Uso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulata
ilustraciones, graficas
- Autores:
-
Pulido Teuta, Juanita
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83893
- Palabra clave:
- 540 - Química y ciencias afines::547 - Química orgánica
Enfermedad de Alzheimer
Alzheimer Disease
Alzheimer
Modelamiento molecular
Nectandra
Lauraceae
Box-Bhencken
Validación
Docking molecular
Validation
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_39ceb68cd4d0fcb9c1921694c6ea577b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83893 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Uso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulata |
dc.title.translated.eng.fl_str_mv |
Use of design of experiments for the optimization of the extraction of phenolic compounds in an active extract of Nectandra Reticulata |
title |
Uso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulata |
spellingShingle |
Uso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulata 540 - Química y ciencias afines::547 - Química orgánica Enfermedad de Alzheimer Alzheimer Disease Alzheimer Modelamiento molecular Nectandra Lauraceae Box-Bhencken Validación Docking molecular Validation |
title_short |
Uso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulata |
title_full |
Uso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulata |
title_fullStr |
Uso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulata |
title_full_unstemmed |
Uso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulata |
title_sort |
Uso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulata |
dc.creator.fl_str_mv |
Pulido Teuta, Juanita |
dc.contributor.advisor.none.fl_str_mv |
Ávila Murillo, Mónica Constanza Narváez Cuenca, Carlos Eduardo |
dc.contributor.author.none.fl_str_mv |
Pulido Teuta, Juanita |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab) |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::547 - Química orgánica |
topic |
540 - Química y ciencias afines::547 - Química orgánica Enfermedad de Alzheimer Alzheimer Disease Alzheimer Modelamiento molecular Nectandra Lauraceae Box-Bhencken Validación Docking molecular Validation |
dc.subject.decs.spa.fl_str_mv |
Enfermedad de Alzheimer |
dc.subject.decs.eng.fl_str_mv |
Alzheimer Disease |
dc.subject.proposal.spa.fl_str_mv |
Alzheimer Modelamiento molecular Nectandra |
dc.subject.proposal.eng.fl_str_mv |
Lauraceae Box-Bhencken Validación Docking molecular Validation |
description |
ilustraciones, graficas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-05-29T16:28:25Z |
dc.date.available.none.fl_str_mv |
2023-05-29T16:28:25Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83893 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83893 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Agalloco, J., DeSantis, P., Grilli, A., & Pavell, A. (2021). Handbook of Validation in Pharmaceutical Processes, Fourth Edition. CRC Press. Aguirre Rueda, D. (2014). Daño inflamatorio y estrés oxidativo en la Enfermedad de Alzheimer. Efecto de polifenoles y cannabinoides. https://roderic.uv.es/handle/10550/37242 Akram, M., & Nawaz, A. (2017). Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regeneration Research, 12(4), 660. https://doi.org/10.4103/1673-5374.205108 Akram, Robert Verpoorte, & Pomahačová, B. (2021). Methods for the analysis of galanthamine and its extraction from laboratory to industrial scale. South African Journal of Botany, 136, 51-64. https://doi.org/10.1016/j.sajb.2020.08.004 Alarcón, M. E. T., Conde, C. G., & Mendez, G. L. (2019). Extracción, caracterización y actividad antioxidante del aceite esencial de Eucalyptus globulus Labill. Revista Cubana de Farmacia, 52(1), Art. 1. http://www.revfarmacia.sld.cu/index.php/far/article/view/266 Alzheimer’s Disease International (ADI). (2021). About Alzheimer’s & Dementia. https://www.alzint.org/about/ Balaguer Beser, Á. A., & Ruiz Fernández, L. Á. (2021). Selección de un modelo de regresión lineal múltiple para el cálculo de la precipitación media en verano. https://riunet.upv.es/handle/10251/167659 Baptista, F. I., Henriques, A. G., Silva, A. M. S., Wiltfang, J., & da Cruz e Silva, O. A. B. (2014). Flavonoids as Therapeutic Compounds Targeting Key Proteins Involved in Alzheimer’s Disease. ACS Chemical Neuroscience, 5(2), 83-92. https://doi.org/10.1021/cn400213r Barbosa-Filho, J. M., Yoshida, M., & Gottlieb, O. R. (1989). Lignoids from Nectandra amazonum and N. glabrescens. Phytochemistry, 28(7), 1991. https://doi.org/10.1016/S0031-9422(00)97906-8 Batiha, G. E.-S., Alkazmi, L. M., Nadwa, E. H., Rashwan, E. K., Beshbishy, A. M., Shaheen, H., & Wasef, L. (2020). Physostigmine: A Plant Alkaloid Isolated from Physostigma venenosum: A Review on Pharmacokinetics, Pharmacological and Toxicological Activities. Journal of Drug Delivery and Therapeutics, 10(1-s), Art. 1-s. https://doi.org/10.22270/jddt.v10i1-s.3866 Benedetti, B., Caponigro, V., & Ardini, F. (2022). Experimental Design Step by Step: A Practical Guide for Beginners. Critical Reviews in Analytical Chemistry, 52(5), 1015-1028. https://doi.org/10.1080/10408347.2020.1848517 Branch, S. K. (2005). Guidelines from the International Conference on Harmonisation (ICH). Journal of Pharmaceutical and Biomedical Analysis, 38(5), 798-805. https://doi.org/10.1016/j.jpba.2005.02.037 Bustos Rangel, A. M. (2021). Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer. https://repositorio.unal.edu.co/handle/unal/80277 Caicedo Díaz, J. A. (2021). Evaluación del potencial terapéutico de agonistas sintéticos y naturales de LXR (GW3965 y Nectandra reticulata) en el modelo murino 3xTg-AD de la enfermedad de Alzheimer. https://repositorio.unal.edu.co/handle/unal/81590 Calabrò, M., Rinaldi, C., Santoro, G., & Crisafulli, C. (2020). The biological pathways of Alzheimer disease: A review. AIMS Neuroscience, 8(1), 86-132. https://doi.org/10.3934/Neuroscience.2021005 Cambier, V., Hance, T., & de Hoffmann, E. (2000). Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry, 53(2), 223-229. https://doi.org/10.1016/S0031-9422(99)00498-7 Castellani, R. J., Rolston, R. K., & Smith, M. A. (2010). Alzheimer Disease. Disease-a-month : DM, 56(9), 484-546. https://doi.org/10.1016/j.disamonth.2010.06.001 Conserva, G. A., Costa-Silva, T. A., Quirós-Guerrero, L. M., Marcourt, L., Wolfender, J.-L., Queiroz, E. F., Tempone, A. G., & Lago, J. H. G. (2021). Kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside from Nectandra oppositifolia releases Ca2+ from intracellular pools of Trypanosoma cruzi affecting the bioenergetics system. Chemico-Biological Interactions, 349, 109661. https://doi.org/10.1016/j.cbi.2021.109661 Dewick, P. M. (2002). Medicinal Natural Products: A Biosynthetic Approach. John Wiley & Sons. Donoso, A. (2003). La enfermedad de Alzheimer. Revista chilena de neuro-psiquiatría, 41, 13-22. https://doi.org/10.4067/S0717-92272003041200003 Duthey, B. (2004). Background Paper 6.11 Alzheimer Disease and other Dementias. Background Paper, 74. Dyer, L. A., & Palmer, A. D. N. (Eds.). (2004). Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution. Springer US. https://doi.org/10.1007/978-0-387-30599-8 Felipe, D. F., Brambilla, L. Z. S., Porto, C., Pilau, E. J., & Cortez, D. A. G. (2014). Phytochemical Analysis of Pfaffia glomerata Inflorescences by LC-ESI-MS/MS. Molecules, 19(10), Art. 10. https://doi.org/10.3390/molecules191015720 Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179-186. https://doi.org/10.1016/j.aca.2007.07.011 Folch, J., Ettcheto, M., Petrov, D., Abad, S., Pedrós, I., Marin, M., Olloquequi, J., & Camins, A. (2018). Una revisión de los avances en la terapéutica de la enfermedad de Alzheimer: Estrategia frente a la proteína β-amiloide. Neurología, 33(1), 47-58. https://doi.org/10.1016/j.nrl.2015.03.012 Fouache, A., Zabaiou, N., De Joussineau, C., Morel, L., Silvente-Poirot, S., Namsi, A., Lizard, G., Poirot, M., Makishima, M., Baron, S., Lobaccaro, J.-M. A., & Trousson, A. (2019). Flavonoids differentially modulate liver X receptors activity-Structure-function relationship analysis. The Journal of Steroid Biochemistry and Molecular Biology, 190, 173-182. https://doi.org/10.1016/j.jsbmb.2019.03.028 Gandy, S., Knopman, D. S., & Sano, M. (2021). Talking points for physicians, patients and caregivers considering Aduhelm® infusion and the accelerated pathway for its approval by the FDA. Molecular Neurodegeneration, 16(1), 74. https://doi.org/10.1186/s13024-021-00490-z Garcez, F. R., Garcez, W. S., Martins, M., & Cruz, A. C. (1999). A Bioactive Lactone from Nectandra gardneri. Planta Medica, 65(8), 775-775. https://doi.org/10.1055/s-2006-960867 García, I., Ortiz, M. C., Sarabia, L., & Aldama, J. M. (2007). Validation of an analytical method to determine sulfamides in kidney by HPLC-DAD and PARAFAC2 with first-order derivative chromatograms. Analytica Chimica Acta, 587(2), 222-234. https://doi.org/10.1016/j.aca.2007.01.054 Geng, P., Sun, J., Zhang, R., He, J., & Abliz, Z. (2009). An investigation of the fragmentation differences of isomeric flavonol-O-glycosides under different collision-induced dissociation based mass spectrometry. Rapid Communications in Mass Spectrometry, 23(10), 1519-1524. https://doi.org/10.1002/rcm.4021 González Villa, Á. A. (2004). Obtención de aceites esenciales y extractos etanólicos de plantas del Amazonas. https://repositorio.unal.edu.co/handle/unal/2800 Goud, V., Ramasamy, A., Das, A., & Kalyanasundaram, D. (2019). Box-Behnken technique based multi-parametric optimization of electrostatic spray coating in the manufacturing of thermoplastic composites. Materials and Manufacturing Processes, 34(14), 1638-1645. https://doi.org/10.1080/10426914.2019.1666991 Grecco, S. S., Lorenzi, H., Tempone, A. G., & Lago, J. H. G. (2016). Update: Biological and chemical aspects of Nectandra genus (Lauraceae). Tetrahedron: Asymmetry, 27(17), 793-810. https://doi.org/10.1016/j.tetasy.2016.07.009 Grøntvedt, G. R., Schröder, T. N., Sando, S. B., White, L., Bråthen, G., & Doeller, C. F. (2018). Alzheimer’s disease. Current Biology: CB, 28(11), R645-R649. https://doi.org/10.1016/j.cub.2018.04.080 Gutiérrez Pulido, H. (2012). Análisis y diseño de experimentos [Text]. Biblioteca Hernán Malo González de la Universidad del Azuay; Biblioteca Hernán Malo González. https://biblioteca.uazuay.edu.ec/buscar/item/63520 Harris, T. K., & Mildvan, A. S. (1999). High-Precision Measurement of Hydrogen Bond Lengths in Proteins by Nuclear Magnetic Resonance Methods. Proteins: Structure, Function, and Bioinformatics, 35(3), 275-282. https://doi.org/10.1002/(SICI)1097-0134(19990515)35:3<275::AID-PROT1>3.0.CO;2-V Hebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80(19), 1778-1783. https://doi.org/10.1212/WNL.0b013e31828726f5 Hernández, M. G., & Salas, C. O. (2014). Etiología proteica de la enfermedad de Alzheimer. REDUCA, 6(1), Art. 1. http://www.revistareduca.es/index.php/reduca/article/view/1719 Hiebl, V., Ladurner, A., Latkolik, S., & Dirsch, V. M. (2018). Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnology Advances, 36(6), 1657-1698. https://doi.org/10.1016/j.biotechadv.2018.03.003 Hu, Y., Yang, Y., Yu, Y., Wen, G., Shang, N., Zhuang, W., Lu, D., Zhou, B., Liang, B., Yue, X., Li, F., Du, J., & Bu, X. (2013). Synthesis and Identification of New Flavonoids Targeting Liver X Receptor β Involved Pathway as Potential Facilitators of Aβ Clearance with Reduced Lipid Accumulation. Journal of Medicinal Chemistry, 56(15), 6033-6053. https://doi.org/10.1021/jm301913k Huang, Y., & Mucke, L. (2012). Alzheimer Mechanisms and Therapeutic Strategies. Cell, 148(6), 1204-1222. https://doi.org/10.1016/j.cell.2012.02.040 Hvattum, E., & Ekeberg, D. (2003). Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. Journal of Mass Spectrometry, 38(1), 43-49. https://doi.org/10.1002/jms.398 Ji, H., & Zhang, H. (2008). Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacologica Sinica, 29(2), 143-151. https://doi.org/10.1111/j.1745-7254.2008.00752.x Jia, Y., Hoang, M. H., Jun, H.-J., Lee, J. H., & Lee, S.-J. (2013). Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes. Bioorganic & Medicinal Chemistry Letters, 23(14), 4185-4190. https://doi.org/10.1016/j.bmcl.2013.05.030 Kepp, K. P. (2012). Bioinorganic Chemistry of Alzheimer’s Disease. Chemical Reviews, 112(10), 5193-5239. https://doi.org/10.1021/cr300009x Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., Nixon, R. A., & Jones, D. T. (2021). Alzheimer disease. Nature Reviews Disease Primers, 7(1), Art. 1. https://doi.org/10.1038/s41572-021-00269-y Koldamova, R., & Lefterov, I. (2007). Role of LXR and ABCA1 in the Pathogenesis of Alzheimer’s Disease -Implications for a New Therapeutic Approach. Curr. Alzheimer Res., 4(2), 171-178. https://doi.org/10.2174/156720507780362227 Leardi, R. (2009). Experimental design in chemistry: A tutorial. Analytica Chimica Acta, 652(1), 161-172. https://doi.org/10.1016/j.aca.2009.06.015 Lei, Z., Sumner, B. W., Bhatia, A., Sarma, S. J., & Sumner, L. W. (2019). UHPLC-MS Analyses of Plant Flavonoids. Current Protocols in Plant Biology, 4(1), e20085. https://doi.org/10.1002/cppb.20085 Mabry, T. J., Markham, K. R., & Thomas, M. B. (1970). The Ultraviolet Spectra of Flavones and Flavonols. En T. J. Mabry, K. R. Markham, & M. B. Thomas (Eds.), The Systematic Identification of Flavonoids (pp. 41-164). Springer. https://doi.org/10.1007/978-3-642-88458-0_5 Macías-Villamizar, V. E., Cuca-Suárez, L. E., & Coy-Barrera, E. D. (2015). Genus Nectandra: «Phytochemistry and Biological Activity». Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 27. Mohandas, E., Rajmohan, V., & Raghunath, B. (2009). Neurobiology of Alzheimer’s disease. Indian Journal of Psychiatry, 51(1), 55-61. https://doi.org/10.4103/0019-5545.44908 Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285 Nussbaum, R. L., & Ellis, C. E. (2003). Alzheimer’s Disease and Parkinson’s Disease. New England Journal of Medicine, 348(14), 1356-1364. https://doi.org/10.1056/NEJM2003ra020003 Nuutila, A. M., Kammiovirta, K., & Oksman-Caldentey, K.-M. (2002). Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chemistry, 76(4), 519-525. https://doi.org/10.1016/S0308-8146(01)00305-3 Olivero, R. A., Nocerino, J. M., & Deming, S. N. (1995). Experimental Design and Optimization. En J. Einax (Ed.), Chemometrics in Environmental Chemistry—Statistical Methods (pp. 73-122). Springer. https://doi.org/10.1007/978-3-540-49148-4_3 Ornaf, R. M., & Dong, M. W. (2005). 2—Key Concepts of HPLC in Pharmaceutical Analysis. En S. Ahuja & M. W. Dong (Eds.), Separation Science and Technology (Vol. 6, pp. 19-45). Academic Press. https://doi.org/10.1016/S0149-6395(05)80046-7 Plumb, J. A. (2004). Cell Sensitivity Assays: The MTT Assay. En S. P. Langdon (Ed.), Cancer Cell Culture: Methods and Protocols (pp. 165-169). Humana Press. https://doi.org/10.1385/1-59259-406-9:165 Raissi, S., & Farsani, R.-E. (2009). Statistical Process Optimization Through Multi-Response Surface Methodology. International Journal of Mathematical and Computational Sciences, 3(3), 197-201. Ramón, C., & Gil-Garzón, M. A. (2021). Efecto de los parámetros de operación de la extracción asistida por ultrasonido en la obtención de polifenoles de uva: Una revisión. TecnoLógicas, 24(51), Art. 51. https://doi.org/10.22430/22565337.1822 Ramón Vázquez, A., & Ramón Vázquez, A. (2018). Estudio del perfil transcripcional de los receptores nucleares LXR en un modelo celular de macrófago murino inmortalizado [Info:eu-repo/semantics/doctoralThesis, Universidad Complutense de Madrid]. https://eprints.ucm.es/49016/ Rastinejad, F., Huang, P., Chandra, V., & Khorasanizadeh, S. (2013). Understanding nuclear receptor form and function using structural biology. Journal of Molecular Endocrinology, 51(3), T1-T21. https://doi.org/10.1530/JME-13-0173 Ribeiro, A. B., Bolzani, V. da S., Yoshida, M., Santos, L. S., Eberlin, M. N., & Silva, D. H. S. (2005). A new neolignan and antioxidant phenols from Nectandra grandiflora. Journal of the Brazilian Chemical Society, 16, 526-530. Rincón Aguilar, C. M. (2014). Actividad biológica de la familia Lauraceae. https://repositorio.unal.edu.co/handle/unal/52219 Rius-Pérez, S., Tormos, A. M., Pérez, S., & Taléns-Visconti, R. (2018). Patología vascular: ¿causa o efecto en la enfermedad de Alzheimer? Neurología, 33(2), 112-120. https://doi.org/10.1016/j.nrl.2015.07.010 Rodrigues, M. I., & Iemma, A. F. (2014). Experimental Design and Process Optimization. CRC Press. Rossi, L., Mazzitelli, S., Arciello, M., Capo, C. R., & Rotilio, G. (2008). Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochemical Research, 33(12), 2390-2400. https://doi.org/10.1007/s11064-008-9696-7 Sahoo, N., Manchikanti, P., & Dey, S. (2010). Herbal drugs: Standards and regulation. Fitoterapia, 81(6), 462-471. https://doi.org/10.1016/j.fitote.2010.02.001 Sahu, P. K., Ramisetti, N. R., Cecchi, T., Swain, S., Patro, C. S., & Panda, J. (2018). An overview of experimental designs in HPLC method development and validation. Journal of Pharmaceutical and Biomedical Analysis, 147, 590-611. https://doi.org/10.1016/j.jpba.2017.05.006 Sanabria-Castro, A., Alvarado-Echeverría, I., & Monge-Bonilla, C. (2017). Molecular Pathogenesis of Alzheimer’s Disease: An Update. Annals of Neurosciences, 24(1), 46-54. https://doi.org/10.1159/000464422 Sang, Z., Wang, K., Dong, J., & Tang, L. (2022). Alzheimer’s disease: Updated multi-targets therapeutics are in clinical and in progress. European Journal of Medicinal Chemistry, 238, 114464. https://doi.org/10.1016/j.ejmech.2022.114464 Serrano, M. P. (2010). Mecanismos bioquímicos de la Enfermedad de Alzheimer. 20. Sever, R., & Glass, C. K. (2013). Signaling by Nuclear Receptors. Cold Spring Harbor Perspectives in Biology, 5(3), a016709-a016709. https://doi.org/10.1101/cshperspect.a016709 Sodhi, R. K., & Singh, N. (2013). Liver X receptors: Emerging therapeutic targets for Alzheimer’s disease. Pharmacological Research, 72, 45-51. https://doi.org/10.1016/j.phrs.2013.03.008 Stipičević, S., Fingler, S., Zupančič-Kralj, L., & Drevenkar, V. (2003). Comparison of gas and high performance liquid chromatography with selective detection for determination of triazine herbicides and their degradation products extracted ultrasonically from soil. Journal of Separation Science, 26(14), 1237-1246. https://doi.org/10.1002/jssc.200301420 Tamayo, A. E. I., Pérez, C. H., & Tejeda, J. J. G. (2020). Tratamientos paliativos en la enfermedad de Alzheimer. 16 de abril, 59(275), 1-6. Taverniers, I., De Loose, M., & Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends in Analytical Chemistry, 23(8), 535-552. https://doi.org/10.1016/j.trac.2004.04.001 Tolosa, T., Rogez, H., Silva, E., & Souza, J. (2018). Optimization of Acid Hydrolysis of Myricetin-3-O-rhamnoside Using Response Surface Methodology. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20180125 Tundis, R., Loizzo, M. R., Nabavi, S. M., Orhan, I. E., Skalicka-Woźniak, K., D’Onofrio, G., & Aiello, F. (2018). Chapter 3—Natural Compounds and Their Derivatives as Multifunctional Agents for the Treatment of Alzheimer Disease. En G. Brahmachari (Ed.), Discovery and Development of Neuroprotective Agents from Natural Products (pp. 63-102). Elsevier. https://doi.org/10.1016/B978-0-12-809593-5.00003-3 Valencia Rincón, E. (2018). Generación de un modelo in vitro para evaluar la actividad agonista de extractos naturales, obtenidos de plantas de las familias de Lauráceas y Miristicáceas, sobre los receptores X del hígado (LXRs). https://repositorio.unal.edu.co/handle/unal/63367 Veer, B., Geetanjali, & Singh, R. (2020). Chapter 6—Natural products as anti-Alzheimer’s drugs. En Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry (Vol. 66, pp. 157-174). Elsevier. https://doi.org/10.1016/B978-0-12-817907-9.00006-4 WHO. (2021, septiembre 2). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia Xiao, J., Muzashvili, T. S., & Georgiev, M. I. (2014). Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnology Advances, 32(6), 1145-1156. https://doi.org/10.1016/j.biotechadv.2014.04.006 Xu, C., Zhang, Y., Zhu, L., Huang, Y., & Lu, J. (2011). Influence of Growing Season on Phenolic Compounds and Antioxidant Properties of Grape Berries from Vines Grown in Subtropical Climate. Journal of Agricultural and Food Chemistry, 59(4), 1078-1086. https://doi.org/10.1021/jf104157z Xue-shan, Z., juan, P., Qi, W., Zhong, R., Li-hong, P., Zhi-han, T., Zhi-sheng, J., Gui-xue, W., & Lu-shan, L. (2016). Imbalanced cholesterol metabolism in Alzheimer’s disease. Clinica Chimica Acta, 456, 107-114. https://doi.org/10.1016/j.cca.2016.02.024 Yin, R., Messner, B., Faus-Kessler, T., Hoffmann, T., Schwab, W., Hajirezaei, M.-R., von Saint Paul, V., Heller, W., & Schäffner, A. R. (2012). Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. Journal of Experimental Botany, 63(7), 2465-2478. https://doi.org/10.1093/jxb/err416 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 76 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83893/2/1015474719_2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83893/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83893/3/1015474719_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
a0d03f89546ff85b795e462ccc57f4c1 eb34b1cf90b7e1103fc9dfd26be24b4a 7fd0887d1a8bf7b7fcca7ad29f0f76e6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089681322639360 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ávila Murillo, Mónica Constanzac7e9747034b686246f89d8af2147f989Narváez Cuenca, Carlos Eduardo29b6cc08a0076e18f5d99fa13748372fPulido Teuta, Juanita27c04aff983dd400d47f1ecee6983b8eGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)2023-05-29T16:28:25Z2023-05-29T16:28:25Z2022https://repositorio.unal.edu.co/handle/unal/83893Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasLa actividad agonista en LXR modula la producción de ApoE y ABCA1, disminuyendo la placa amiloide en modelos murinos, convirtiéndose así una alternativa terapéutica del Alzheimer. Estudios previos muestran que Nectandra reticulata es agonista de LXR, por lo que es de nuestro interés identificar la composición del extracto, relacionarlo con su actividad y optimizar la extracción de este. Es así cómo se analizó el extracto activo de N. reticulata, mediante RP-UHPLC-DAD y UHPLC-ESI-HRMS. Los resultados del análisis por EM evidenciaron que la mayoría de los compuestos presentes corresponden a flavonoides glicosilados. Para confirmar la identidad de las agliconas, se realizó una hidrólisis ácida, mostrando que el compuesto principal con un área cromatográfica de 84,5% a 355 nm corresponde a la quercitrina; el segundo compuesto en abundancia del 8,0% del área cromatográfica se identificó como afzelina. En menor proporción (6,9%) se determinó 3 o 7-(6''-p-cumaroilglucósido) kaempferol. Después de la identificación se realizaron estudios in silico e in vitro, permitiendo seleccionar a la quercitrina cómo marcador, ya que este metabolito presenta una actividad superior a la de los otros compuestos identificados e incluso de su respectiva aglicona. Finalmente se realizó la validación y optimización de la extracción de este metabolito, se encontró que al hacer la extracción asistida por ultrasonido la cantidad de quercitrina en el extracto y el rendimiento del proceso se ven influenciados principalmente por la proporción etanol:agua y la temperatura del sistema. La mejores condiciones de extracción encontradas fueron 60% de etanol, 50 °C y 40 mL/g (solvente:material vegetal). (Texto tomado de la fuente)The agonistic activity of LXR modulates the production of ApoE and ABCA1, reducing amyloid plaque in murine models, that means a therapeutic alternative for Alzheimer's. Previous studies show that Nectandra reticulata is an LXR agonist, it is our interest to identify the composition of the extract, relate it to its activity and optimize its extraction. The active extract of N. reticulata was analyzed by RP-UHPLC-DAD and UHPLC-ESI-HRMS. The mass analysis showed that most of the compounds present correspond to glycosylated flavonoids. To confirm the identity of the aglycones, acid hydrolysis was performed. There it was shown that the main compound with a chromatographic area of 84.5% at 355 nm corresponds to quercitrin; the second compound in abundance of 8.0% of the chromatographic area was identified as afzeline. In a smaller proportion (chromatographic area 6.9%) 3 or 7-(6''-p-coumaroylglucoside) kaempferol were found. After the identification, in silico and in vitro studies of the molecules were carried out, these studies allowed quercitrin to be selected as a marker, since this metabolite has a higher activity than the other identified compounds and even of its respective aglycone. Finally, the validation and optimization of the extraction of this metabolite was carried out, it was found that when performing the extraction assisted by ultrasound, the amount of quercitrin in the extract and the performance of the process are mainly influenced by the proportion of ethanol:water and temperature of the system. The best extraction conditions were 60% ethanol, 50 °C and 40 mL/g (solvent:plant material ratio).MaestríaMagíster en Ciencias - QuímicaQuímica de productos naturalesxvi, 76 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánicaEnfermedad de AlzheimerAlzheimer DiseaseAlzheimerModelamiento molecularNectandraLauraceaeBox-BhenckenValidaciónDocking molecularValidationUso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra ReticulataUse of design of experiments for the optimization of the extraction of phenolic compounds in an active extract of Nectandra ReticulataTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgalloco, J., DeSantis, P., Grilli, A., & Pavell, A. (2021). Handbook of Validation in Pharmaceutical Processes, Fourth Edition. CRC Press.Aguirre Rueda, D. (2014). Daño inflamatorio y estrés oxidativo en la Enfermedad de Alzheimer. Efecto de polifenoles y cannabinoides. https://roderic.uv.es/handle/10550/37242Akram, M., & Nawaz, A. (2017). Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regeneration Research, 12(4), 660. https://doi.org/10.4103/1673-5374.205108Akram, Robert Verpoorte, & Pomahačová, B. (2021). Methods for the analysis of galanthamine and its extraction from laboratory to industrial scale. South African Journal of Botany, 136, 51-64. https://doi.org/10.1016/j.sajb.2020.08.004Alarcón, M. E. T., Conde, C. G., & Mendez, G. L. (2019). Extracción, caracterización y actividad antioxidante del aceite esencial de Eucalyptus globulus Labill. Revista Cubana de Farmacia, 52(1), Art. 1. http://www.revfarmacia.sld.cu/index.php/far/article/view/266Alzheimer’s Disease International (ADI). (2021). About Alzheimer’s & Dementia. https://www.alzint.org/about/Balaguer Beser, Á. A., & Ruiz Fernández, L. Á. (2021). Selección de un modelo de regresión lineal múltiple para el cálculo de la precipitación media en verano. https://riunet.upv.es/handle/10251/167659Baptista, F. I., Henriques, A. G., Silva, A. M. S., Wiltfang, J., & da Cruz e Silva, O. A. B. (2014). Flavonoids as Therapeutic Compounds Targeting Key Proteins Involved in Alzheimer’s Disease. ACS Chemical Neuroscience, 5(2), 83-92. https://doi.org/10.1021/cn400213rBarbosa-Filho, J. M., Yoshida, M., & Gottlieb, O. R. (1989). Lignoids from Nectandra amazonum and N. glabrescens. Phytochemistry, 28(7), 1991. https://doi.org/10.1016/S0031-9422(00)97906-8Batiha, G. E.-S., Alkazmi, L. M., Nadwa, E. H., Rashwan, E. K., Beshbishy, A. M., Shaheen, H., & Wasef, L. (2020). Physostigmine: A Plant Alkaloid Isolated from Physostigma venenosum: A Review on Pharmacokinetics, Pharmacological and Toxicological Activities. Journal of Drug Delivery and Therapeutics, 10(1-s), Art. 1-s. https://doi.org/10.22270/jddt.v10i1-s.3866Benedetti, B., Caponigro, V., & Ardini, F. (2022). Experimental Design Step by Step: A Practical Guide for Beginners. Critical Reviews in Analytical Chemistry, 52(5), 1015-1028. https://doi.org/10.1080/10408347.2020.1848517Branch, S. K. (2005). Guidelines from the International Conference on Harmonisation (ICH). Journal of Pharmaceutical and Biomedical Analysis, 38(5), 798-805. https://doi.org/10.1016/j.jpba.2005.02.037Bustos Rangel, A. M. (2021). Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer. https://repositorio.unal.edu.co/handle/unal/80277Caicedo Díaz, J. A. (2021). Evaluación del potencial terapéutico de agonistas sintéticos y naturales de LXR (GW3965 y Nectandra reticulata) en el modelo murino 3xTg-AD de la enfermedad de Alzheimer. https://repositorio.unal.edu.co/handle/unal/81590Calabrò, M., Rinaldi, C., Santoro, G., & Crisafulli, C. (2020). The biological pathways of Alzheimer disease: A review. AIMS Neuroscience, 8(1), 86-132. https://doi.org/10.3934/Neuroscience.2021005Cambier, V., Hance, T., & de Hoffmann, E. (2000). Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry, 53(2), 223-229. https://doi.org/10.1016/S0031-9422(99)00498-7Castellani, R. J., Rolston, R. K., & Smith, M. A. (2010). Alzheimer Disease. Disease-a-month : DM, 56(9), 484-546. https://doi.org/10.1016/j.disamonth.2010.06.001Conserva, G. A., Costa-Silva, T. A., Quirós-Guerrero, L. M., Marcourt, L., Wolfender, J.-L., Queiroz, E. F., Tempone, A. G., & Lago, J. H. G. (2021). Kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside from Nectandra oppositifolia releases Ca2+ from intracellular pools of Trypanosoma cruzi affecting the bioenergetics system. Chemico-Biological Interactions, 349, 109661. https://doi.org/10.1016/j.cbi.2021.109661Dewick, P. M. (2002). Medicinal Natural Products: A Biosynthetic Approach. John Wiley & Sons.Donoso, A. (2003). La enfermedad de Alzheimer. Revista chilena de neuro-psiquiatría, 41, 13-22. https://doi.org/10.4067/S0717-92272003041200003Duthey, B. (2004). Background Paper 6.11 Alzheimer Disease and other Dementias. Background Paper, 74.Dyer, L. A., & Palmer, A. D. N. (Eds.). (2004). Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution. Springer US. https://doi.org/10.1007/978-0-387-30599-8Felipe, D. F., Brambilla, L. Z. S., Porto, C., Pilau, E. J., & Cortez, D. A. G. (2014). Phytochemical Analysis of Pfaffia glomerata Inflorescences by LC-ESI-MS/MS. Molecules, 19(10), Art. 10. https://doi.org/10.3390/molecules191015720Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179-186. https://doi.org/10.1016/j.aca.2007.07.011Folch, J., Ettcheto, M., Petrov, D., Abad, S., Pedrós, I., Marin, M., Olloquequi, J., & Camins, A. (2018). Una revisión de los avances en la terapéutica de la enfermedad de Alzheimer: Estrategia frente a la proteína β-amiloide. Neurología, 33(1), 47-58. https://doi.org/10.1016/j.nrl.2015.03.012Fouache, A., Zabaiou, N., De Joussineau, C., Morel, L., Silvente-Poirot, S., Namsi, A., Lizard, G., Poirot, M., Makishima, M., Baron, S., Lobaccaro, J.-M. A., & Trousson, A. (2019). Flavonoids differentially modulate liver X receptors activity-Structure-function relationship analysis. The Journal of Steroid Biochemistry and Molecular Biology, 190, 173-182. https://doi.org/10.1016/j.jsbmb.2019.03.028Gandy, S., Knopman, D. S., & Sano, M. (2021). Talking points for physicians, patients and caregivers considering Aduhelm® infusion and the accelerated pathway for its approval by the FDA. Molecular Neurodegeneration, 16(1), 74. https://doi.org/10.1186/s13024-021-00490-zGarcez, F. R., Garcez, W. S., Martins, M., & Cruz, A. C. (1999). A Bioactive Lactone from Nectandra gardneri. Planta Medica, 65(8), 775-775. https://doi.org/10.1055/s-2006-960867García, I., Ortiz, M. C., Sarabia, L., & Aldama, J. M. (2007). Validation of an analytical method to determine sulfamides in kidney by HPLC-DAD and PARAFAC2 with first-order derivative chromatograms. Analytica Chimica Acta, 587(2), 222-234. https://doi.org/10.1016/j.aca.2007.01.054Geng, P., Sun, J., Zhang, R., He, J., & Abliz, Z. (2009). An investigation of the fragmentation differences of isomeric flavonol-O-glycosides under different collision-induced dissociation based mass spectrometry. Rapid Communications in Mass Spectrometry, 23(10), 1519-1524. https://doi.org/10.1002/rcm.4021González Villa, Á. A. (2004). Obtención de aceites esenciales y extractos etanólicos de plantas del Amazonas. https://repositorio.unal.edu.co/handle/unal/2800Goud, V., Ramasamy, A., Das, A., & Kalyanasundaram, D. (2019). Box-Behnken technique based multi-parametric optimization of electrostatic spray coating in the manufacturing of thermoplastic composites. Materials and Manufacturing Processes, 34(14), 1638-1645. https://doi.org/10.1080/10426914.2019.1666991Grecco, S. S., Lorenzi, H., Tempone, A. G., & Lago, J. H. G. (2016). Update: Biological and chemical aspects of Nectandra genus (Lauraceae). Tetrahedron: Asymmetry, 27(17), 793-810. https://doi.org/10.1016/j.tetasy.2016.07.009Grøntvedt, G. R., Schröder, T. N., Sando, S. B., White, L., Bråthen, G., & Doeller, C. F. (2018). Alzheimer’s disease. Current Biology: CB, 28(11), R645-R649. https://doi.org/10.1016/j.cub.2018.04.080Gutiérrez Pulido, H. (2012). Análisis y diseño de experimentos [Text]. Biblioteca Hernán Malo González de la Universidad del Azuay; Biblioteca Hernán Malo González. https://biblioteca.uazuay.edu.ec/buscar/item/63520Harris, T. K., & Mildvan, A. S. (1999). High-Precision Measurement of Hydrogen Bond Lengths in Proteins by Nuclear Magnetic Resonance Methods. Proteins: Structure, Function, and Bioinformatics, 35(3), 275-282. https://doi.org/10.1002/(SICI)1097-0134(19990515)35:3<275::AID-PROT1>3.0.CO;2-VHebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80(19), 1778-1783. https://doi.org/10.1212/WNL.0b013e31828726f5Hernández, M. G., & Salas, C. O. (2014). Etiología proteica de la enfermedad de Alzheimer. REDUCA, 6(1), Art. 1. http://www.revistareduca.es/index.php/reduca/article/view/1719Hiebl, V., Ladurner, A., Latkolik, S., & Dirsch, V. M. (2018). Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnology Advances, 36(6), 1657-1698. https://doi.org/10.1016/j.biotechadv.2018.03.003Hu, Y., Yang, Y., Yu, Y., Wen, G., Shang, N., Zhuang, W., Lu, D., Zhou, B., Liang, B., Yue, X., Li, F., Du, J., & Bu, X. (2013). Synthesis and Identification of New Flavonoids Targeting Liver X Receptor β Involved Pathway as Potential Facilitators of Aβ Clearance with Reduced Lipid Accumulation. Journal of Medicinal Chemistry, 56(15), 6033-6053. https://doi.org/10.1021/jm301913kHuang, Y., & Mucke, L. (2012). Alzheimer Mechanisms and Therapeutic Strategies. Cell, 148(6), 1204-1222. https://doi.org/10.1016/j.cell.2012.02.040Hvattum, E., & Ekeberg, D. (2003). Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. Journal of Mass Spectrometry, 38(1), 43-49. https://doi.org/10.1002/jms.398Ji, H., & Zhang, H. (2008). Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacologica Sinica, 29(2), 143-151. https://doi.org/10.1111/j.1745-7254.2008.00752.xJia, Y., Hoang, M. H., Jun, H.-J., Lee, J. H., & Lee, S.-J. (2013). Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes. Bioorganic & Medicinal Chemistry Letters, 23(14), 4185-4190. https://doi.org/10.1016/j.bmcl.2013.05.030Kepp, K. P. (2012). Bioinorganic Chemistry of Alzheimer’s Disease. Chemical Reviews, 112(10), 5193-5239. https://doi.org/10.1021/cr300009xKnopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., Nixon, R. A., & Jones, D. T. (2021). Alzheimer disease. Nature Reviews Disease Primers, 7(1), Art. 1. https://doi.org/10.1038/s41572-021-00269-yKoldamova, R., & Lefterov, I. (2007). Role of LXR and ABCA1 in the Pathogenesis of Alzheimer’s Disease -Implications for a New Therapeutic Approach. Curr. Alzheimer Res., 4(2), 171-178. https://doi.org/10.2174/156720507780362227Leardi, R. (2009). Experimental design in chemistry: A tutorial. Analytica Chimica Acta, 652(1), 161-172. https://doi.org/10.1016/j.aca.2009.06.015Lei, Z., Sumner, B. W., Bhatia, A., Sarma, S. J., & Sumner, L. W. (2019). UHPLC-MS Analyses of Plant Flavonoids. Current Protocols in Plant Biology, 4(1), e20085. https://doi.org/10.1002/cppb.20085Mabry, T. J., Markham, K. R., & Thomas, M. B. (1970). The Ultraviolet Spectra of Flavones and Flavonols. En T. J. Mabry, K. R. Markham, & M. B. Thomas (Eds.), The Systematic Identification of Flavonoids (pp. 41-164). Springer. https://doi.org/10.1007/978-3-642-88458-0_5Macías-Villamizar, V. E., Cuca-Suárez, L. E., & Coy-Barrera, E. D. (2015). Genus Nectandra: «Phytochemistry and Biological Activity». Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 27.Mohandas, E., Rajmohan, V., & Raghunath, B. (2009). Neurobiology of Alzheimer’s disease. Indian Journal of Psychiatry, 51(1), 55-61. https://doi.org/10.4103/0019-5545.44908Newman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285Nussbaum, R. L., & Ellis, C. E. (2003). Alzheimer’s Disease and Parkinson’s Disease. New England Journal of Medicine, 348(14), 1356-1364. https://doi.org/10.1056/NEJM2003ra020003Nuutila, A. M., Kammiovirta, K., & Oksman-Caldentey, K.-M. (2002). Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chemistry, 76(4), 519-525. https://doi.org/10.1016/S0308-8146(01)00305-3Olivero, R. A., Nocerino, J. M., & Deming, S. N. (1995). Experimental Design and Optimization. En J. Einax (Ed.), Chemometrics in Environmental Chemistry—Statistical Methods (pp. 73-122). Springer. https://doi.org/10.1007/978-3-540-49148-4_3Ornaf, R. M., & Dong, M. W. (2005). 2—Key Concepts of HPLC in Pharmaceutical Analysis. En S. Ahuja & M. W. Dong (Eds.), Separation Science and Technology (Vol. 6, pp. 19-45). Academic Press. https://doi.org/10.1016/S0149-6395(05)80046-7Plumb, J. A. (2004). Cell Sensitivity Assays: The MTT Assay. En S. P. Langdon (Ed.), Cancer Cell Culture: Methods and Protocols (pp. 165-169). Humana Press. https://doi.org/10.1385/1-59259-406-9:165Raissi, S., & Farsani, R.-E. (2009). Statistical Process Optimization Through Multi-Response Surface Methodology. International Journal of Mathematical and Computational Sciences, 3(3), 197-201.Ramón, C., & Gil-Garzón, M. A. (2021). Efecto de los parámetros de operación de la extracción asistida por ultrasonido en la obtención de polifenoles de uva: Una revisión. TecnoLógicas, 24(51), Art. 51. https://doi.org/10.22430/22565337.1822Ramón Vázquez, A., & Ramón Vázquez, A. (2018). Estudio del perfil transcripcional de los receptores nucleares LXR en un modelo celular de macrófago murino inmortalizado [Info:eu-repo/semantics/doctoralThesis, Universidad Complutense de Madrid]. https://eprints.ucm.es/49016/Rastinejad, F., Huang, P., Chandra, V., & Khorasanizadeh, S. (2013). Understanding nuclear receptor form and function using structural biology. Journal of Molecular Endocrinology, 51(3), T1-T21. https://doi.org/10.1530/JME-13-0173Ribeiro, A. B., Bolzani, V. da S., Yoshida, M., Santos, L. S., Eberlin, M. N., & Silva, D. H. S. (2005). A new neolignan and antioxidant phenols from Nectandra grandiflora. Journal of the Brazilian Chemical Society, 16, 526-530.Rincón Aguilar, C. M. (2014). Actividad biológica de la familia Lauraceae. https://repositorio.unal.edu.co/handle/unal/52219Rius-Pérez, S., Tormos, A. M., Pérez, S., & Taléns-Visconti, R. (2018). Patología vascular: ¿causa o efecto en la enfermedad de Alzheimer? Neurología, 33(2), 112-120. https://doi.org/10.1016/j.nrl.2015.07.010Rodrigues, M. I., & Iemma, A. F. (2014). Experimental Design and Process Optimization. CRC Press.Rossi, L., Mazzitelli, S., Arciello, M., Capo, C. R., & Rotilio, G. (2008). Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochemical Research, 33(12), 2390-2400. https://doi.org/10.1007/s11064-008-9696-7Sahoo, N., Manchikanti, P., & Dey, S. (2010). Herbal drugs: Standards and regulation. Fitoterapia, 81(6), 462-471. https://doi.org/10.1016/j.fitote.2010.02.001Sahu, P. K., Ramisetti, N. R., Cecchi, T., Swain, S., Patro, C. S., & Panda, J. (2018). An overview of experimental designs in HPLC method development and validation. Journal of Pharmaceutical and Biomedical Analysis, 147, 590-611. https://doi.org/10.1016/j.jpba.2017.05.006Sanabria-Castro, A., Alvarado-Echeverría, I., & Monge-Bonilla, C. (2017). Molecular Pathogenesis of Alzheimer’s Disease: An Update. Annals of Neurosciences, 24(1), 46-54. https://doi.org/10.1159/000464422Sang, Z., Wang, K., Dong, J., & Tang, L. (2022). Alzheimer’s disease: Updated multi-targets therapeutics are in clinical and in progress. European Journal of Medicinal Chemistry, 238, 114464. https://doi.org/10.1016/j.ejmech.2022.114464Serrano, M. P. (2010). Mecanismos bioquímicos de la Enfermedad de Alzheimer. 20.Sever, R., & Glass, C. K. (2013). Signaling by Nuclear Receptors. Cold Spring Harbor Perspectives in Biology, 5(3), a016709-a016709. https://doi.org/10.1101/cshperspect.a016709Sodhi, R. K., & Singh, N. (2013). Liver X receptors: Emerging therapeutic targets for Alzheimer’s disease. Pharmacological Research, 72, 45-51. https://doi.org/10.1016/j.phrs.2013.03.008Stipičević, S., Fingler, S., Zupančič-Kralj, L., & Drevenkar, V. (2003). Comparison of gas and high performance liquid chromatography with selective detection for determination of triazine herbicides and their degradation products extracted ultrasonically from soil. Journal of Separation Science, 26(14), 1237-1246. https://doi.org/10.1002/jssc.200301420Tamayo, A. E. I., Pérez, C. H., & Tejeda, J. J. G. (2020). Tratamientos paliativos en la enfermedad de Alzheimer. 16 de abril, 59(275), 1-6.Taverniers, I., De Loose, M., & Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends in Analytical Chemistry, 23(8), 535-552. https://doi.org/10.1016/j.trac.2004.04.001Tolosa, T., Rogez, H., Silva, E., & Souza, J. (2018). Optimization of Acid Hydrolysis of Myricetin-3-O-rhamnoside Using Response Surface Methodology. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20180125Tundis, R., Loizzo, M. R., Nabavi, S. M., Orhan, I. E., Skalicka-Woźniak, K., D’Onofrio, G., & Aiello, F. (2018). Chapter 3—Natural Compounds and Their Derivatives as Multifunctional Agents for the Treatment of Alzheimer Disease. En G. Brahmachari (Ed.), Discovery and Development of Neuroprotective Agents from Natural Products (pp. 63-102). Elsevier. https://doi.org/10.1016/B978-0-12-809593-5.00003-3Valencia Rincón, E. (2018). Generación de un modelo in vitro para evaluar la actividad agonista de extractos naturales, obtenidos de plantas de las familias de Lauráceas y Miristicáceas, sobre los receptores X del hígado (LXRs). https://repositorio.unal.edu.co/handle/unal/63367Veer, B., Geetanjali, & Singh, R. (2020). Chapter 6—Natural products as anti-Alzheimer’s drugs. En Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry (Vol. 66, pp. 157-174). Elsevier. https://doi.org/10.1016/B978-0-12-817907-9.00006-4WHO. (2021, septiembre 2). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementiaXiao, J., Muzashvili, T. S., & Georgiev, M. I. (2014). Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnology Advances, 32(6), 1145-1156. https://doi.org/10.1016/j.biotechadv.2014.04.006Xu, C., Zhang, Y., Zhu, L., Huang, Y., & Lu, J. (2011). Influence of Growing Season on Phenolic Compounds and Antioxidant Properties of Grape Berries from Vines Grown in Subtropical Climate. Journal of Agricultural and Food Chemistry, 59(4), 1078-1086. https://doi.org/10.1021/jf104157zXue-shan, Z., juan, P., Qi, W., Zhong, R., Li-hong, P., Zhi-han, T., Zhi-sheng, J., Gui-xue, W., & Lu-shan, L. (2016). Imbalanced cholesterol metabolism in Alzheimer’s disease. Clinica Chimica Acta, 456, 107-114. https://doi.org/10.1016/j.cca.2016.02.024Yin, R., Messner, B., Faus-Kessler, T., Hoffmann, T., Schwab, W., Hajirezaei, M.-R., von Saint Paul, V., Heller, W., & Schäffner, A. R. (2012). Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. Journal of Experimental Botany, 63(7), 2465-2478. https://doi.org/10.1093/jxb/err416EstudiantesInvestigadoresPúblico generalORIGINAL1015474719_2023.pdf1015474719_2023.pdfTesis de Maestría en Ciencias- Químicaapplication/pdf1706268https://repositorio.unal.edu.co/bitstream/unal/83893/2/1015474719_2023.pdfa0d03f89546ff85b795e462ccc57f4c1MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83893/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1015474719_2023.pdf.jpg1015474719_2023.pdf.jpgGenerated Thumbnailimage/jpeg5710https://repositorio.unal.edu.co/bitstream/unal/83893/3/1015474719_2023.pdf.jpg7fd0887d1a8bf7b7fcca7ad29f0f76e6MD53unal/83893oai:repositorio.unal.edu.co:unal/838932024-08-07 23:10:50.473Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |