Cambios de sabor en el sector down de los Quarks en modelos modelo U(1)’x
ilustraciones, graficas
- Autores:
-
Basto Vega, Jhon Jairo
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81632
- Palabra clave:
- 530 - Física
Quarks
Particles (Nuclear physics)
PARTICULAS (FISICA NUCLEAR)
Modelo estándar
Textura de masa
Partículas exóticas
CKM
Invariante de Jarlskog
Anomalías quirales
Modelo U(1)’x
Standard Model
Mass Texture
Exotic Particles
U(1)’x Model
Jarlskog Invariant
Chiral Anomalies
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_39a220081eff89fd5af53f843a957f2d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81632 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Cambios de sabor en el sector down de los Quarks en modelos modelo U(1)’x |
dc.title.translated.eng.fl_str_mv |
Flavor changes in the down sector of Quarks in U(1)'_{x} models |
title |
Cambios de sabor en el sector down de los Quarks en modelos modelo U(1)’x |
spellingShingle |
Cambios de sabor en el sector down de los Quarks en modelos modelo U(1)’x 530 - Física Quarks Particles (Nuclear physics) PARTICULAS (FISICA NUCLEAR) Modelo estándar Textura de masa Partículas exóticas CKM Invariante de Jarlskog Anomalías quirales Modelo U(1)’x Standard Model Mass Texture Exotic Particles U(1)’x Model Jarlskog Invariant Chiral Anomalies |
title_short |
Cambios de sabor en el sector down de los Quarks en modelos modelo U(1)’x |
title_full |
Cambios de sabor en el sector down de los Quarks en modelos modelo U(1)’x |
title_fullStr |
Cambios de sabor en el sector down de los Quarks en modelos modelo U(1)’x |
title_full_unstemmed |
Cambios de sabor en el sector down de los Quarks en modelos modelo U(1)’x |
title_sort |
Cambios de sabor en el sector down de los Quarks en modelos modelo U(1)’x |
dc.creator.fl_str_mv |
Basto Vega, Jhon Jairo |
dc.contributor.advisor.none.fl_str_mv |
Martínez Martínez, Roberto Enrique |
dc.contributor.author.none.fl_str_mv |
Basto Vega, Jhon Jairo |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Física Teórica de Altas Energías |
dc.subject.ddc.spa.fl_str_mv |
530 - Física |
topic |
530 - Física Quarks Particles (Nuclear physics) PARTICULAS (FISICA NUCLEAR) Modelo estándar Textura de masa Partículas exóticas CKM Invariante de Jarlskog Anomalías quirales Modelo U(1)’x Standard Model Mass Texture Exotic Particles U(1)’x Model Jarlskog Invariant Chiral Anomalies |
dc.subject.lemb.none.fl_str_mv |
Quarks |
dc.subject.lemb.eng.fl_str_mv |
Particles (Nuclear physics) |
dc.subject.lemb.spa.fl_str_mv |
PARTICULAS (FISICA NUCLEAR) |
dc.subject.proposal.spa.fl_str_mv |
Modelo estándar Textura de masa Partículas exóticas CKM Invariante de Jarlskog Anomalías quirales |
dc.subject.proposal.none.fl_str_mv |
Modelo U(1)’x |
dc.subject.proposal.eng.fl_str_mv |
Standard Model Mass Texture Exotic Particles U(1)’x Model Jarlskog Invariant Chiral Anomalies |
description |
ilustraciones, graficas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-28T15:29:11Z |
dc.date.available.none.fl_str_mv |
2022-06-28T15:29:11Z |
dc.date.issued.none.fl_str_mv |
2022-02-13 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text Workflow |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81632 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81632 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] David Griffiths. Introduction to elementary particles. John Wiley & Sons, 2008. [2] Cecilia Jarlskog. CP violation, volume 3. World Scientific, 1989. [3] Yithsbey Giraldo. Reply to “comment on ‘texture zeros and weak basis transformations in the quark sector of the standard model”’. Physical Review D, 91(3):038302, 2015. [4] P Ramond, RG Roberts, and Graham G Ross. Stitching the yukawa quilt. Nuclear Physics B, 406(1-2):19–42, 1993. [5] P.A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020. [6] SF Mantilla, R Martinez, and F Ochoa. Neutrino and c p-even higgs boson masses in a nonuniversal u(1)’ extension. Physical Review D, 95(9):095037, 2017. [7] Chong-sa Lim, Toshiyuki Morii, and Shankar Nath Mukherjee. The physics of the standard model and beyond. World Scientific, 2004. [8] J Hosaka, K Ishihara, J Kameda, Yusuke Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, M Nakahata, T Namba, et al. Solar neutrino measurements in super- kamiokande-i. Physical Review D, 73(11):112001, 2006. [9] MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, Maryon Ahrens, D Altmann, T Anderson, C Arguelles, TC Arlen, et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of icecube deepcore data. Physical Review D, 91(7):072004, 2015. [10] Investigación y Ciencia. Física del sabor. https://www.investigacionyciencia.es/blogs/fisica- y-quimica/29/posts/fsica-de-sabores-10736. [11] Gustavo Castello Branco, David Emmanuel-Costa, and R Gonzalez Felipe. Texture zeros and weak basis transformations. Physics Letters B, 477(1-3):147–155, 2000. [12] H Nishiura, K Matsuda, and T Fukuyama. Lepton and quark mass matrices. Physical Review D, 60(1):013006, 1999. [13] L Lavoura. New texture-zero patterns for lepton mixing. Journal of Physics G: Nuclear and Particle Physics, 42(10):105004, 2015. [14] Savas Dimopoulos, Lawrence J Hall, and Stuart Raby. Predictive framework for fermion masses in supersymmetric theories. Physical Review Letters, 68(13):1984, 1992. [15] Howard Georgi and C Jarlskog. A new lepton-quark mass relation in a unified theory. Physics Letters B, 86(3-4):297–300, 1979. [16] Harald Fritzsch. Calculating the cabibbo angle. Physics Letters B, 70(4):436–440, 1977. [17] Harald Fritzsch. Weak-interaction mixing in the six-quark theory. Physics Letters B, 73(3):317–322, 1978. [18] Harald Fritzsch. Quark masses and flavor mixing. Nuclear Physics B, 155(1):189–207, 1979. [19] Yithsbey Giraldo. Ceros de textura en el sector de quarks del modelo estándar. 2016. [20] Manmohan Gupta and Gulsheen Ahuja. Flavor mixings and textures of the fermion mass matrices. International Journal of Modern Physics A, 27(31):1230033, 2012. [21] Camilo Alejandro Rojas Pacheco. Texturas de masa para el sector de quarks bajo el modelo electrodébil. 2014. [22] Dong-sheng Du and Zhi-zhong Xing. A modified fritzsch ansatz with additional first- order perturbation. Technical report, P00005208, 1992. [23] Dongsheng Du and Zhi-zhong Xing. Quark mass matrices with full first-order perturba- tion. Physical Review D, 48(5):2349, 1993. [24] A Carcamo, R Martinez, and J-A Rodriguez. Different kind of textures of yukawa coupling matrices in the two higgs doublet model type iii. The European Physical Journal C, 50(4):935–948, 2007. [25] Elena Accomando, Claudio Coriano, Luigi Delle Rose, Juri Fiaschi, Carlo Marzo, and Stefano Moretti. Z’, higgses and heavy neutrinos in u (1)’ models: from the lhc to the gut scale. Journal of High Energy Physics, 2016(7):86, 2016. [26] R Martinez, J Nisperuza, F Ochoa, and JP Rubio. Some phenomenological aspects of a new u(1)’ model. Physical Review D, 89(5):056008, 2014. [27] Lisa L Everett, Jing Jiang, Paul G Langacker, and Tao Liu. Phenomenological implications of supersymmetric family nonuniversal u (1) models. Physical Review D, 82(9):094024, 2010. [28] A Leike. The phenomenology of extra neutral gauge bosons, phys, 1999. [29] Paul Langacker and Michael Plümacher. Flavor changing effects in theories with a heavy z’ boson with family nonuniversal couplings. Physical Review D, 62(1):013006, 2000. [30] Marco Antonio Moreira. El modelo estándar de la física de partículas. Revista Brasileña de Enseñanza de Física, 31(1):1306, 2009. [31] Patricia Castiella Esparza. Física del bosón de higgs en el lhc. [32] Ta-Pei Cheng and Ling-Fong Li. Gauge theory of elementary particle physics. Oxford university press, 1994. [33] Roberto Martínez. Teoría cuántica de campos. Universidad Nacional de Colombia, 2007. [34] Georges Aad, Tatevik Abajyan, B Abbott, J Abdallah, S Abdel Khalek, Ahmed Ali Abdelalim, R Aben, B Abi, M Abolins, OS AbouZeid, et al. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012. [35] Serguei Chatrchyan, Vardan Khachatryan, Albert M Sirunyan, Armen Tumasyan, Wolf- gang Adam, Ernest Aguilo, Thomas Bergauer, M Dragicevic, J Erö, C Fabjan, et al. Obser- vation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B, 716(1):30–61, 2012. [36] M Gomez-Bock, M Mondragon, M Muhlleitner, R Noriega-Papaqui, I Pedraza, M Spira, and PM Zerwas. Rompimiento de la simetria electrodebil y la fisica del higgs: Conceptos basicos. arXiv preprint hep-ph/0509077, 2005. [37] Nestor Quintero Poveda. Una descripción sencilla de las teorías gauge. Revista Tumbaga, 1(4), 2009. [38] LL Salcedo. Física matemática. grupos de lie, rotaciones, unitarios, poincaré. monte carlo. [39] Antonio Pich. The standard model of electroweak interactions. arXiv preprint ar- Xiv:1201.0537, 2012. [40] Sérgio Ferraz Novaes. Standard model: An introduction. arXiv preprint hep-ph/0001283, 2000. [41] M Herrero. The standard model. In Techniques and Concepts of High Energy Physics X, pages 1–59. Springer, 1999. [42] Paul Langacker. The standard model and beyond. Taylor & Francis, 2017. [43] Jeffrey Goldstone. Field theories with «superconductor» solutions. Il Nuovo Cimento (1955-1965), 19(1):154–164, 1961. [44] John F Gunion, Howard E Haber, Gordon Kane, and Dawson Sally. The Higgs hunter’s guide. CRC Press, 2018. [45] Luis G Cabral-Rosetti. Introducción al modelo estándar en el background field method electrodebil. Revista mexicana de física, 48(2):155–181, 2002. [46] IS Towner and JC Hardy. The evaluation of vud and its impact on the unitarity of the cabibbo–kobayashi–maskawa quark-mixing matrix. Reports on Progress in Physics, 73(4):046301, 2010. [47] Lincoln Wolfenstein. Parametrization of the kobayashi-maskawa matrix. Physical Review Letters, 51(21):1945, 1983. [48] Harald Fritzsch and Zhi-Zhong Xing. Flavor symmetries and the description of flavor mixing. Physics Letters B, 413(3-4):396–404, 1997. [49] Makoto Kobayashi and Toshihide Maskawa. Cp-violation in the renormalizable theory of weak interaction. Progress of theoretical physics, 49(2):652–657, 1973. [50] Ling-Lie Chau and Wai-Yee Keung. Comments on the parametrization of the kobayashi- maskawa matrix. Physical Review Letters, 53(19):1802, 1984. [51] Yithsbey Giraldo. Texture zeros and weak basis transformations in the quark sector of the standard model. Physical Review D, 86(9):093021, 2012. [52] Davi B Costa, Bogdan A Dobrescu, and Patrick J Fox. General solution to the u (1) anomaly equations. Physical review letters, 123(15):151601, 2019. [53] Samandeep Sharma, Priyanka Fakay, Gulsheen Ahuja, and Manmohan Gupta. Comment on “texture zeros and weak basis transformations in the quark sector of the standard model”. Physical Review D, 91(3):038301, 2015. [54] Samandeep Sharma, Priyanka Fakay, Gulsheen Ahuja, and Manmohan Gupta. Clues towards unified textures. International Journal of Modern Physics A, 29(21):1444005, 2014. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
84 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.department.spa.fl_str_mv |
Departamento de Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81632/3/1014255782.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81632/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81632/5/1014255782.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
93e1bd7dd692e3aadd46856d19a24128 8153f7789df02f0a4c9e079953658ab2 29857053eda3d7176986cec08e18d970 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089562134151168 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martínez Martínez, Roberto Enrique2a5be60f0e21d95c98c8b871c8517ee0Basto Vega, Jhon Jairoc6975df5fb1b618d0daafdd2fbdbf6fcGrupo de Física Teórica de Altas Energías2022-06-28T15:29:11Z2022-06-28T15:29:11Z2022-02-13https://repositorio.unal.edu.co/handle/unal/81632Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEn el presente proyecto se realiza un estudio detallado del modelo estándar, en el que se tuvo en cuenta el Lagrangiano fermionico, bosonico y Yukawa para la descripción de la respectivas interacciones que ocurren en la naturaleza, y posteriormente con el uso del rompimiento espontáneo de la simetría y el mecanismo de Higgs para explicar la obtención de la masa de las partículas elementales. Además se analiza que al rotar el Lagrangiano fermionico, en este caso el sector de los Quarks, y llevarlo al estado base de masa aparece la matriz de mezcla (CKM) que explica los cambios de sabor [ 1 ], y también se consigue el invariante de Jarlskog que es una medida de la violación (CP) [2]. Uno de los objetivos de este trabajo es comprender la fenomenología detrás de la mezcla de Quarks y la violación (CP), para ello se usa las texturas de masa tipo Fritzsch, donde se demuestra que las matrices con textura de seis ceros no fueron compatibles [ 3 ] con los resultados experimentales por tener un elemento fijo, sin embargo las de cinco ceros propuestas por Ramond y colaboradores [ 4 ] logran tener resultados favorables, ya que los elementos de la matriz de mezcla están muy cercanos a los valores experimentales, y el invariante Jarlskog para cada tipo de textura de ceros se encuentra dentro del intervalo experimental, los cuales son presentados en la DPG [5]. Otro objetivo es la explicación de la jerarquía de masas de los fermiónes en especial para los Quarks, siendo la más indicadas para describir este fenómeno, las extensiones Abelianas no universales del MS. Para lo cual se utiliza el modelo U(1)’x quiral libre de anomalías y que es propuesto por [ 6 ], en el que aparecen unas ciertas consecuencias, las cuales son: Un nuevo bóson exótico Z’ que tiene efectos directos en los cambios de sabor, también aparecen tres nuevos Quarks pesados (J1), (J2) y (T) debido a la diagonalización por bloques de las matrices de masa de los sectores Up y Down de los Quarks, sin embargo algunas partículas elementales como el Quark up (u), down (d) y strange (s) quedan sin masa por lo que se recurre a la corrección radiativa para resolver este problema. (Texto tomado de la fuente)In the present project a detailed study of the standard model is carried out, in which the fermionic, bosonic and Yukawa Lagrangian was taken into account for the description of the respective interactions that occur in nature, and later with the use of the spontaneous symmetry breaking and the Higgs mechanism to explain the obtaining of the mass of elementary particles. It is also analyzed that by rotating the fermionic Lagrangian, in this case the Quark sector, and bringing it to the ground state of mass, the mixing matrix (CKM) appears, which explains the flavor changes [1], and also the Jarlskog invariant is obtained, which is a measure of the violation (CP) [2]. One of the objectives of this work is to understand the phenomenology behind Quark mixing and violation (CP), for this we use the Fritzsch-type mass textures, where it is shown that the six-zero textured matrices were not compatible with the experimental results because they have a fixed element, however, those with five zeros proposed by Ramond and collaborators [4] achieve favorable results, since the elements of the mixing matrix are very close to the experimental values, and the Jarlskog invariant for each type of texture of zeros is within the experimental range, which are presented in the DPG [5]. Another objective is the explanation of the mass hierarchy of the fermions, especially for the Quarks, being the most indicated to describe this phenomenon, the non-universal Abelian extensions of the DM. For which the anomaly-free chiral U(1)’x model proposed by [6] is used, in which certain consequences appear, which are: A new exotic boson Z’ which has direct effects on the flavor changes, also appear three new heavy Quarks (J 1 ), (J 2 ) and (T) due to the block diagonalization of the mass matrices of the Up and Down sectors of the Quarks, however some elementary particles as the Quark up (u), down (d) and strange (s) remain without mass so we resort to the radiative correction to solve this problem.MaestríaMagíster en Ciencias - FísicaFísica Teórica en Altas Energías84 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaQuarksParticles (Nuclear physics)PARTICULAS (FISICA NUCLEAR)Modelo estándarTextura de masaPartículas exóticasCKMInvariante de JarlskogAnomalías quiralesModelo U(1)’xStandard ModelMass TextureExotic ParticlesU(1)’x ModelJarlskog InvariantChiral AnomaliesCambios de sabor en el sector down de los Quarks en modelos modelo U(1)’xFlavor changes in the down sector of Quarks in U(1)'_{x} modelsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTextWorkflowhttp://purl.org/redcol/resource_type/TM[1] David Griffiths. Introduction to elementary particles. John Wiley & Sons, 2008.[2] Cecilia Jarlskog. CP violation, volume 3. World Scientific, 1989.[3] Yithsbey Giraldo. Reply to “comment on ‘texture zeros and weak basis transformations in the quark sector of the standard model”’. Physical Review D, 91(3):038302, 2015.[4] P Ramond, RG Roberts, and Graham G Ross. Stitching the yukawa quilt. Nuclear Physics B, 406(1-2):19–42, 1993.[5] P.A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.[6] SF Mantilla, R Martinez, and F Ochoa. Neutrino and c p-even higgs boson masses in a nonuniversal u(1)’ extension. Physical Review D, 95(9):095037, 2017.[7] Chong-sa Lim, Toshiyuki Morii, and Shankar Nath Mukherjee. The physics of the standard model and beyond. World Scientific, 2004.[8] J Hosaka, K Ishihara, J Kameda, Yusuke Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, M Nakahata, T Namba, et al. Solar neutrino measurements in super- kamiokande-i. Physical Review D, 73(11):112001, 2006.[9] MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, Maryon Ahrens, D Altmann, T Anderson, C Arguelles, TC Arlen, et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of icecube deepcore data. Physical Review D, 91(7):072004, 2015.[10] Investigación y Ciencia. Física del sabor. https://www.investigacionyciencia.es/blogs/fisica- y-quimica/29/posts/fsica-de-sabores-10736.[11] Gustavo Castello Branco, David Emmanuel-Costa, and R Gonzalez Felipe. Texture zeros and weak basis transformations. Physics Letters B, 477(1-3):147–155, 2000.[12] H Nishiura, K Matsuda, and T Fukuyama. Lepton and quark mass matrices. Physical Review D, 60(1):013006, 1999.[13] L Lavoura. New texture-zero patterns for lepton mixing. Journal of Physics G: Nuclear and Particle Physics, 42(10):105004, 2015.[14] Savas Dimopoulos, Lawrence J Hall, and Stuart Raby. Predictive framework for fermion masses in supersymmetric theories. Physical Review Letters, 68(13):1984, 1992.[15] Howard Georgi and C Jarlskog. A new lepton-quark mass relation in a unified theory. Physics Letters B, 86(3-4):297–300, 1979.[16] Harald Fritzsch. Calculating the cabibbo angle. Physics Letters B, 70(4):436–440, 1977.[17] Harald Fritzsch. Weak-interaction mixing in the six-quark theory. Physics Letters B, 73(3):317–322, 1978.[18] Harald Fritzsch. Quark masses and flavor mixing. Nuclear Physics B, 155(1):189–207, 1979.[19] Yithsbey Giraldo. Ceros de textura en el sector de quarks del modelo estándar. 2016.[20] Manmohan Gupta and Gulsheen Ahuja. Flavor mixings and textures of the fermion mass matrices. International Journal of Modern Physics A, 27(31):1230033, 2012.[21] Camilo Alejandro Rojas Pacheco. Texturas de masa para el sector de quarks bajo el modelo electrodébil. 2014.[22] Dong-sheng Du and Zhi-zhong Xing. A modified fritzsch ansatz with additional first- order perturbation. Technical report, P00005208, 1992.[23] Dongsheng Du and Zhi-zhong Xing. Quark mass matrices with full first-order perturba- tion. Physical Review D, 48(5):2349, 1993.[24] A Carcamo, R Martinez, and J-A Rodriguez. Different kind of textures of yukawa coupling matrices in the two higgs doublet model type iii. The European Physical Journal C, 50(4):935–948, 2007.[25] Elena Accomando, Claudio Coriano, Luigi Delle Rose, Juri Fiaschi, Carlo Marzo, and Stefano Moretti. Z’, higgses and heavy neutrinos in u (1)’ models: from the lhc to the gut scale. Journal of High Energy Physics, 2016(7):86, 2016.[26] R Martinez, J Nisperuza, F Ochoa, and JP Rubio. Some phenomenological aspects of a new u(1)’ model. Physical Review D, 89(5):056008, 2014.[27] Lisa L Everett, Jing Jiang, Paul G Langacker, and Tao Liu. Phenomenological implications of supersymmetric family nonuniversal u (1) models. Physical Review D, 82(9):094024, 2010.[28] A Leike. The phenomenology of extra neutral gauge bosons, phys, 1999.[29] Paul Langacker and Michael Plümacher. Flavor changing effects in theories with a heavy z’ boson with family nonuniversal couplings. Physical Review D, 62(1):013006, 2000.[30] Marco Antonio Moreira. El modelo estándar de la física de partículas. Revista Brasileña de Enseñanza de Física, 31(1):1306, 2009.[31] Patricia Castiella Esparza. Física del bosón de higgs en el lhc.[32] Ta-Pei Cheng and Ling-Fong Li. Gauge theory of elementary particle physics. Oxford university press, 1994.[33] Roberto Martínez. Teoría cuántica de campos. Universidad Nacional de Colombia, 2007.[34] Georges Aad, Tatevik Abajyan, B Abbott, J Abdallah, S Abdel Khalek, Ahmed Ali Abdelalim, R Aben, B Abi, M Abolins, OS AbouZeid, et al. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012.[35] Serguei Chatrchyan, Vardan Khachatryan, Albert M Sirunyan, Armen Tumasyan, Wolf- gang Adam, Ernest Aguilo, Thomas Bergauer, M Dragicevic, J Erö, C Fabjan, et al. Obser- vation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B, 716(1):30–61, 2012.[36] M Gomez-Bock, M Mondragon, M Muhlleitner, R Noriega-Papaqui, I Pedraza, M Spira, and PM Zerwas. Rompimiento de la simetria electrodebil y la fisica del higgs: Conceptos basicos. arXiv preprint hep-ph/0509077, 2005.[37] Nestor Quintero Poveda. Una descripción sencilla de las teorías gauge. Revista Tumbaga, 1(4), 2009.[38] LL Salcedo. Física matemática. grupos de lie, rotaciones, unitarios, poincaré. monte carlo.[39] Antonio Pich. The standard model of electroweak interactions. arXiv preprint ar- Xiv:1201.0537, 2012.[40] Sérgio Ferraz Novaes. Standard model: An introduction. arXiv preprint hep-ph/0001283, 2000.[41] M Herrero. The standard model. In Techniques and Concepts of High Energy Physics X, pages 1–59. Springer, 1999.[42] Paul Langacker. The standard model and beyond. Taylor & Francis, 2017.[43] Jeffrey Goldstone. Field theories with «superconductor» solutions. Il Nuovo Cimento (1955-1965), 19(1):154–164, 1961.[44] John F Gunion, Howard E Haber, Gordon Kane, and Dawson Sally. The Higgs hunter’s guide. CRC Press, 2018.[45] Luis G Cabral-Rosetti. Introducción al modelo estándar en el background field method electrodebil. Revista mexicana de física, 48(2):155–181, 2002.[46] IS Towner and JC Hardy. The evaluation of vud and its impact on the unitarity of the cabibbo–kobayashi–maskawa quark-mixing matrix. Reports on Progress in Physics, 73(4):046301, 2010.[47] Lincoln Wolfenstein. Parametrization of the kobayashi-maskawa matrix. Physical Review Letters, 51(21):1945, 1983.[48] Harald Fritzsch and Zhi-Zhong Xing. Flavor symmetries and the description of flavor mixing. Physics Letters B, 413(3-4):396–404, 1997.[49] Makoto Kobayashi and Toshihide Maskawa. Cp-violation in the renormalizable theory of weak interaction. Progress of theoretical physics, 49(2):652–657, 1973.[50] Ling-Lie Chau and Wai-Yee Keung. Comments on the parametrization of the kobayashi- maskawa matrix. Physical Review Letters, 53(19):1802, 1984.[51] Yithsbey Giraldo. Texture zeros and weak basis transformations in the quark sector of the standard model. Physical Review D, 86(9):093021, 2012.[52] Davi B Costa, Bogdan A Dobrescu, and Patrick J Fox. General solution to the u (1) anomaly equations. Physical review letters, 123(15):151601, 2019.[53] Samandeep Sharma, Priyanka Fakay, Gulsheen Ahuja, and Manmohan Gupta. Comment on “texture zeros and weak basis transformations in the quark sector of the standard model”. Physical Review D, 91(3):038301, 2015.[54] Samandeep Sharma, Priyanka Fakay, Gulsheen Ahuja, and Manmohan Gupta. Clues towards unified textures. International Journal of Modern Physics A, 29(21):1444005, 2014.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1014255782.2022.pdf1014255782.2022.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf558146https://repositorio.unal.edu.co/bitstream/unal/81632/3/1014255782.2022.pdf93e1bd7dd692e3aadd46856d19a24128MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81632/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1014255782.2022.pdf.jpg1014255782.2022.pdf.jpgGenerated Thumbnailimage/jpeg3724https://repositorio.unal.edu.co/bitstream/unal/81632/5/1014255782.2022.pdf.jpg29857053eda3d7176986cec08e18d970MD55unal/81632oai:repositorio.unal.edu.co:unal/816322023-08-05 23:04:03.769Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |