Quantum measurement learning for medical image classification
ilustraciones, graficas, tablas
- Autores:
-
Diego Hernando, Useche Reyes
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81541
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::003 - Sistemas
CANCER-FORMACION DE IMAGENES
Cancer-imaging
Quantum measurement classification
Prostate cancer
Deep learning
Quantum machine learning
clasificación con medición cuántica
cáncer de próstata
aprendizaje profundo
aprendizaje automático cuántico
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_38e497ec143b593957364605df9ba202 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81541 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Quantum measurement learning for medical image classification |
dc.title.translated.spa.fl_str_mv |
Aprendizaje con medición cuántica para la clasificación de imágenes médicas |
title |
Quantum measurement learning for medical image classification |
spellingShingle |
Quantum measurement learning for medical image classification 000 - Ciencias de la computación, información y obras generales::003 - Sistemas CANCER-FORMACION DE IMAGENES Cancer-imaging Quantum measurement classification Prostate cancer Deep learning Quantum machine learning clasificación con medición cuántica cáncer de próstata aprendizaje profundo aprendizaje automático cuántico |
title_short |
Quantum measurement learning for medical image classification |
title_full |
Quantum measurement learning for medical image classification |
title_fullStr |
Quantum measurement learning for medical image classification |
title_full_unstemmed |
Quantum measurement learning for medical image classification |
title_sort |
Quantum measurement learning for medical image classification |
dc.creator.fl_str_mv |
Diego Hernando, Useche Reyes |
dc.contributor.advisor.none.fl_str_mv |
Fabio Augusto, Gonzaléz Osorio |
dc.contributor.author.none.fl_str_mv |
Diego Hernando, Useche Reyes |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::003 - Sistemas |
topic |
000 - Ciencias de la computación, información y obras generales::003 - Sistemas CANCER-FORMACION DE IMAGENES Cancer-imaging Quantum measurement classification Prostate cancer Deep learning Quantum machine learning clasificación con medición cuántica cáncer de próstata aprendizaje profundo aprendizaje automático cuántico |
dc.subject.lemb.spa.fl_str_mv |
CANCER-FORMACION DE IMAGENES |
dc.subject.lemb.eng.fl_str_mv |
Cancer-imaging |
dc.subject.proposal.eng.fl_str_mv |
Quantum measurement classification Prostate cancer Deep learning Quantum machine learning |
dc.subject.proposal.spa.fl_str_mv |
clasificación con medición cuántica cáncer de próstata aprendizaje profundo aprendizaje automático cuántico |
description |
ilustraciones, graficas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-08T20:51:34Z |
dc.date.available.none.fl_str_mv |
2022-06-08T20:51:34Z |
dc.date.issued.none.fl_str_mv |
2022-03 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81541 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81541 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
F. A. González, V. Vargas-Calderón, and H. Vinck-Posada, “Classification with Quantum Measurements,” https://doi.org/10.7566/JPSJ.90.044002, vol. 90, no. 4, 3 2021. [Online]. Available: https://journals.jps.jp/doi/abs/10.7566/JPSJ.90.044002 F. A. González, A. Gallego, S. Toledo-Cortés, and V. Vargas-Calderón, “Learning with Density Matrices and Random Features,” 2 2021. [Online]. Available: https://arxiv.org/abs/2102.04394v4 Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 2015 521:7553, vol. 521, no. 7553, pp. 436–444, 5 2015. [Online]. Available: https://www.nature.com/articles/nature14539 D. E. Rumelhart and J. L. McClelland, “Learning Internal Representations by Error Propagation - MIT Press books,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations. MIT Press, 1987, pp. 318–362. L. Cun, J. Henderson, Y. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Handwritten Digit Recognition with a Back-Propagation Network,” Tech. Rep. A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan, N. Shih, J. Tomaszewski, and A. Madabhushi, “Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks,” in Medical Imaging 2014: Digital Pathology, vol. 9041, 2014, p. 904103. [Online]. Available: http://spiedl.org/terms S. Otálora, O. Perdomo, F. González, and H. Muller, “Training Deep Convolutional Neural Networks with Active Learning for Exudate Classification in Eye Fundus Images,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10552 LNCS, 2017, pp. 146–154. [Online]. Available: http://www.who.int/diabetes/en/ O. Perdomo, S. Otalora, F. Rodríguez, J. Arevalo, and F. A. González, “A Novel Machine Learning Model Based on Exudate Localization to Detect Diabetic Macular Edema,” Ophthalmic Medical Image Analysis International Workshop, vol. 3, no. 2016, pp. 137–144, 10 2016. [Online]. Available: https://pubs.lib.uiowa.edu/omia/article/id/27635/ A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Con- ference, 2009. S. Toledo-Cortés, D. H. Useche, and F. A. González, “Prostate Tissue Grading with Deep Quantum Measurement Ordinal Regression,” 3 2021. [Online]. Available: https://arxiv.org/abs/2103.03188v1 D. H. Useche, A. Giraldo-Carvajal, H. M. Zuluaga-Bucheli, J. A. Jaramillo-Villegas, and F. A. González, “Quantum measurement classification with qudits,” Quantum Information Processing 2021 21:1, vol. 21, no. 1, pp. 1–12, 12 2021. [Online]. Available: https://link.springer.com/article/10.1007/s11128-021-03363-y S. F. Faraj, S. M. Bezerra, K. Yousefi, H. Fedor, S. Glavaris, M. Han, A. W. Partin, E. Humphreys, J. Tosoian, M. H. Johnson, E. Davicioni, B. J. Trock, E. M. Schaeffer, A. E. Ross, and G. J. Netto, “Clinical Validation of the 2005 ISUP Gleason Grading System in a Cohort of Intermediate and High Risk Men Undergoing Radical Prostatectomy,” PLOS ONE, vol. 11, no. 1, p. e0146189, 1 2016. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146189 Y. Li, M. Huang, Y. Zhang, J. Chen, H. Xu, G. Wang, and W. Feng, “Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer,” IEEE Access, vol. 8, pp. 117 714–117 725, 2020. P. Strom, K. Kartasalo, H. Olsson, L. Solorzano, B. Delahunt, D. M. Berney, D. G. Bostwick, A. J. Evans, D. J. Grignon, P. A. Humphrey, K. A. Iczkowski, J. G. Kench, G. Kristiansen, T. H. van der Kwast, K. R. Leite, J. K. McKenney, J. Oxley, C. C. Pan, H. Samaratunga, J. R. Srigley, H. Takahashi, T. Tsuzuki, M. Varma, M. Zhou, J. Lindberg, C. Lindskog, P. Ruusuvuori, C. W ̈ahlby, H. Gr ̈onberg, M. Rantalainen, L. Egevad, and M. Eklund, “Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study,” The Lancet Oncology, vol. 21, no. 2, pp. 222–232, 2 2020. W. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van Ginneken, J. van der Laak, C. Hulsbergen-van de Kaa, and G. Litjens, “Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study,” The Lancet Oncology, vol. 21, no. 2, pp. 233–241, 2 2020. J. S. Lara, V. H. Contreras O, S. Otálora, H. M ̈uller, and F. A. González, “Multi- modal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12265 LNCS. Springer Science and Business Media Deutschland GmbH, 2020, pp. 572–581. J. Vaicenavicius, D. Widmann, C. Andersson, F. Lindsten, J. Roll, and T. B. Schon, “Evaluating model calibration in classification,” pp. 3459–3467, 4 2019. [Online]. Available: https://proceedings.mlr.press/v89/vaicenavicius19a.html K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone, “Random Feature Expansions for Deep Gaussian Processes,” pp. 884–893, 7 2017. [Online]. Available: https://proceedings.mlr.press/v70/cutajar17a.html C. E. Rasmussen, “Gaussian Processes in Machine Learning,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3176, pp. 63–71, 2003. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-28650-9 4 O. Jiménez del Toro, M. Atzori, S. Otálora, M. Andersson, K. Eurén, M. Hedlund, P. Ronnquist, and H. Muller, “Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score,” in Medical Imaging 2017: Digital Pathology, vol. 10140, 2017, p. 101400O. [Online]. Available: http://cancergenome.nih.gov/, Y. Tolkach, T. Dohmgorgen, M. Toma, and G. Kristiansen, “High-accuracy prostate cancer pathology using deep learning,” Nature Machine Intelligence, vol. 2, no. 7, pp. 411–418, 7 2020. [Online]. Available: https://www.nature.com/articles/s42256-0 20-0200-7 D. Karimi, G. Nir, L. Fazli, P. C. Black, L. Goldenberg, and S. E. Salcudean, “Deep Learning-Based Gleason Grading of Prostate Cancer from Histopathology Images - Role of Multiscale Decision Aggregation and Data Augmentation,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 5, pp. 1413–1426, 5 2020. E. Esteban, M. López-Pérez, A. Colomer, M. A. Sales, R. Molina, and V. Naranjo, “A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes,” Computer Methods and Programs in Biomedicine, vol. 178, pp. 303–317, 9 2019. M. Lucas, I. Jansen, C. D. Savci-Heijink, S. L. Meijer, O. J. de Boer, T. G. van Leeuwen, D. M. de Bruin, and H. A. Marquering, “Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies,” Virchows Archiv, vol. 475, no. 1, pp. 77–83, 7 2019. [Online]. Available: https://doi.org/10.1007/s00428-019-02577-x . A. Khani, S. A. Fatemi Jahromi, H. O. Shahreza, H. Behroozi, and M. S. Baghshah, “Towards Automatic Prostate Gleason Grading Via Deep Convolutional Neural Networks,” in 5th Iranian Conference on Signal Processing and Intelligent Systems, IC- SPIS 2019. Institute of Electrical and Electronics Engineers Inc., 12 2019. F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 1800–1807, 10 2016. [Online]. Available: https://arxiv.org/abs/1610.02357v3 C. K. Shie, C. H. Chuang, C. N. Chou, M. H. Wu, and E. Y. Chang, “Transfer representation learning for medical image analysis,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2015-Novem, pp. 711–714, 11 2015. J. Arevalo, F. A. González, R. Ramos-Pollán, J. L. Oliveira, and M. A. Guevara Lopez, “Representation learning for mammography mass lesion classification with convolutional neural networks,” Computer Methods and Programs in Biomedicine, vol. 127, pp. 248–257, 4 2016. Q. Tang, Y. Liu, and H. Liu, “Medical image classification via multiscale representation learning,” Artificial Intelligence in Medicine, vol. 79, pp. 71–78, 6 2017. T. Moriya, H. R. Roth, S. Nakamura, H. Oda, K. Nagara, M. Oda, and K. Mori, “Unsupervised segmentation of 3D medical images based on clustering and deep representation learning,” https://doi.org/10.1117/12.2293414, vol. 10578, pp. 483–489, 3 2018. [Online]. Available: https://www.spiedigitallibrary.o rg/conference-proceedings-of -spie/10578/1057820/Unsupervised-segmentation- of -3D-medical-images-based-on-clustering-and/10.1117/12.2293414.fullhttps: //www.spiedigitallibrary.org/conference-proceedings-of-spie/10578/1057820/ A. Chartsias, T. Joyce, G. Papanastasiou, S. Semple, M. Williams, D. E. Newby, R. Dharmakumar, and S. A. Tsaftaris, “Disentangled representation learning in cardiac image analysis,” Medical Image Analysis, vol. 58, p. 101535, 12 2019. N. Dong, M. Kampffmeyer, and I. Voiculescu, “Self-supervised Multi-task Representation Learning for Sequential Medical Images,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12977 LNAI, pp. 779–794, 9 2021. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-86523-8 47 P. Zhang, F. Wang, and Y. Zheng, “Self supervised deep representation learning for fine-grained body part recognition,” Proceedings - International Symposium on Biomedical Imaging, pp. 578–582, 6 2017. M. Adnan, S. Kalra, and H. R. Tizhoosh, “Representation Learning of Histopathology Images using Graph Neural Networks,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2020-June, pp. 4254–4261, 4 2020. [Online]. Available: https://arxiv.org/abs/2004.07399v2 M. M. Li, K. Huang, and M. Zitnik, “Graph Representation Learning in Biomedicine,” 4 2021. [Online]. Available: https://arxiv.org/abs/2104.04883v2 S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, pp. 886–893, 2005. J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification,” 10 2021. [Online]. Available: https://arxiv.org/abs/2110.14795v1 J. N. Kather, J. Krisam, P. Charoentong, T. Luedde, E. Herpel, C. A. Weis, T. Gaiser, A. Marx, N. A. Valous, D. Ferber, L. Jansen, C. C. Reyes-Aldasoro, I. Zornig, D. Jager, H. Brenner, J. Chang-Claude, M. Hoffmeister, and N. Halama, “Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study,” PLOS Medicine, vol. 16, no. 1, p. e1002730, 2019. [Online]. Available: https://journals.plos.org/plosmedicine/article?id=10.1371/jour nal.pmed.1002730 A. Vaswani, G. Brain, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Kaiser, and I. Polosukhin, “Attention is All you Need,” Advances in Neural Information Processing Systems, vol. 30, 2017. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandr`a, J. R. Mcclean, M. Mcewen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, p. 505, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1666-5 C. Schaeff, R. Polster, M. Huber, S. Ramelow, and A. Zeilinger, “Experimental access to higher-dimensional entangled quantum systems using integrated optics,” Optica, vol. 2, no. 6, p. 523, 6 2015. [Online]. Available: http://dx.doi.org/10.1364/OPTICA.2.000523 J. Carolan, C. Harrold, C. Sparrow, E. Mart ́ın-L ́opez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science, vol. 349, no. 6249, pp. 711–716, 8 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/26160375/ A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Gunthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, “High-dimensional intracity quantum cryptography with structured photons,” Optica, vol. 4, no. 9, p. 1006, 9 2017. [Online]. Available: https://doi.org/10.1364/OPTICA.4.001006 A. B. Klimov, R. Guzm ́an, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 67, no. 6, p. 7, 6 2003. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.67.062313 Z. Gedik, I. A. Silva, B. C ̧ akmak, G. Karpat, E. L. Vidoto, D. O. Soares-Pinto, E. R. DeAzevedo, and F. F. Fanchini, “Computational speed-up with a single qudit,” Scientific Reports, vol. 5, no. 1, p. 14671, 10 2015. [Online]. Available: www.nature.com/scientificreports/ E. Moreno-Pineda, C. Godfrin, F. Balestro, W. Wernsdorfer, and M. Ruben, “Molecular spin qudits for quantum algorithms,” pp. 501–513, 1 2018. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2018/cs/c5cs00933bhttps: //pubs.rsc.org/en/content/articlelanding/2018/cs/c5cs00933b D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges,” Advanced Quantum Technologies, vol. 2, no. 12, p. 1900038, 12 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/qute.201900038https: //onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900038https://onlinelibrary.wile y.com/doi/10.1002/qute.201900038 L. Sheridan and V. Scarani, “Security proof for quantum key distribution using qudit systems,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 82, no. 3, p. 030301, 9 2010. [Online]. Available: https: //journals.aps.org/pra/abstract/10.1103/PhysRevA.82.030301 P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Physical Review Letters, vol. 113, no. 3, 9 2014. N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum Deep Learning,” Quantum Information and Computation, vol. 16, no. 7-8, pp. 541–587, 12 2014. [Online]. Available: https://arxiv.org/abs/1412.3489v2 . Lu and S. L. Braunstein, “Quantum decision tree classifier,” Quantum Information Processing 2013 13:3, vol. 13, no. 3, pp. 757–770, 11 2013. [Online]. Available: https://link.springer.com/article/10.1007/s11128-013-0687-5 A. A. Ezhov and D. Ventura, “Quantum Neural Networks.” Physica, Heidelberg, 2000, pp. 213–235. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-7908-1856-7 11 I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nature Physics, vol. 15, no. 12, pp. 1273–1278, 12 2019. [Online]. Available: https://www.nature.com/articles/s41567-019-0648-8 P. L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial networks,” Physical Review A, vol. 98, no. 1, p. 012324, 7 2018. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.012324 F. A. Cárdenas-López, L. Lamata, J. C. Retamal, and E. Solano, “Multiqubit and multilevel quantum reinforcement learning with quantum technologies,” PLoS ONE, vol. 13, no. 7, p. e0200455, 7 2018. [Online]. Available: https://doi.org/10.1371/journal.pone.0200455 D. N. Diep, “Some Quantum Neural Networks,” International Journal of Theoretical Physics, vol. 59, no. 4, pp. 1179–1187, 4 2020. [Online]. Available: https://link.springer.com/article/10.1007/s10773-020-04397-1 B. Ricks and D. Ventura, “Training a Quantum Neural Network,” Advances in Neural Information Processing Systems, vol. 16, 2003. K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann, and R. Wolf, “Efficient learning for deep quantum neural networks,” pp. 1–6, 2 2019. [Online]. Available: https://doi.org/10.1038/s41467-020-14454-2 A. Giraldo-Carvajal and J. A. Jaramillo-Villegas, “QuantumSkynet: A High- Dimensional Quantum Computing Simulator,” Optics InfoBase Conference Papers, 6 2021. [Online]. Available: https://arxiv.org/abs/2106.15833v1 F. S. Khan and M. Perkowski, “Synthesis of multi-qudit hybrid and d-valued quantum logic circuits by decomposition,” Theoretical Computer Science, vol. 367, no. 3, pp. 336–346, 12 2006. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
59 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería de Sistemas e Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81541/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81541/3/1026569527.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81541/5/1026569527.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8153f7789df02f0a4c9e079953658ab2 77f6f34a8c9715ddd655748d13fc6727 5cbb3a77b1bab9c49cec28d5bdf0ddb0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089185637695488 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fabio Augusto, Gonzaléz Osorio89dcb2596792ec8ae0085fa9e2908a87Diego Hernando, Useche Reyesb2eb7c6c4cf73215241c1ad8b37337272022-06-08T20:51:34Z2022-06-08T20:51:34Z2022-03https://repositorio.unal.edu.co/handle/unal/81541Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, tablasDeep neural networks are the state-of-the-art for medical image classification. However, these models require large data sets to be trained, and they lack some interpretability on their predictions. In recent years, there has been a growing interests of using the statistical machinery of quantum mechanics to built novel machine learning models, which may run on classical or quantum computers. One of such models is the recently proposed method quantum measurement classification (QMC) [1]. In this thesis, we present various classical-quantum machine learning strategies that combine convolutional neural networks (CNNs) with methods based on QMC [2] to the task of learning medical images in a supervised manner. We first approach the problem with a deep probabilistic regression model, showing that is competitive, and more interpretable compared to conventional deep learning architectures. We then present a representation learning technique based on CNNs which maps medical images to pure and mixed quantum states, and show that its competitive with other representation learning strategies. In addition, we propose a quantum implementation of two QMC-based models on a high-dimensional quantum computer, we demonstrate that it is possible to perform classification and density estimation in a quantum computer.Las redes neuronales profundas están a la vanguardia para la clasificación de imágenes médicas. Sin embargo, estos modelos requieren para su entrenamiento conjuntos de datos muy grandes, y a sus predicciones les falta interpretabilidad. Recientemente, se han propuesto varios métodos de inteligencia artificial basados en la mecánica cuántica, los cuales pueden ser implementados en computadores clásicos o cuánticos. Uno de estos métodos es el recientemente propuesto \textit{Quantum Measurement Classification} (QMC) [1]. En este trabajo de tesis, presentamos diferentes estrategias clásicas y cuánticas de aprendizaje automático, las cuales combinan las redes neuronales convolucionales (CNNs) y algunos métodos basados en QMC [2] para la tarea de aprendizaje supervisado de imagenes medicas. En primer lugar, planteamos el problema de clasificación con un modelo de regresión profundo y probabilístico, mostrando que es competitivo y más interpretable en comparación a arquitecturas convencionales de aprendizaje profundo. En segundo lugar, presentamos un método de aprendizaje de la representación basado en CNNs del cual se obtienen características de las imágenes médicas en forma de estados cuánticos puros y mezclados, y mostramos que los resultados del método son competitivos con otras estrategias de representación. Adicionalmente, proponemos una implementación cuántica de dos métodos de aprendizaje automático basados en QMC en un computador cuántico de altas dimensiones, mostrando que es posible el aprendizaje supervisado y la estimación de la densidad en un computador cuántico. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Ingeniería de Sistemas y Computación59 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::003 - SistemasCANCER-FORMACION DE IMAGENESCancer-imagingQuantum measurement classificationProstate cancerDeep learningQuantum machine learningclasificación con medición cuánticacáncer de próstataaprendizaje profundoaprendizaje automático cuánticoQuantum measurement learning for medical image classificationAprendizaje con medición cuántica para la clasificación de imágenes médicasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMF. A. González, V. Vargas-Calderón, and H. Vinck-Posada, “Classification with Quantum Measurements,” https://doi.org/10.7566/JPSJ.90.044002, vol. 90, no. 4, 3 2021. [Online]. Available: https://journals.jps.jp/doi/abs/10.7566/JPSJ.90.044002F. A. González, A. Gallego, S. Toledo-Cortés, and V. Vargas-Calderón, “Learning with Density Matrices and Random Features,” 2 2021. [Online]. Available: https://arxiv.org/abs/2102.04394v4Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 2015 521:7553, vol. 521, no. 7553, pp. 436–444, 5 2015. [Online]. Available: https://www.nature.com/articles/nature14539D. E. Rumelhart and J. L. McClelland, “Learning Internal Representations by Error Propagation - MIT Press books,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations. MIT Press, 1987, pp. 318–362.L. Cun, J. Henderson, Y. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Handwritten Digit Recognition with a Back-Propagation Network,” Tech. Rep.A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan, N. Shih, J. Tomaszewski, and A. Madabhushi, “Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks,” in Medical Imaging 2014: Digital Pathology, vol. 9041, 2014, p. 904103. [Online]. Available: http://spiedl.org/termsS. Otálora, O. Perdomo, F. González, and H. Muller, “Training Deep Convolutional Neural Networks with Active Learning for Exudate Classification in Eye Fundus Images,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10552 LNCS, 2017, pp. 146–154. [Online]. Available: http://www.who.int/diabetes/en/O. Perdomo, S. Otalora, F. Rodríguez, J. Arevalo, and F. A. González, “A Novel Machine Learning Model Based on Exudate Localization to Detect Diabetic Macular Edema,” Ophthalmic Medical Image Analysis International Workshop, vol. 3, no. 2016, pp. 137–144, 10 2016. [Online]. Available: https://pubs.lib.uiowa.edu/omia/article/id/27635/A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Con- ference, 2009.S. Toledo-Cortés, D. H. Useche, and F. A. González, “Prostate Tissue Grading with Deep Quantum Measurement Ordinal Regression,” 3 2021. [Online]. Available: https://arxiv.org/abs/2103.03188v1D. H. Useche, A. Giraldo-Carvajal, H. M. Zuluaga-Bucheli, J. A. Jaramillo-Villegas, and F. A. González, “Quantum measurement classification with qudits,” Quantum Information Processing 2021 21:1, vol. 21, no. 1, pp. 1–12, 12 2021. [Online]. Available: https://link.springer.com/article/10.1007/s11128-021-03363-yS. F. Faraj, S. M. Bezerra, K. Yousefi, H. Fedor, S. Glavaris, M. Han, A. W. Partin, E. Humphreys, J. Tosoian, M. H. Johnson, E. Davicioni, B. J. Trock, E. M. Schaeffer, A. E. Ross, and G. J. Netto, “Clinical Validation of the 2005 ISUP Gleason Grading System in a Cohort of Intermediate and High Risk Men Undergoing Radical Prostatectomy,” PLOS ONE, vol. 11, no. 1, p. e0146189, 1 2016. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146189Y. Li, M. Huang, Y. Zhang, J. Chen, H. Xu, G. Wang, and W. Feng, “Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer,” IEEE Access, vol. 8, pp. 117 714–117 725, 2020.P. Strom, K. Kartasalo, H. Olsson, L. Solorzano, B. Delahunt, D. M. Berney, D. G. Bostwick, A. J. Evans, D. J. Grignon, P. A. Humphrey, K. A. Iczkowski, J. G. Kench, G. Kristiansen, T. H. van der Kwast, K. R. Leite, J. K. McKenney, J. Oxley, C. C. Pan, H. Samaratunga, J. R. Srigley, H. Takahashi, T. Tsuzuki, M. Varma, M. Zhou, J. Lindberg, C. Lindskog, P. Ruusuvuori, C. W ̈ahlby, H. Gr ̈onberg, M. Rantalainen, L. Egevad, and M. Eklund, “Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study,” The Lancet Oncology, vol. 21, no. 2, pp. 222–232, 2 2020.W. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van Ginneken, J. van der Laak, C. Hulsbergen-van de Kaa, and G. Litjens, “Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study,” The Lancet Oncology, vol. 21, no. 2, pp. 233–241, 2 2020.J. S. Lara, V. H. Contreras O, S. Otálora, H. M ̈uller, and F. A. González, “Multi- modal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12265 LNCS. Springer Science and Business Media Deutschland GmbH, 2020, pp. 572–581.J. Vaicenavicius, D. Widmann, C. Andersson, F. Lindsten, J. Roll, and T. B. Schon, “Evaluating model calibration in classification,” pp. 3459–3467, 4 2019. [Online]. Available: https://proceedings.mlr.press/v89/vaicenavicius19a.htmlK. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone, “Random Feature Expansions for Deep Gaussian Processes,” pp. 884–893, 7 2017. [Online]. Available: https://proceedings.mlr.press/v70/cutajar17a.htmlC. E. Rasmussen, “Gaussian Processes in Machine Learning,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3176, pp. 63–71, 2003. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-28650-9 4O. Jiménez del Toro, M. Atzori, S. Otálora, M. Andersson, K. Eurén, M. Hedlund, P. Ronnquist, and H. Muller, “Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score,” in Medical Imaging 2017: Digital Pathology, vol. 10140, 2017, p. 101400O. [Online]. Available: http://cancergenome.nih.gov/,Y. Tolkach, T. Dohmgorgen, M. Toma, and G. Kristiansen, “High-accuracy prostate cancer pathology using deep learning,” Nature Machine Intelligence, vol. 2, no. 7, pp. 411–418, 7 2020. [Online]. Available: https://www.nature.com/articles/s42256-0 20-0200-7D. Karimi, G. Nir, L. Fazli, P. C. Black, L. Goldenberg, and S. E. Salcudean, “Deep Learning-Based Gleason Grading of Prostate Cancer from Histopathology Images - Role of Multiscale Decision Aggregation and Data Augmentation,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 5, pp. 1413–1426, 5 2020.E. Esteban, M. López-Pérez, A. Colomer, M. A. Sales, R. Molina, and V. Naranjo, “A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes,” Computer Methods and Programs in Biomedicine, vol. 178, pp. 303–317, 9 2019.M. Lucas, I. Jansen, C. D. Savci-Heijink, S. L. Meijer, O. J. de Boer, T. G. van Leeuwen, D. M. de Bruin, and H. A. Marquering, “Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies,” Virchows Archiv, vol. 475, no. 1, pp. 77–83, 7 2019. [Online]. Available: https://doi.org/10.1007/s00428-019-02577-x. A. Khani, S. A. Fatemi Jahromi, H. O. Shahreza, H. Behroozi, and M. S. Baghshah, “Towards Automatic Prostate Gleason Grading Via Deep Convolutional Neural Networks,” in 5th Iranian Conference on Signal Processing and Intelligent Systems, IC- SPIS 2019. Institute of Electrical and Electronics Engineers Inc., 12 2019.F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 1800–1807, 10 2016. [Online]. Available: https://arxiv.org/abs/1610.02357v3C. K. Shie, C. H. Chuang, C. N. Chou, M. H. Wu, and E. Y. Chang, “Transfer representation learning for medical image analysis,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2015-Novem, pp. 711–714, 11 2015.J. Arevalo, F. A. González, R. Ramos-Pollán, J. L. Oliveira, and M. A. Guevara Lopez, “Representation learning for mammography mass lesion classification with convolutional neural networks,” Computer Methods and Programs in Biomedicine, vol. 127, pp. 248–257, 4 2016.Q. Tang, Y. Liu, and H. Liu, “Medical image classification via multiscale representation learning,” Artificial Intelligence in Medicine, vol. 79, pp. 71–78, 6 2017.T. Moriya, H. R. Roth, S. Nakamura, H. Oda, K. Nagara, M. Oda, and K. Mori, “Unsupervised segmentation of 3D medical images based on clustering and deep representation learning,” https://doi.org/10.1117/12.2293414, vol. 10578, pp. 483–489, 3 2018. [Online]. Available: https://www.spiedigitallibrary.o rg/conference-proceedings-of -spie/10578/1057820/Unsupervised-segmentation- of -3D-medical-images-based-on-clustering-and/10.1117/12.2293414.fullhttps: //www.spiedigitallibrary.org/conference-proceedings-of-spie/10578/1057820/A. Chartsias, T. Joyce, G. Papanastasiou, S. Semple, M. Williams, D. E. Newby, R. Dharmakumar, and S. A. Tsaftaris, “Disentangled representation learning in cardiac image analysis,” Medical Image Analysis, vol. 58, p. 101535, 12 2019.N. Dong, M. Kampffmeyer, and I. Voiculescu, “Self-supervised Multi-task Representation Learning for Sequential Medical Images,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12977 LNAI, pp. 779–794, 9 2021. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-86523-8 47P. Zhang, F. Wang, and Y. Zheng, “Self supervised deep representation learning for fine-grained body part recognition,” Proceedings - International Symposium on Biomedical Imaging, pp. 578–582, 6 2017.M. Adnan, S. Kalra, and H. R. Tizhoosh, “Representation Learning of Histopathology Images using Graph Neural Networks,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2020-June, pp. 4254–4261, 4 2020. [Online]. Available: https://arxiv.org/abs/2004.07399v2M. M. Li, K. Huang, and M. Zitnik, “Graph Representation Learning in Biomedicine,” 4 2021. [Online]. Available: https://arxiv.org/abs/2104.04883v2S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, pp. 886–893, 2005.J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification,” 10 2021. [Online]. Available: https://arxiv.org/abs/2110.14795v1J. N. Kather, J. Krisam, P. Charoentong, T. Luedde, E. Herpel, C. A. Weis, T. Gaiser, A. Marx, N. A. Valous, D. Ferber, L. Jansen, C. C. Reyes-Aldasoro, I. Zornig, D. Jager, H. Brenner, J. Chang-Claude, M. Hoffmeister, and N. Halama, “Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study,” PLOS Medicine, vol. 16, no. 1, p. e1002730, 2019. [Online]. Available: https://journals.plos.org/plosmedicine/article?id=10.1371/jour nal.pmed.1002730A. Vaswani, G. Brain, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Kaiser, and I. Polosukhin, “Attention is All you Need,” Advances in Neural Information Processing Systems, vol. 30, 2017.F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandr`a, J. R. Mcclean, M. Mcewen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, p. 505, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1666-5C. Schaeff, R. Polster, M. Huber, S. Ramelow, and A. Zeilinger, “Experimental access to higher-dimensional entangled quantum systems using integrated optics,” Optica, vol. 2, no. 6, p. 523, 6 2015. [Online]. Available: http://dx.doi.org/10.1364/OPTICA.2.000523J. Carolan, C. Harrold, C. Sparrow, E. Mart ́ın-L ́opez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science, vol. 349, no. 6249, pp. 711–716, 8 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/26160375/A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Gunthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, “High-dimensional intracity quantum cryptography with structured photons,” Optica, vol. 4, no. 9, p. 1006, 9 2017. [Online]. Available: https://doi.org/10.1364/OPTICA.4.001006A. B. Klimov, R. Guzm ́an, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 67, no. 6, p. 7, 6 2003. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.67.062313Z. Gedik, I. A. Silva, B. C ̧ akmak, G. Karpat, E. L. Vidoto, D. O. Soares-Pinto, E. R. DeAzevedo, and F. F. Fanchini, “Computational speed-up with a single qudit,” Scientific Reports, vol. 5, no. 1, p. 14671, 10 2015. [Online]. Available: www.nature.com/scientificreports/E. Moreno-Pineda, C. Godfrin, F. Balestro, W. Wernsdorfer, and M. Ruben, “Molecular spin qudits for quantum algorithms,” pp. 501–513, 1 2018. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2018/cs/c5cs00933bhttps: //pubs.rsc.org/en/content/articlelanding/2018/cs/c5cs00933bD. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges,” Advanced Quantum Technologies, vol. 2, no. 12, p. 1900038, 12 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/qute.201900038https: //onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900038https://onlinelibrary.wile y.com/doi/10.1002/qute.201900038L. Sheridan and V. Scarani, “Security proof for quantum key distribution using qudit systems,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 82, no. 3, p. 030301, 9 2010. [Online]. Available: https: //journals.aps.org/pra/abstract/10.1103/PhysRevA.82.030301P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Physical Review Letters, vol. 113, no. 3, 9 2014.N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum Deep Learning,” Quantum Information and Computation, vol. 16, no. 7-8, pp. 541–587, 12 2014. [Online]. Available: https://arxiv.org/abs/1412.3489v2. Lu and S. L. Braunstein, “Quantum decision tree classifier,” Quantum Information Processing 2013 13:3, vol. 13, no. 3, pp. 757–770, 11 2013. [Online]. Available: https://link.springer.com/article/10.1007/s11128-013-0687-5A. A. Ezhov and D. Ventura, “Quantum Neural Networks.” Physica, Heidelberg, 2000, pp. 213–235. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-7908-1856-7 11I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nature Physics, vol. 15, no. 12, pp. 1273–1278, 12 2019. [Online]. Available: https://www.nature.com/articles/s41567-019-0648-8P. L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial networks,” Physical Review A, vol. 98, no. 1, p. 012324, 7 2018. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.012324F. A. Cárdenas-López, L. Lamata, J. C. Retamal, and E. Solano, “Multiqubit and multilevel quantum reinforcement learning with quantum technologies,” PLoS ONE, vol. 13, no. 7, p. e0200455, 7 2018. [Online]. Available: https://doi.org/10.1371/journal.pone.0200455D. N. Diep, “Some Quantum Neural Networks,” International Journal of Theoretical Physics, vol. 59, no. 4, pp. 1179–1187, 4 2020. [Online]. Available: https://link.springer.com/article/10.1007/s10773-020-04397-1B. Ricks and D. Ventura, “Training a Quantum Neural Network,” Advances in Neural Information Processing Systems, vol. 16, 2003.K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann, and R. Wolf, “Efficient learning for deep quantum neural networks,” pp. 1–6, 2 2019. [Online]. Available: https://doi.org/10.1038/s41467-020-14454-2A. Giraldo-Carvajal and J. A. Jaramillo-Villegas, “QuantumSkynet: A High- Dimensional Quantum Computing Simulator,” Optics InfoBase Conference Papers, 6 2021. [Online]. Available: https://arxiv.org/abs/2106.15833v1F. S. Khan and M. Perkowski, “Synthesis of multi-qudit hybrid and d-valued quantum logic circuits by decomposition,” Theoretical Computer Science, vol. 367, no. 3, pp. 336–346, 12 2006.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81541/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54ORIGINAL1026569527.2022.pdf1026569527.2022.pdfTesis de Maestría en Sistemas y Computaciónapplication/pdf1115684https://repositorio.unal.edu.co/bitstream/unal/81541/3/1026569527.2022.pdf77f6f34a8c9715ddd655748d13fc6727MD53THUMBNAIL1026569527.2022.pdf.jpg1026569527.2022.pdf.jpgGenerated Thumbnailimage/jpeg4479https://repositorio.unal.edu.co/bitstream/unal/81541/5/1026569527.2022.pdf.jpg5cbb3a77b1bab9c49cec28d5bdf0ddb0MD55unal/81541oai:repositorio.unal.edu.co:unal/815412023-08-05 23:03:35.937Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |