characterization, and Environmental Applications. https://doi.org/10.1007/978-3-319-10999-2Hoffmann, M. R., Martin, S., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69–96. https://doi.org/10.1021/cr00033a004Howe, R. F., & Gratzel, M. (1985). EPR Observation of Trapped Electrons in Colloidal TiO. J. Phys. Chem, 89, 4495–4499.Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T., & Thurnauer, M. C. (2003). Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO 2 Using EPR. The Journal of Physical Chemistry B, 107(19), 4545–4549. https://doi.org/10.1021/jp0273934Ijadpanah-Saravi, H., Dehestaniathar, S., Khodadadi-Darban, A., Zolfaghari, M., & Saeedzadeh, S. (2016). Photocatalytic decomposition of cyanide in pure water by biphasic titanium dioxide nanoparticles. Desalination and Water Treatment, 57(43), 20503–20510. https://doi.org/10.1080/19443994.2015.1108239Ijadpanah-Saravy, H., Safari, M., Khodadadi-Darban, A., & Rezaei, A. (2014). Synthesis of Titanium Dioxide Nanoparticles for Photocatalytic Degradation of Cyanide in Wastewater. Analytical Letters, 47(10), 1772–1782. https://doi.org/10.1080/00032719.2014.880170Jaszczak, E., Polkowska, Ż., Narkowicz, S., & Namieśnik, J. (2017). Cyanides in the environment—analysis—problems and challenges. Environmental Science and Pollution Research, 24(19), 15929–15948. https://doi.org/10.1007/s11356-017-9081-7Jia, X., & Wang, M. (2018). Surface Photocatalytic Research of Fe -doped TiO2 (001) Based On the First-principles. IOP Conference Series: Materials Science and Engineering, 392(3). https://doi.org/10.1088/1757-899X/392/3/032040Johnson, C. A. (2015). The fate of cyanide in leach wastes at gold mines: An environmental perspective. Applied Geochemistry, 57, 194–205. https://doi.org/10.1016/j.apgeochem.2014.05.023Kanjana, N., Maiaugree, W., & Laokul, P. (2022). Photocatalytic activity of nanocrystalline Fe3+-doped anatase TiO2 hollow spheres in a methylene blue solution under visible-light irradiation. Journal of Materials Science: Materials in Electronics, 33(7), 4659–4680. https://doi.org/10.1007/s10854-021-07654-zKapridaki, C., Xynidis, N., Vazgiouraki, E., Kallithrakas-Kontos, N., & Maravelaki-Kalaitzaki, P. (2019). Characterization of photoactive Fe-TiO2 lime coatings for building protection: The role of Iron content. Materials, 12(11), 1–16. https://doi.org/10.3390/ma12111847Karlsson, H. L. (2004). Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles. Science of the Total Environment, 334–335, 125–132. https://doi.org/10.1016/j.scitotenv.2004.04.061Karunakaran, C., Gomathisankar, P., & Manikandan, G. (2011). Solar photocatalytic detoxification of cyanide by different forms of TiO 2. Korean Journal of Chemical Engineering, 28(5), 1214–1220. https://doi.org/10.1007/s11814-010-0503-1Kerguelen Kerguelen, J. L. (2016). Caracterización y Aprovechamiento de Recursos Minerales en Colas de Terrazas Aluviales del Distrito Bagre-Nechí [Maestría en Recursos Minerales, Universidad Nacional de Colombia]. https://doi.org/10.1109/TDEI.2012.6215089Khan, M. S., Shah, J. A., Riaz, N., Butt, T. A., Khan, A. J., Khalifa, W., Gasmi, H. H., Latifee, E. R., Arshad, M., Al-Naghi, A. A. A., Ul-Hamid, A., Arshad, M., & Bilal, M. (2021). Synthesis and characterization of Fe-Tio2 nanomaterial: Performance evaluation for rb5 decolorization and in vitro antibacterial studies. Nanomaterials, 11(2), 1–19. https://doi.org/10.3390/nano11020436Kianinia, Y., Khalesi, M., Abdollahy, M., Hefter, G., Senanayake, G., Hnedkovsky, L., Khodadadi Darban, A., & Shahbazi, M. (2018). Predicting Cyanide Consumption in Gold Leaching: A Kinetic and Thermodynamic Modeling Approach. Minerals, 8(3), 110. https://doi.org/10.3390/min8030110Kim, S. H., Lee, S. W., Lee, G. M., Lee, B. T., Yun, S. T., & Kim, S. O. (2016). Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate. Chemosphere, 143, 106–114. https://doi.org/10.1016/j.chemosphere.2015.07.006Kirk, R. E., & Othmer, D. F. (2004). Encyclopedia of Chemical Technology (4th Edition, Vol. 5). John Wiley & Sons.Kisch, H. (2013). Semiconductor photocatalysis - Mechanistic and synthetic aspects. Angewandte Chemie - International Edition, 52(3), 812–847. https://doi.org/10.1002/anie.201201200Klein, C., & Hurlbut, C. S. (1997). Manual de Mineralogía (Reverté, Ed.; 4th ed.).Komaraiah, D., Radha, E., Kalarikkal, N., Sivakumar, J., Ramana Reddy, M. V., & Sayanna, R. (2019). Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceramics International, 45(18), 25060–25068. https://doi.org/10.1016/j.ceramint.2019.03.170Kordzadeh-Kermani, V., Schaffie, M., Hashemipour Rafsanjani, H., & Ranjbar, M. (2020). A modified process for leaching of ilmenite and production of TiO2 nanoparticles. Hydrometallurgy, 198(August 2019), 105507. https://doi.org/10.1016/j.hydromet.2020.105507Kruanetr, S., & Wanchanthuek, R. (2017). Studies on preparation and characterization of Fe/TiO2 catalyst in photocatalysis applications. Materials Research Express, 4(7). https://doi.org/10.1088/2053-1591/aa75f2Kumar, S. G., & Rao, K. S. R. K. (2017). Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3and ZnO). Applied Surface Science, 391, 124–148. https://doi.org/10.1016/j.apsusc.2016.07.081Kuyucak, N., & Akcil, A. (2013). Cyanide and removal options from effluents in gold mining and metallurgical processes. Minerals Engineering, 50–51, 13–29. https://doi.org/10.1016/j.mineng.2013.05.027Lamus Molina, C. M. (2005). Mineralogía aplicada al uso y aprovechamiento de las arenas negras (El Bagre, Antioquia) [Maestría en Ingeniería de materiales y Procesos]. Universidad Nacional de Colombia.Linsebigler, A. L., Lu, G., & Yates, J. T. (1995a). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735–758. https://doi.org/10.1021/cr00035a013Linsebigler, A. L., Lu, G., & Yates, J. T. (1995b). Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results. In Chem. Rev (Vol. 95).Liu, B., Zhao, X., Terashima, C., Fujishima, A., & Nakata, K. (2014). Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Physical Chemistry Chemical Physics, 16(19), 8751. https://doi.org/10.1039/c3cp55317eMahendran, V., & Gogate, P. R. (2021). Degradation of Acid Scarlet 3R dye using oxidation strategies involving photocatalysis based on Fe doped TiO2 photocatalyst, ultrasound and hydrogen peroxide. Separation and Purification Technology, 274. https://doi.org/10.1016/j.seppur.2021.119011Mancuso, A., Sacco, O., Vaiano, V., Bonelli, B., Esposito, S., Freyria, F. S., Blangetti, N., & Sannino, D. (2021). Visible light-driven photocatalytic activity and kinetics of fe-doped tio2 prepared by a three-block copolymer templating approach. Materials, 14(11). https://doi.org/10.3390/ma14113105Mendis, A., Thambiliyagodage, C., Ekanayake, G., Liyanaarachchi, H., Jayanetti, M., & Vigneswaran, S. (2023). Fabrication of Naturally Derived Chitosan and Ilmenite Sand-Based TiO2/Fe2O3/Fe-N-Doped Graphitic Carbon Composite for Photocatalytic Degradation of Methylene Blue under Sunlight. Molecules, 28(7). https://doi.org/10.3390/molecules28073154Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042Mimic, O. I., Zhang, Y., Cromack, K. R., Trifunac, A. D., & Thurnauer, M. C. (1993). Trapped Holes on TiO2 Colloids Studied by Electron Paramagnetic Resonance. The Journal of Physical Chemistry, 97(28), 7277–7283.Mishra, A., Verma, V., Khan, A., Kumar, D., Khan, T. S., Amoli, V., & Sinha, A. K. (2023). Waste ilmenite sludge-derived low-cost mesoporous Fe-doped TiO2: A versatile photocatalyst for enhanced visible light photocatalysis without a cocatalyst. Journal of Environmental Chemical Engineering, 11(5). https://doi.org/10.1016/j.jece.2023.110319Mudder, T. I., Michael, M., Botz, P. E., & Smith, A. (2001). Chemistry and Treatment of Cyanidation Wastes (T. I. Mudder, M. M. Botz, & A. Smith, Eds.; Second). Mining Journal Books Ltd.Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001Nolan, N. T., Seery, M. K., & Pillai, S. C. (2009). Spectroscopic investigation of the anatase-to-rutile transformation of sol-gel-synthesized TiO2 photocatalysts. Journal of Physical Chemistry C, 113(36), 16151–16157. https://doi.org/10.1021/jp904358gOhtani, B. (2011). Photocatalysis by inorganic solid materials: Revisiting its definition, concepts, and experimental procedures. In Advances in Inorganic Chemistry (Vol. 63). https://doi.org/10.1016/B978-0-12-385904-4.00001-9Ohtani, B. (2010). Photocatalysis A to Z-What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157–178. https://doi.org/10.1016/j.jphotochemrev.2011.02.001Ohtani, B. (2014). Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics. Phys. Chem. Chem. Phys., 16(5), 1788–1797. https://doi.org/10.1039/C3CP53653JParedes-Quevedo, L. C., González-Caicedo, C., Torres-Luna, J. A., & Carriazo, J. G. (2021). Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay. Water, Air, and Soil Pollution, 232(1). https://doi.org/10.1007/s11270-020-04968-2Pedraza-Avella, J. A. (2009). Oxidación fotocatalítica de cianuro con nanopartículas de óxido de titanio(IV) dopado con metales de transición sintetizadas por el método sol-gel [Doctoral Thesis]. Universidad Industrial de Santander.Pedraza-Avella, J. A., Acevedo-Peña, P., & Pedraza-Rosas, J. E. (2008). Photocatalytic oxidation of cyanide on TiO2: An electrochemical approach. Catalysis Today, 133–135(1–4), 611–618. https://doi.org/10.1016/j.cattod.2007.12.063Peiró, A. M., Colombo, C., Doyle, G., Nelson, J., Mills, A., & Durrant, J. R. (2006). Photochemical reduction of oxygen adsorbed to nanocrystalline TiO2 films: A transient absorption and oxygen scavenging study of different TiO2 preparations. Journal of Physical Chemistry B, 110(46), 23255–23263. https://doi.org/10.1021/jp064591cPelaez, M., Nolan, N. T., Pillai, S. C., Seery, M. K., Falaras, P., Kontos, A. G., Dunlop, P. S. M., Hamilton, J. W. J., Byrne, J. A., O’Shea, K., Entezari, M. H., & Dionysiou, D. D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331–349. https://doi.org/10.1016/j.apcatb.2012.05.036Pinto Rosso, J. M. (2016). Tratamiento fotocatalítico de aguas de cianuración provenientes del proceso de beneficio del oro en una zona minera del sur de Bolívar-Colombia [Ingeniería Ambiental]. Universidad de Córdoba.Pourbaix, M. (1967). Atlas of electrochemical equilibria in aqueous solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 13(4), 471. https://doi.org/10.1016/0022-0728(67)80059-7Putri, R. A., Tursiloadi, S., Nurrahmah, E. F., Liandi, A. R., & Arutanti, O. (2023). Synthesis of TiO2-Based Photocatalyst from Indonesia Ilmenite Ore for Photodegradation of Eriochrome Black-T Dye. Water, Air, and Soil Pollution, 234(8). https://doi.org/10.1007/s11270-023-06584-2Ramírez-Sánchez, I. M., & Bandala, E. R. (2018). Photocatalytic degradation of estriol using iron-doped TiO2 under high and low UV irradiation. Catalysts, 8(12). https://doi.org/10.3390/catal8120625Saida, S., Gorai, D. K., & Kundu, T. K. (2023). A green process for the synthesis of porous TiO 2 from ilmenite ore using molten salt alkali decomposition for photocatalytic applications . RSC Sustainability, 1(3), 592–598. https://doi.org/10.1039/d3su00009eSalvador, P. (1985). Kinetic Approach to the Photocurrent Transients in Water Photoelectrolysis at n-TiO, Electrodes. 1. Analysis of the Ratio of the Instantaneous to Steady-State Photocurrent. The Journal of Physical Chemistry, 89(18), 3863–3869.Salvador, P., & Gutierrez, C. (1984). On the Nature of Surface States Involved in the Photo- and Electroluminescensce Spectra of n-TiO2 Electrodes. The Journal of Physical Chemistry, 88(16), 3696–3698.Sasikumar, C., Rao, D. S., Srikanth, S., Mukhopadhyay, N. K., & Mehrotra, S. P. (2007). Dissolution studies of mechanically activated Manavalakurichi ilmenite with HCl and H2SO4. Hydrometallurgy, 88(1–4), 154–169. https://doi.org/10.1016/j.hydromet.2007.03.013Serpone, N., & Salinaro, A. (1999). Terminology, Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis. Part I: Suggested Protocol. Pure & Appl. Chem, 71(2), 1996–1999.Shao, S., Yu, J., Love, J. B., & Fan, X. (2021). An economic approach to produce iron doped TiO2 nanorods from ilmenite for photocatalytic applications. Journal of Alloys and Compounds, 858. https://doi.org/10.1016/j.jallcom.2020.158388Shayegan, Z., Haghighat, F., & Lee, C. S. (2021). Anatase/brookite biphasic surface fluorinated Fe–TiO2 photocatalysts to enhance photocatalytic removal of VOCs under visible and UV light. Journal of Cleaner Production, 287, 125462. https://doi.org/10.1016/j.jclepro.2020.125462Shirzad Siboni, M., Samarghandi, M. R., Yang, J. K., & Lee, S. M. (2011). Photocatalytic removal of cyanide with illuminated TiO2. Water Science and Technology, 64(7), 1383–1387. https://doi.org/10.2166/wst.2011.738Smith, Y. R., Joseph Antony Raj, K., Ravi Subramanian, V., & Viswanathan, B. (2010). Sulfated Fe2O3-TiO2 synthesized from ilmenite ore: A visible light active photocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367(1–3), 140–147. https://doi.org/10.1016/j.colsurfa.2010.07.001Sohrabi, S., & Akhlaghian, F. (2016). Surface investigation and catalytic activity of iron-modified TiO2. Journal of Nanostructure in Chemistry, 6(1), 93–102. https://doi.org/10.1007/s40097-015-0182-xSolano Pizarro, R. A., & Herrera Barros, A. P. (2020). Cypermethrin elimination using Fe-TiO2 nanoparticles supported on coconut palm spathe in a solar flat plate photoreactor. Advanced Composites Letters, 28, 1–13. https://doi.org/10.1177/2633366X20906164Sood, S., Umar, A., Mehta, S. K., & Kansal, S. K. (2015). Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. Journal of Colloid and Interface Science, 450, 213–223. https://doi.org/10.1016/j.jcis.2015.03.018Resolución 631 de 2015, Pub. L. No. 631, 174 (2015).Stefan, M. I. (2018). Advanced Oxidation Processes for Water Treatment: Fundamentals and applications (M. I. Stefan, Ed.; First). IWA Publishing.Szczepankiewicz, S. H., Colussi, A. J., & Hoffmann, M. R. (2000). Infrared spectra of photoinduced species on hydroxylated titania surfaces. Journal of Physical Chemistry B, 104(42), 9842–9850. https://doi.org/10.1021/jp0007890Tarasevich, M. R., Sadkowski, A., & Yeager, E. (1983). Oxygen Electrochemistry. In B. E. Conway, J. O. Bockris, E. Yeager, S. U. M. Khan, & R. E. White (Eds.), Comprehensive Treatise of Electrochemistry (1st edition, pp. 301–398). Plenum Press.Taylor, J., Roney, N., Harper, C., Fransen, M. E., & Swarts, S. (2006). Toxicological Profile for Cyanide. In A. Gregory, M. Jacobs, & J. Withey (Eds.), ATSDR’s Toxicological Profiles (Issue July). Agency for Toxic Substances and Disease Registry (ATSDR). https://doi.org/10.1201/9781420061888_ch68Tchobanoglous, G., Burton, F. L., & David Stensel, H. (2003). Wastewater Engineering: An Overview. In G. Tchobanoglous, F. L. Burton, & H. David Stensel (Eds.), Wastewater Engineering Treatment and Reuse (Fourth Edition). McGraw-HIll.Thambiliyagodage, C., Usgodaarachchi, L., Mirihana, S., Wijesekera, R., Lansakara, B., & Bakker, M. (2021). Efficient photodegradation activity of α-Fe2O3/Fe2TiO5/TiO2 and Fe2TiO5/TiO2 nanocomposites synthesized from natural ilmenite. Results in Materials, 12, 100219. https://doi.org/10.1016/j.rinma.2021.100219Thambiliyagodage, C., Wijesekera, R., & Bakker, M. G. (2021). Leaching of ilmenite to produce titanium based materials: a review. Discover Materials, 1(1). https://doi.org/10.1007/s43939-021-00020-0Torres-Luna, J. A., Giraldo-Gómez, G. I., Sanabria-González, N. R., & Carriazo, J. G. (2019). Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite. Bulletin of Materials Science, 42(4). https://doi.org/10.1007/s12034-019-1817-1Torres-Luna, J. A., Sanabria, N. R., & Carriazo, J. G. (2016). Powders of iron(III)-doped titanium dioxide obtained by direct way from a natural ilmenite. Powder Technology, 302, 254–260. https://doi.org/10.1016/j.powtec.2016.08.056Turchi, C. S., & Ollis, D. F. (1990). Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J.Calatysis, 122, 178–192. https://doi.org/10.1016/0021-9517(90)90269-PValero-Romero, M. J., Santaclara, J. G., Oar-Arteta, L., van Koppen, L., Osadchii, D. Y., Gascon, J., & Kapteijn, F. (2019). Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis. Chemical Engineering Journal, 360, 75–88. https://doi.org/10.1016/j.cej.2018.11.132Wang, H., Li, X., Zhao, X., Li, C., Song, X., Zhang, P., & Huo, P. (2022). A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chinese Journal of Catalysis, 43(2), 178–214. https://doi.org/10.1016/S1872-2067(21)63910-4Welham, N. J., & Williams, J. S. (1999). Carbothermic Reduction of Ilmenite (FeTiO3) and Rutile (TiO2). Metallurgical and Materials Transactions B, 30B, 1075–1081.Wilson, N. C., Muscat, J., Mkhonto, D., Ngoepe, P. E., & Harrison, N. M. (2005). Structure and properties of ilmenite from first principles. Physical Review B - Condensed Matter and Materials Physics, 71(7), 075202–1, 075202–075209. https://doi.org/10.1103/PhysRevB.71.075202Yao, X., Jin, H., Liu, C., & Chuang, S. S. C. (2020). TiO2-based photocatalytic conversion processes: insights from in situ infrared spectroscopy. In Current Developments in Photocatalysis and Photocatalytic Materials (Issue C). Elsevier Inc. https://doi.org/10.1016/b978-0-12-819000-5.00005-9Yoshihara, T., Katoh, R., Furube, A., Tamaki, Y., Murai, M., Hara, K., Murata, S., Arakawa, H., & Tachiya, M. (2004). Identification of Reactive Species in Photoexcited Nanocrystalline TiO2 Films by Wide-Wavelength-Range (400-2500 nm) Transient Absorption Spectroscopy. Journal of Physical Chemistry B, 108(12), 3817–3823. https://doi.org/10.1021/jp031305dZeng, G., Zhang, Q., Liu, Y., Zhang, S., & Guo, J. (2019). Preparation of TiO2 and Fe-TiO2 with an impinging stream-rotating packed bed by the precipitation method for the photodegradation of gaseous toluene. Nanomaterials, 9(8). https://doi.org/10.3390/nano9081173Zhang, C., & Lindan, P. J. D. (2003). Multilayer water adsorption on rutile TiO2(110): A first-principles study. Journal of Chemical Physics, 118(10), 4620–4630. https://doi.org/10.1063/1.1543983Abidov, A., Allabergenov, B., Lee, J., Jeon, H.-W., Jeong, S.-W., & Kim, S. (2013). X-Ray Photoelectron Spectroscopy Characterization of Fe Doped TiO2 Photocatalyst. International Journal of Materials, Mechanics and Manufacturing, February 2016, 294–296. https://doi.org/10.7763/ijmmm.2013.v1.63Barbosa López, A. L., & Castro, I. M. (2020). Niobium-Titanium-Based Photocatalysts: Its Potentials for Free Cyanide Oxidation in Residual Aqueous Effluent. Frontiers in Chemistry, 8(March). https://doi.org/10.3389/fchem.2020.00099Baumanis, C., Bloh, J. Z., Dillert, R., & Bahnemann, D. W. (2011). Hematite photocatalysis: Dechlorination of 2,6-dichloroindophenol and oxidation of water. Journal of Physical Chemistry C, 115(51), 25442–25450. https://doi.org/10.1021/jp210279rCardona Castaño, A. L., & Echeverri Pineda, J. A. (1996). Recuperación de Minerales Pesados a partir de Arenas Negras Aluviales [Trabajo de grado]. Universidad Nacional de Colombia.Castillo, J., Rodriguez, F., López-Malo, A., Sanchez-Mora, E., Quiroz, M., & Bandala, E. (2015). Synthesis, Structural Characterization and Photocatalytic Activity of Iron-Doped Titanium Dioxide Nanopowders. Journal of Technology Innovations in Renewable Energy, 4(1), 1–9. https://doi.org/10.6000/1929-6002.2015.04.01.1Chen, D., Jiang, Z., Geng, J., Wang, Q., & Yang, D. (2007). Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Industrial & Engineering Chemistry Research, 46(9), 2741–2746.Chukanov, N. V. (2014). Infrared spectra of mineral species. In Infrared spectra of mineral species: Extended library (Vol. 1). http://link.springer.com/10.1007/978-94-007-7128-4Colmenares, J. C. (2016). Heterogenous Photocatalysis. In J. C. Colmenares & Y.-J. Xu (Eds.), Green Chemistry and Sustainable Technology Series (Vol. 93, Issue 1). Springer. https://doi.org/10.1007/978-3-662-48719-8_7Demeestere, K., Dewulf, J., Ohno, T., Salgado, P. H., & Van Langenhove, H. (2005). Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Applied Catalysis B: Environmental, 61(1–2), 140–149. https://doi.org/10.1016/j.apcatb.2005.04.017Fujishima, A., Rao, T., & Tryk, D. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology. http://www.sciencedirect.com/science/article/pii/S1389556700000022Ganesh, I., Kumar, P., Gupta, A., Sekhar, P., Radha, K., Padmanabham, G., & Sundararajan, G. (2012). Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications. Processing and Application of Ceramics, 6(1), 21–36. https://doi.org/10.2298/pac1201021gGarcía-Muñoz, P., Pliego, G., Zazo, J. A., Bahamonde, A., & Casas, J. A. (2016). Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes. Journal of Environmental Chemical Engineering, 4(1), 542–548. https://doi.org/10.1016/j.jece.2015.11.037Ginting, L. I. B., Manaf, A., Astuti, W., Supriyatna, Y. I., & Bahfie, F. (2023). Study of Titanium Dioxide (TiO2) Extraction Process from Ilmenite Banten. IOP Conference Series: Earth and Environmental Science, 1201(1). https://doi.org/10.1088/1755-1315/1201/1/012092Goswami, P., & Ganguli, J. N. (2012). Evaluating the potential of a new titania precursor for the synthesis of mesoporous Fe-doped titania with enhanced photocatalytic activity. Materials Research Bulletin, 47(8), 2077–2084. https://doi.org/10.1016/j.materresbull.2012.03.037Grzmil, B. U., Grela, D., & Kic, B. (2008). Hydrolysis of titanium sulphate compounds. Chemical Papers, 62(1), 18–25. https://doi.org/10.2478/s11696-007-0074-8Hanaor, D. A. H., & Sorrell, C. C. (2011). Review of the anatase to rutile phase transformation. Journal of Materials Science, 46(4), 855–874. https://doi.org/10.1007/s10853-010-5113-0Hung, W. C., Chen, Y. C., Chu, H., & Tseng, T. K. (2008). Synthesis and characterization of TiO 2 and Fe/TiO 2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane. Applied Surface Science, 255(5 PART 1), 2205–2213. https://doi.org/10.1016/j.apsusc.2008.07.079Ismael, M. (2020). Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles. Journal of Environmental Chemical Engineering, 8(2), 103676. https://doi.org/10.1016/j.jece.2020.103676Jung, S. M., Dupont, O., & Grange, P. (2001). TiO2-SiO2 mixed oxide modified with H2SO4. I. Characterization of the microstructure of metal oxide and sulfate. Applied Catalysis A: General, 208(1–2), 393–401. https://doi.org/10.1016/S0926-860X(00)00737-7Kawahara, T., Ozawa, T., Iwasaki, M., Tada, H., & Ito, S. (2003). Photocatalytic activity of rutile-anatase coupled TiO2 particles prepared by a dissolution-reprecipitation method. Journal of Colloid and Interface Science, 267(2), 377–381. https://doi.org/10.1016/S0021-9797(03)00755-0Khan, M. S., Shah, J. A., Riaz, N., Butt, T. A., Khan, A. J., Khalifa, W., Gasmi, H. H., Latifee, E. R., Arshad, M., Al-Naghi, A. A. A., Ul-Hamid, A., Arshad, M., & Bilal, M. (2021). Synthesis and characterization of Fe-Tio2 nanomaterial: Performance evaluation for rb5 decolorization and in vitro antibacterial studies. Nanomaterials, 11(2), 1–19. https://doi.org/10.3390/nano11020436Kim, M. R., & Woo, S. I. (2006). Poisoning effect of SO2 on the catalytic activity of Au/TiO 2 investigated with XPS and in situ FT-IR. Applied Catalysis A: General, 299(1–2), 52–57. https://doi.org/10.1016/j.apcata.2005.10.030Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41(1–3), 207–219. https://doi.org/10.1016/S0920-5861(98)00050-9López, R., & Gómez, R. (2012). Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO 2: A comparative study. Journal of Sol-Gel Science and Technology, 61(1), 1–7. https://doi.org/10.1007/s10971-011-2582-9Luu, C. L., Nguyen, Q. T., & Ho, S. T. (2010). Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol-gel method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1(1), 1–6. https://doi.org/10.1088/2043-6254/1/1/015008Lv, J.-F., Zheng, Y.-X., Tong, X., Zheng, Y.-M., & Zhang, H.-P. (2017). Mineralogy, physical characterization and magnetic separation performance of a raw ilmenite concentrate for its purification. Russian Journal of Non-Ferrous Metals, 58(2), 101–108. https://doi.org/10.3103/S1067821217020067Mahajan, J., & Jeevanandam, P. (2018). Synthesis of TiO2α-Fe2O3 core-shell heteronanostructures by thermal decomposition approach and their application towards sunlight-driven photodegradation of rhodamine B. New Journal of Chemistry, 42(4), 2616–2626. https://doi.org/10.1039/c7nj04892kMa, J., He, H., & Liu, F. (2015). Applied Catalysis B: Environmental Effect of Fe on the photocatalytic removal of NO x over visible light responsive Fe / TiO 2 catalysts. “Applied Catalysis B, Environmental,” 179(x), 21–28. https://doi.org/10.1016/j.apcatb.2015.05.003MiarAlipour, S., Friedmann, D., Scott, J., & Amal, R. (2018). TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials, 341, 404–423. https://doi.org/10.1016/j.jhazmat.2017.07.070Mineros S.A. (2023). http://www.mineros.com.co/es/institucional/quienes-somosNakamoto, K. (2008). Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry: Sixth Edition. In Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry: Sixth Edition. https://doi.org/10.1002/9780470405840Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N., Kompany, A., Karimipour, M., Mendis, B. G., Poolton, N. R. J., & Šiller, L. (2013). Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol-gel method. Scientia Iranica, 20(3), 1018–1022. https://doi.org/10.1016/j.scient.2013.05.017Noda, L. K., De Almeida, R. M., Gonçalves, N. S., Probst, L. F. D., & Sala, O. (2003). TiO2 with a high sulfate content - Thermogravimetric analysis, determination of acid sites by infrared spectroscopy and catalytic activity. Catalysis Today, 85(1), 69–74. https://doi.org/10.1016/S0920-5861(03)00195-0Ochiai, T., & Fujishima, A. (2012). Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 247–262. https://doi.org/10.1016/j.ultsonch.2016.03.025Ohno, T., Tokieda, K., Higashida, S., & Matsumura, M. (2003). Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A: General, 244(2), 383–391. https://doi.org/10.1016/S0926-860X(02)00610-5Parrino, F., Loddo, V., Augugliaro, V., Camera-Roda, G., Palmisano, G., Palmisano, L., & Yurdakal, S. (2019). Heterogeneous photocatalysis: guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity. Catalysis Reviews - Science and Engineering, 61(2), 163–213. https://doi.org/10.1080/01614940.2018.1546445Sasikumar, C., Rao, D. S., Srikanth, S., Ravikumar, B., Mukhopadhyay, N. K., & Mehrotra, S. P. (2004). Effect of mechanical activation on the kinetics of sulfuric acid leaching of beach sand ilmenite from Orissa, india. Hydrometallurgy, 75(1–4), 189–204. https://doi.org/10.1016/j.hydromet.2004.08.001Shao, S., Yu, J., Love, J. B., & Fan, X. (2021). An economic approach to produce iron doped TiO2 nanorods from ilmenite for photocatalytic applications. Journal of Alloys and Compounds, 858. https://doi.org/10.1016/j.jallcom.2020.158388Shard, A. G. (2014). Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X-rays. Surface and Interface Analysis, 46(3), 175–185. https://doi.org/10.1002/sia.5406Solano Pizarro, R. A., & Herrera Barros, A. P. (2020). Cypermethrin elimination using Fe-TiO2 nanoparticles supported on coconut palm spathe in a solar flat plate photoreactor. Advanced Composites Letters, 28, 1–13. https://doi.org/10.1177/2633366X20906164Stuart, B. H. (2005). Infrared Spectroscopy: Fundamentals and Applications. In Infrared Spectroscopy: Fundamentals and Applications. https://doi.org/10.1002/0470011149Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Stat. Sol., 15, 627–637.Thambiliyagodage, C., Usgodaarachchi, L., Mirihana, S., Wijesekera, R., Lansakara, B., & Bakker, M. (2021). Efficient photodegradation activity of α-Fe2O3/Fe2TiO5/TiO2 and Fe2TiO5/TiO2 nanocomposites synthesized from natural ilmenite. Results in Materials, 12, 100219. https://doi.org/10.1016/j.rinma.2021.100219Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117Tian, C., Huang, S., & Yang, Y. (2013). Anatase TiO2 white pigment production from unenriched industrial titanyl sulfate solution via short sulfate process. Dyes and Pigments, 96(2), 609–613. https://doi.org/10.1016/j.dyepig.2012.09.016Tran, C. Van, Nguyen, P. T. H., Nguyen, D. A., Le, B. T., Truong, T. N., & La, D. D. (2018). Facile fabrication and characterizations of nanostructured Fe2O3-TiO2 composite from Ilmenite ore. International Journal of Advanced Engineering, Management and Science, 4(7), 574–578. https://doi.org/10.22161/ijaems.4.7.11Wang, Q., Yang, C., Zhang, G., Hu, L., & Wang, P. (2017). Photocatalytic Fe-doped TiO2/PSF composite UF membranes: Characterization and performance on BPA removal under visible-light irradiation. Chemical Engineering Journal, 319, 39–47. https://doi.org/10.1016/j.cej.2017.02.145Wang, X., Yu, J. C., Liu, P., Wang, X., Su, W., & Fu, X. (2006). Probing of photocatalytic surface sites on SO42-/ TiO2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption. Journal of Photochemistry and Photobiology A: Chemistry, 179(3), 339–347. https://doi.org/10.1016/j.jphotochem.2005.09.007Wen, L., Liu, B., Zhao, X., Nakata, K., Murakami, T., & Fujishima, A. (2012). Synthesis, characterization, and photocatalysis of Fe-doped TiO 2: A combined experimental and theoretical study. International Journal of Photoenergy, 2012. https://doi.org/10.1155/2012/368750Wu, Z., Guo, K., Cao, S., Yao, W., & Piao, L. (2020). Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy. Nano Research, 13(2), 551–556. https://doi.org/10.1007/s12274-020-2650-yYang, X., Cao, C., Hohn, K., Erickson, L., Maghirang, R., Hamal, D., & Klabunde, K. (2007). Highly visible-light active C- and V-doped TiO2for degradation of acetaldehyde. Journal of Catalysis, 252(2), 296–302. https://doi.org/10.1016/j.jcat.2007.09.014Zhu, L., Lu, Q., Lv, L., Wang, Y., Hu, Y., Deng, Z., Lou, Z., Hou, Y., & Teng, F. (2017). Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Advances, 7(33), 20084–20092. https://doi.org/10.1039/c7ra00134gAmerican Public Health Association, American Water Works Association, & Water Environment Federation. (1999). Part 4000 Inorganic nonmetallic constituents. In Standard Methods for the Examination of Water and Wastewater (p. 733).Augugliaro, V., Loddo, V., Marcì, G., Palmisano, L., & López-Muñoz, M. J. (1997). Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions. Journal of Catalysis, 166(2), 272–283. https://doi.org/10.1006/jcat.1997.1496Byrne, C., Subramanian, G., & Pillai, S. C. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 6(3), 3531–3555. https://doi.org/10.1016/j.jece.2017.07.080Castillo-Rojas, S. (2007). Actinometría: Determinación de la Intensidad de una Lámpara de UV Utilizando Oxalato Férrico. In INFORME TÉCNICO (Vol. 01).Chiang, K., Amal, R., & Tran, T. (2003). Photocatalytic oxidation of cyanide: Kinetic and mechanistic studies. Journal of Molecular Catalysis A: Chemical, 193(1–2), 285–297. https://doi.org/10.1016/S1381-1169(02)00512-5Collado, L., García-Tecedor, M., Gomez-Mendoza, M., Pizarro, A. H., Oropeza, F. E., Liras, M., & de la Peña O’Shea, V. A. (2023). Unravelling charge dynamic effects in photocatalytic CO2 reduction over TiO2: Anatase vs P25. Catalysis Today, 114279. https://doi.org/10.1016/j.cattod.2023.114279Goodarzvand Chegini, Z., Hassani, A. H., Torabian, A., & Borghei, S. M. (2020). Comparing the efficacy of catalytic ozonation and photocatalytical degradation of cyanide in industrial wastewater using ACF-TiO2: catalyst characterisation, degradation kinetics, and degradation mechanism. International Journal of Environmental Analytical Chemistry, 102(13), 1–21. https://doi.org/10.1080/03067319.2020.1762874Hatchard, C. G., & Parker, C. A. (1956). A New Sensitive Chemical Actinometer. II. Potassium Ferrioxalate as a Standard Chemical Actinometer. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 235(1203), 518–536. https://doi.org/10.1098/rspa.1956.0102Jing, C., Meng, X., Liu, S., Baidas, S., Patraju, R., Christodoulatos, C., & Korfiatis, G. P. (2005). Surface complexation of organic arsenic on nanocrystalline titanium oxide. Journal of Colloid and Interface Science, 290(1), 14–21. https://doi.org/10.1016/j.jcis.2005.04.019Kandiel, T. A., Dillert, R., Robben, L., & Bahnemann, D. W. (2011). Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catalysis Today, 161(1), 196–201. https://doi.org/10.1016/j.cattod.2010.08.012Koohestani, H. (2019). Photocatalytic removal of cyanide and Cr(IV) from wastewater in the presence of each other by using TiO2 /UV. Micro and Nano Letters, 14(1), 45–50. https://doi.org/10.1049/mnl.2018.5170Kumar, S. G., & Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. Journal of Physical Chemistry A, 115, 13211–13241. https://doi.org/10.1021/jp204364aMediavilla, J. J. V., Perez, B. F., De Cordoba, M. C. F., Espina, J. A., & Ania, C. O. (2019). Photochemical degradation of cyanides and thiocyanates from an industrial wastewater. Molecules, 24(7), 2–3. https://doi.org/10.3390/molecules24071373Muñoz-Batista, M. J., Kubacka, A., Hungría, A. B., & Fernández-García, M. (2015). Heterogeneous photocatalysis: Light-matter interaction and chemical effects in quantum efficiency calculations. Journal of Catalysis, 330, 154–166. https://doi.org/10.1016/j.jcat.2015.06.021Pala, A., Politi, R. R., Kurşun, G., Erol, M., Bakal, F., Öner, G., & Çelik, E. (2015). Photocatalytic degradation of cyanide in wastewater using new generated nano-thin film photocatalyst. Surface and Coatings Technology, 271, 207–216. https://doi.org/10.1016/j.surfcoat.2014.12.032Serpone, N. (1997). Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 104(1–3), 1–12. https://doi.org/10.1016/S1010-6030(96)04538-8Serpone, N., Sauvé, G., Koch, R., Tahiri, H., Pichat, P., Piccinini, P., Pelizzetti, E., & Hidaka, H. (1996). Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: Relative photonic efficiencies ζr. Journal of Photochemistry and Photobiology A: Chemistry, 94(2–3), 191–203. https://doi.org/10.1016/1010-6030(95)04223-7Talwar, S., Sangal, V. K., & Verma, A. K. (2019). In-situ dual effect of novel Fe-TiO2 composite for the degradation of phenazone. Separation and Purification Technology, 211, 391–400. https://doi.org/10.1016/j.seppur.2018.10.007Wang, C., Bahnemann, D. W., & Dohrmann, J. K. (2001). Determination of photonic efficiency and quantum yield of formaldehyde formation in the presence of various TiO2 photocatalysts. Water Science and Technology, 44(5), 279–286. http://iwaponline.com/wst/article-pdf/44/5/279/430415/279.pdfZeng, M. (2013). Influence of TiO 2 Surface Properties on Water Pollution Treatment and Photocatalytic Activity. Bulletin of the Korean Chemical Society, 34(3), 953–956. https://doi.org/10.5012/bkcs.2013.34.3.953Arai, H., & Tomnaga, H. (1976). An Infrared Study of Nitric Oxide Adsorbed on Rhodium-Alumina Catalyst. Journal of Catalysis, 43, 131–142.Armaroli, T., Bécue, T., & Gautier, S. (2004). Diffuse reflection infrared spectroscopy (DRIFTS): Application to the in situ analysis of catalysts. Oil and Gas Science and Technology, 59(2), 215–237. https://doi.org/10.2516/ogst:2004016Ashley, K., Feldhelm, D. L., Parry, D. B., Samant, M. G., & Philpott, M. R. (1994). Infrared Spectroelectrochemical Study of Cyanide Adsorption and Reactions at bPlatinum Electrodes in Aqueous Perchlorate Electrolyte.Ashley, K., Weinert, F., & Feldheim, D. L. (1991). Infrared Spectroscopy to Probe the Electrochemical Double Layer. Electrochimica Acta, 36(11/12), 1863–1868.Ashley, K., Weinert, F., Samant, M. G., Seki, H., & Philpott, M. R. (1991). Infrared spectroelectrochemical study of cyanide adsorption on palladium surfaces. Journal of Physical Chemistry, 95(19), 7409–7414. https://doi.org/10.1021/j100172a055Bamwenda, G. R., Ogata, A., Obuchi, A., Oi, J., Mizuno, K., & Skrzypek, J. (1995). Selective reduction of nitric oxide with propene over platinum-group based catalysts: Studies of surface species and catalytic activity. Applied Catalysis B: Environmental, 6, 311–323.Behar, D. (1972). Esr Parameters of Intermediates in the Radiolysis of Aqueous Solutions of HCN, CN-, and HCONHZa HC( H)=h. The Journal of Physical Chemistry, 76(26). https://doi.org/10.4Behar, D. (1974). Pulse Radiolysis Study of Aqueous Hydrogen Cyanide and Cyanide Solutions. The Journal of Physical Chemistry, 78(26), 2660–2663.Berger Paulissen, V., & Korzeniewski, C. (1992). Infrared Spectroscopy as a Probe of the Adsorption and Electrooxidation of a Cyanide Monolayer at Platinum under Aqueous Electrochemical Conditions. J. Phys. Chem, 96, 4563–4567.Brown, W. A., & King, D. A. (2000). NO Chemisorption and Reactions on Metal Surfaces: A New Perspective. Journal of Physical Chemistry B, 104(12), 2578–2595. https://doi.org/10.1021/jp9930907Busca, G., Lamotte, J., Lavalley, J.-C., & Lorenzelli, V. (1987). FT-IR Study of the Adsorption and Transformation of Formaldehyde on Oxide Surfaces. J. Am. Chem. SOC, 109, 5197–5202.Captain, D. K., & Amiridis, M. D. (1999). In situ FTIR studies of the selective catalytic reduction of NO by C3H6 over Pt/Al2O3. Journal of Catalysis, 184(2), 377–389. https://doi.org/10.1006/jcat.1999.2463Chuang, C. C., Wu, W. C., Lee, M. X., & Lin, J. L. (2000). Adsorption and photochemistry of CH3CN and CH3CONH2 on powdered TiO2. Physical Chemistry Chemical Physics, 2(17), 3877–3882. https://doi.org/10.1039/b003227lCoates, J. (2000). Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry (R.A. Meyer, pp. 10815–10837). John Wiley & Sons Ltd. https://doi.org/10.1097/00010694-197107000-00005Corrigan, D. S., & Weaver, M. J. (1986). Coverage-dependent orientation of adsorbates as probed by potential-difference infrared spectroscopy: Azide, cyanate, and thiocyanate at silver electrodes. Journal of Physical Chemistry, 90(21), 5300–5306. https://doi.org/10.1021/j100412a079Crowleyt, J. N., & Sodeau, J. R. (1989). Reaction between Hydrocyanic Acid and O('D,) or O(3P) Oxygen Atoms in Low-Temperature Matrices. In J. Phys. Chem (Vol. 93, pp. 3100–3103).Demyk, K., Dartois, E., D’hendecourt, L., Jourdain De Muizon, M., Heras, A. M., & Breitfellner, M. (1998). Laboratory identification of the 4.62µm solid state absorption band in the ISO-SWS spectrum of RAFGL 7009S. Astron. Astrophys, 339, 553–560.Doménech, J., & Peral, J. (1988). Removal of Toxic Cyanide from Water by Heterogeneous Photocatalytic Oxidation over ZnO. Solar Energy, 41(1), 55–59.Dows, D. A., Haim, A., & Wilmarth, W. K. (1961). Infra-red spectroscopic detection of bridging cyanide groups. Journal of Inorganic and Nuclear Chemistry, 21(1–2), 33–37. https://doi.org/10.1016/0022-1902(61)80408-9Ebbesen, S. D., Mojet, B. L., & Lefferts, L. (2008). In Situ attenuated total reflection infrared (ATR-IR) study of the adsorption of NO2-, NH2OH, and NH 4+ on Pd/Al2O3 and Pt/Al 2O3. Langmuir, 24(3), 869–879. https://doi.org/10.1021/la7027725Finos, G., Collins, S., Blanco, G., Del Rio, E., Cíes, J. M., Bernal, S., & Bonivardi, A. (2012). Infrared spectroscopic study of carbon dioxide adsorption on the surface of cerium-gallium mixed oxides. Catalysis Today, 180(1), 9–18. https://doi.org/10.1016/j.cattod.2011.04.054Freund, H. J., & Roberts, M. W. (1996). Surface chemistry of carbon dioxide. Science Reports, 25, 225–273.Giguère, P. A., & Liu, J. D. (1952). Infrared Spectrum, Molecular Structure, and Thermodynamic Functions of Hydroxylamine. Canadian Journal of Chemistry, 30, 948–962.Griffith, W. P. (1975). Cyanide complexes of the early transition ketals (Groups IVA-VlIA). Coordination Chemistry Reviews, 17, 177–247.Grim, R. J. A., & Greenberg, J. M. (1987). Ions in grain mantles: The 4.62 micron absorbation by OCN- in W33A. The Astrophysical Journal, 321, L91–L96.Guzman, F., & Chuang, S. S. C. (2010). Tracing the reaction steps involving oxygen and IR observable species in ethanol photocatalytic oxidation on TiO2. Journal of the American Chemical Society, 132(5), 1502–1503. https://doi.org/10.1021/ja907256xHadjiivanov, K. I. (2000). Identification of neutral and charged NxOy surface species by IR spectroscopy. Catalysis Reviews - Science and Engineering, 42(1–2), 71–144. https://doi.org/10.1081/CR-100100260Hadjiivanov, K., & Knözinger, H. (2000). Species formed after NO adsorption and NO + O2 co-adsorption on TiO2: An FTIR spectroscopic study. Physical Chemistry Chemical Physics, 2(12), 2803–2806. https://doi.org/10.1039/b002065fHanusa, T. P. (2011). Cyanide Complexes of the Transition MetalsBased in part on the article Cyanide Complexes of the Transition Metals by Timothy P. Hanusa & David J. Burkey which appeared in the Encyclopedia of Inorganic Chemistry, First Edition . In Encyclopedia of Inorganic and Bioinorganic Chemistry (pp. 1–11). https://doi.org/10.1002/9781119951438.eibc0055Henderson, J. I., Feng, S., Bein, T., & Kubiak, C. P. (2000). Adsorption of diisocyanides on gold. Langmuir, 16(15), 6183–6187. https://doi.org/10.1021/la9906323Hofmann, J. P. (2021). In Situ Spectroscopy for Mechanistic Studies in Semiconductor Photocatalysis. Heterogeneous Photocatalysis, 51–75. https://doi.org/10.1002/9783527815296.ch3Isapour, G., Wang, A., Han, J., Feng, Y., Grönbeck, H., Creaser, D., Olsson, L., Skoglundh, M., & Härelind, H. (2022). In situ DRIFT studies on N2O formation over Cu-functionalized zeolites during ammonia-SCR. Catalysis Science and Technology, 12(12), 3921–3936. https://doi.org/10.1039/d2cy00247gIsmail, Z. K., Hauge, R. H., & Margrave, J. L. (1973). Infrared spectra of matrix-isolated sodium and potassium cyanides. Journal of Molecular Spectroscopy, 45(2), 304–315. https://doi.org/10.1016/0022-2852(73)90163-XIwata, Y., Koseki, H., & Hosoya, F. (2003). Study on decomposition of hydroxylamine/water solution. Journal of Loss Prevention in the Process Industries, 16(1), 41–53. https://doi.org/10.1016/S0950-4230(02)00072-4Jannusch, B., & Mansfeldt, T. (2002). Charakterisierung von Cyaniden in Böden und industriellen Abfällen mit der Fourier-Transformations-Infrarot-Spektrometrie. UWSF-Z Umweltchem Ökotox, 14(2), 90–95.Jeantelot, G., Ould-Chikh, S., Sofack-Kreutzer, J., Abou-Hamad, E., Anjum, D. H., Lopatin, S., Harb, M., Cavallo, L., & Basset, J. M. (2018). Morphology control of anatase TiO2 for well-defined surface chemistry. Physical Chemistry Chemical Physics, 20(21), 14362–14373. https://doi.org/10.1039/c8cp01983eJebaraj, A. J. J., De Godoi, D. R. M., & Scherson, D. (2013). The oxidation of hydroxylamine on Pt-, and Pd-modified Au electrodes in aqueous electrolytes: Electrochemical and in situ spectroscopic studies. Catalysis Today, 202(1), 44–49. https://doi.org/10.1016/j.cattod.2012.03.038Jebaraj, A. J. J., Kumsa, D., & Scherson, D. A. (2012). Oxidation of hydroxylamine on gold electrodes in aqueous electrolytes: Rotating ring-disk and in situ infrared reflection absorption spectroscopy studies. Journal of Physical Chemistry C, 116(12), 6932–6942. https://doi.org/10.1021/jp2104566Jones, L. H., & Penneman, R. A. (1954). Infrared absorption studies of aqueous complex ions: I. Cyanide complexes of Ag(I) and Au (I) in aqueous solution and adsorbed on anion resin. The Journal of Chemical Physics, 22(6), 965–970. https://doi.org/10.1063/1.1740315Kim, C. S., & Korzeniewski, C. (1993). Cyanide adsorbed as a monolayer at the low-index surface planes of platinum metal electrodes: An in situ study by infrared spectroscopy. Journal of Physical Chemistry, 97(38), 9784–9787. https://doi.org/10.1021/j100140a041King, J., Liu, C., & Chuang, S. S. C. (2019). In situ infrared approach to unravel reaction intermediates and pathways on catalyst surfaces. Research on Chemical Intermediates, 45(12), 5831–5847. https://doi.org/10.1007/s11164-019-04004-xKitamura, F., Takahashi, M., & Masatoki, I. (1986). Oxidación of the Cyanide Ion at a Platinum Electrode Studied by Polarization Modulation Infrared Reflection Absorption Spectroscopy. Chemical Physics Letters, 130(3), 181–184.Knoezinger, H., & Krietenbrink, H. (1975). Infrared spectroscopic study of the adsorption of nitriles on aluminium oxide. Fermi resonance in coordinated acetonitrile. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 71, 2421–2430. https://doi.org/10.1039/F19757102421Larkin, P. J. (2017). Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. In Elsevier. https://doi.org/10.1016/C2015-0-00806-1Litke, A., Su, Y., Tranca, I., Weber, T., Hensen, E. J. M., & Hofmann, J. P. (2017). Role of Adsorbed Water on Charge Carrier Dynamics in Photoexcited TiO2. Journal of Physical Chemistry C, 121(13), 7514–7524. https://doi.org/10.1021/acs.jpcc.7b00472Liu, J., Zhang, L., Yao, X., & Chuang, S. S. C. (2017). Photo-generated conduction-band and shallow-trap electrons from UV irradiation on ethanol-adsorbed TiO2 and N-TiO2: an in situ infrared study. Research on Chemical Intermediates, 43(9), 5041–5054. https://doi.org/10.1007/s11164-017-3038-9London, J. W., & Bell, A. T. (1973). Infrared Spectra of Carbon Monoxide, Carbon Dioxide, Nitric Oxide, Nitrogen Dioxide, Nitrous Oxide, and Nitrogen Adsorbed on Copper Oxide. Journal of Catalysis, 31, 32–40.Maki, A., & Decius, J. C. (1958). Infrared spectrum of cyanate ion as a solid solution in a potassium iodide lattice. The Journal of Chemical Physics, 28(5), 1003–1004. https://doi.org/10.1063/1.1744260Maki, A., & Decius, J. C. (1959). Vibrational spectrum of cyanate ion in various alkali halide lattices. The Journal of Chemical Physics, 31(3), 772–782. https://doi.org/10.1063/1.1730461Maki, A. G. (1959). The Infrared Spectrum of Cyanate Ion in Different Environments [Doctor of Philosophy]. In PhD thesis (Vol. 7, Issue June). Oregon State College.Mozzanega, H., Herrmann, J.-M., & Pichat, P. (1979). NH3 Oxidation over UV-Irradiated TiO2 at Room Temperature. The Journal of Physical Chemistry, 83(17), 2251–2255.Muñoz, F., Schuchmann, M. N., Olbrich, G., & Von Sonntag, C. (2000). Common intermediates in the OH-radical-induced oxidation of cyanide and formamide. Journal of the Chemical Society. Perkin Transactions 2, 4, 655–659. https://doi.org/10.1039/a909609dMurphy, K. L., Tysoe, W. T., & Bennett, D. W. (2004). A comparative investigation of aryl isocyanides chemisorbed to palladium and gold: An ATR-IR spectroscopic study. Langmuir, 20(5), 1732–1738. https://doi.org/10.1021/la030293kNakamoto, K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry (K. Nakamoto, Ed.; Sixth). Jon Wiley & Sons, Inc.Nakamoto, K. (2006). Infrared and Raman Spectra of Inorganic and Coordination Compounds. In Handbook of Vibrational Spectroscopy. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470027325.s4104Ngo, A. B., Vuong, T. H., Atia, H., Bentrup, U., Kondratenko, V. A., Kondratenko, E. V., Rabeah, J., Ambruster, U., & Brückner, A. (2020). Effect of Formaldehyde in Selective Catalytic Reduction of NO xby Ammonia (NH3-SCR) on a Commercial V2O5-WO3/TiO2Catalyst under Model Conditions. Environmental Science and Technology, 54(19), 11753–11761. https://doi.org/10.1021/acs.est.0c00884Nuguid, R. J. G., Elsener, M., Ferri, D., & Kröcher, O. (2021a). Operando diffuse reflectance infrared detection of cyanide intermediate species during the reaction of formaldehyde with ammonia over V2O5/WO3-TiO2. Applied Catalysis B: Environmental, 298. https://doi.org/10.1016/j.apcatb.2021.120629Raab, T. (2017). Quick detection and quantification of iron-cyanide complexes using fourier transform infrared spectroscopy. Environmental Pollution, 227, 64–72. https://doi.org/10.1016/j.envpol.2017.04.052Rennert, T., Kaufhold, S., & Mansfeldt, T. (2005). Sorption of iron-cyanide complexes on goethite investigated in long-term experiments. Journal of Plant Nutrition and Soil Science, 168(2), 233–237. https://doi.org/10.1002/jpln.200421602Rennert, T., Kaufhold, S., & Mansfeldt, T. (2007). Identification of iron-cyanide complexes in contaminated soils and wastes by fourier transform infrared spectroscopy. Environmental Science and Technology, 41(15), 5266–5270. https://doi.org/10.1021/es070492gRennert, T., & Mansfeldt, T. (2002). Sorption of Iron-Cyanide Complexes on Goethite in the Presence of Sulfate and Desorption with Phosphate and Chloride. Journal of Environmental Quality, 31(3), 745–751. https://doi.org/10.2134/jeq2002.7450Scholz, F., Schwudke, D., Stösser, R., & Boháček, J. (2001). The interaction of prussian blue and dissolved hexacyanoferrate ions with goethite (α-FeOOH) studied to assess the chemical stability and physical mobility of prussian blue in soils. Ecotoxicology and Environmental Safety, 49(3), 245–254. https://doi.org/10.1006/eesa.2001.2060Solymosi, F., & Bánságl, T. (1979). Infrared Spectroscopic Study of the Adsorption of Isocyanic Acid. The Journal of Physical Chemistry, 83(4), 552–553.Swanson, S. A., McClain, R., Lovejoy, K. S., Alamdari, N. B., Hamilton, J. S., & Scott, J. C. (2005). Self-assembled diisocyanide monolayer films on gold and palladium. Langmuir, 21(11), 5034–5039. https://doi.org/10.1021/la047284bTamm, S., Ingelsten, H. H., & Palmqvist, A. E. C. (2008). On the different roles of isocyanate and cyanide species in propene-SCR over silver/alumina. Journal of Catalysis, 255(2), 304–312. https://doi.org/10.1016/j.jcat.2008.02.019Venkov, T., Hadjiivanov, K., & Klissurski, D. (2002). IR spectroscopy study of NO adsorption and NO + O2 co-adsorption on Al2O3. Physical Chemistry Chemical Physics, 4(11), 2443–2448. https://doi.org/10.1039/b111396hWang, Q., Wei, C., Pérez, L. M., Rogers, W. J., Hall, M. B., & Mannan, M. S. (2010). Thermal decomposition pathways of hydroxylamine: Theoretical investigation on the initial steps. Journal of Physical Chemistry A, 114(34), 9262–9269. https://doi.org/10.1021/jp104144xWijnja, H., & Schulthess, C. P. (2001). Carbonate Adsorption Mechanism on Goethite Studied with ATR-FTIR, DRIFT, and Proton Coadsorption Measurements. Soil Science Society of America Journal, 65(2), 324–330. https://doi.org/10.2136/sssaj2001.652324xWu, W. C., Liao, L. F., Chuang, C. C., & Lin, J. L. (2000). Adsorption and Photooxidation of Formamide on Powdered TiO2. Journal of Catalysis, 195(2), 416–419. https://doi.org/10.1006/jcat.2000.2997Xin, M., Hwang, I. C., & Woo, I. (1997). In situ FTIR study of the selective catalytic reduction of NO on Pt/ZSM-5. Catalysis Today, 3, 1–7.Yu, Z., & Chuang, S. S. C. (2007). In situ IR study of adsorbed species and photogenerated electrons during photocatalytic oxidation of ethanol on TiO2. Journal of Catalysis, 246(1), 118–126. https://doi.org/10.1016/j.jcat.2006.11.022Evaluación de la actividad fotocatalítica de FexOy/TiO2 obtenido a partir de ilmenita proveniente de residuos mineros para la degradación de cianuro disuelto en aguaMincienciasEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86481/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1038405009.2024.pdf1038405009.2024.pdfTesis de Doctorado en Ciencias - Químicaapplication/pdf7287511https://repositorio.unal.edu.co/bitstream/unal/86481/2/1038405009.2024.pdf83a5c9ec033c72d3226f6850d476610cMD52THUMBNAIL1038405009.2024.pdf.jpg1038405009.2024.pdf.jpgGenerated Thumbnailimage/jpeg5484https://repositorio.unal.edu.co/bitstream/unal/86481/3/1038405009.2024.pdf.jpg4548a7f48150e373d1e0b0139b3468d7MD53unal/86481oai:repositorio.unal.edu.co:unal/864812024-07-16 23:05:11.483Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=