Quantum measurement learning for medical image classification

ilustraciones, graficas, tablas

Autores:
Diego Hernando, Useche Reyes
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81541
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81541
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
CANCER-FORMACION DE IMAGENES
Cancer-imaging
Quantum measurement classification
Prostate cancer
Deep learning
Quantum machine learning
clasificación con medición cuántica
cáncer de próstata
aprendizaje profundo
aprendizaje automático cuántico
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_38e497ec143b593957364605df9ba202
oai_identifier_str oai:repositorio.unal.edu.co:unal/81541
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Quantum measurement learning for medical image classification
dc.title.translated.spa.fl_str_mv Aprendizaje con medición cuántica para la clasificación de imágenes médicas
title Quantum measurement learning for medical image classification
spellingShingle Quantum measurement learning for medical image classification
000 - Ciencias de la computación, información y obras generales::003 - Sistemas
CANCER-FORMACION DE IMAGENES
Cancer-imaging
Quantum measurement classification
Prostate cancer
Deep learning
Quantum machine learning
clasificación con medición cuántica
cáncer de próstata
aprendizaje profundo
aprendizaje automático cuántico
title_short Quantum measurement learning for medical image classification
title_full Quantum measurement learning for medical image classification
title_fullStr Quantum measurement learning for medical image classification
title_full_unstemmed Quantum measurement learning for medical image classification
title_sort Quantum measurement learning for medical image classification
dc.creator.fl_str_mv Diego Hernando, Useche Reyes
dc.contributor.advisor.none.fl_str_mv Fabio Augusto, Gonzaléz Osorio
dc.contributor.author.none.fl_str_mv Diego Hernando, Useche Reyes
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::003 - Sistemas
topic 000 - Ciencias de la computación, información y obras generales::003 - Sistemas
CANCER-FORMACION DE IMAGENES
Cancer-imaging
Quantum measurement classification
Prostate cancer
Deep learning
Quantum machine learning
clasificación con medición cuántica
cáncer de próstata
aprendizaje profundo
aprendizaje automático cuántico
dc.subject.lemb.spa.fl_str_mv CANCER-FORMACION DE IMAGENES
dc.subject.lemb.eng.fl_str_mv Cancer-imaging
dc.subject.proposal.eng.fl_str_mv Quantum measurement classification
Prostate cancer
Deep learning
Quantum machine learning
dc.subject.proposal.spa.fl_str_mv clasificación con medición cuántica
cáncer de próstata
aprendizaje profundo
aprendizaje automático cuántico
description ilustraciones, graficas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-08T20:51:34Z
dc.date.available.none.fl_str_mv 2022-06-08T20:51:34Z
dc.date.issued.none.fl_str_mv 2022-03
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81541
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81541
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv F. A. González, V. Vargas-Calderón, and H. Vinck-Posada, “Classification with Quantum Measurements,” https://doi.org/10.7566/JPSJ.90.044002, vol. 90, no. 4, 3 2021. [Online]. Available: https://journals.jps.jp/doi/abs/10.7566/JPSJ.90.044002
F. A. González, A. Gallego, S. Toledo-Cortés, and V. Vargas-Calderón, “Learning with Density Matrices and Random Features,” 2 2021. [Online]. Available: https://arxiv.org/abs/2102.04394v4
Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 2015 521:7553, vol. 521, no. 7553, pp. 436–444, 5 2015. [Online]. Available: https://www.nature.com/articles/nature14539
D. E. Rumelhart and J. L. McClelland, “Learning Internal Representations by Error Propagation - MIT Press books,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations. MIT Press, 1987, pp. 318–362.
L. Cun, J. Henderson, Y. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Handwritten Digit Recognition with a Back-Propagation Network,” Tech. Rep.
A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan, N. Shih, J. Tomaszewski, and A. Madabhushi, “Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks,” in Medical Imaging 2014: Digital Pathology, vol. 9041, 2014, p. 904103. [Online]. Available: http://spiedl.org/terms
S. Otálora, O. Perdomo, F. González, and H. Muller, “Training Deep Convolutional Neural Networks with Active Learning for Exudate Classification in Eye Fundus Images,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10552 LNCS, 2017, pp. 146–154. [Online]. Available: http://www.who.int/diabetes/en/
O. Perdomo, S. Otalora, F. Rodríguez, J. Arevalo, and F. A. González, “A Novel Machine Learning Model Based on Exudate Localization to Detect Diabetic Macular Edema,” Ophthalmic Medical Image Analysis International Workshop, vol. 3, no. 2016, pp. 137–144, 10 2016. [Online]. Available: https://pubs.lib.uiowa.edu/omia/article/id/27635/
A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Con- ference, 2009.
S. Toledo-Cortés, D. H. Useche, and F. A. González, “Prostate Tissue Grading with Deep Quantum Measurement Ordinal Regression,” 3 2021. [Online]. Available: https://arxiv.org/abs/2103.03188v1
D. H. Useche, A. Giraldo-Carvajal, H. M. Zuluaga-Bucheli, J. A. Jaramillo-Villegas, and F. A. González, “Quantum measurement classification with qudits,” Quantum Information Processing 2021 21:1, vol. 21, no. 1, pp. 1–12, 12 2021. [Online]. Available: https://link.springer.com/article/10.1007/s11128-021-03363-y
S. F. Faraj, S. M. Bezerra, K. Yousefi, H. Fedor, S. Glavaris, M. Han, A. W. Partin, E. Humphreys, J. Tosoian, M. H. Johnson, E. Davicioni, B. J. Trock, E. M. Schaeffer, A. E. Ross, and G. J. Netto, “Clinical Validation of the 2005 ISUP Gleason Grading System in a Cohort of Intermediate and High Risk Men Undergoing Radical Prostatectomy,” PLOS ONE, vol. 11, no. 1, p. e0146189, 1 2016. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146189
Y. Li, M. Huang, Y. Zhang, J. Chen, H. Xu, G. Wang, and W. Feng, “Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer,” IEEE Access, vol. 8, pp. 117 714–117 725, 2020.
P. Strom, K. Kartasalo, H. Olsson, L. Solorzano, B. Delahunt, D. M. Berney, D. G. Bostwick, A. J. Evans, D. J. Grignon, P. A. Humphrey, K. A. Iczkowski, J. G. Kench, G. Kristiansen, T. H. van der Kwast, K. R. Leite, J. K. McKenney, J. Oxley, C. C. Pan, H. Samaratunga, J. R. Srigley, H. Takahashi, T. Tsuzuki, M. Varma, M. Zhou, J. Lindberg, C. Lindskog, P. Ruusuvuori, C. W ̈ahlby, H. Gr ̈onberg, M. Rantalainen, L. Egevad, and M. Eklund, “Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study,” The Lancet Oncology, vol. 21, no. 2, pp. 222–232, 2 2020.
W. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van Ginneken, J. van der Laak, C. Hulsbergen-van de Kaa, and G. Litjens, “Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study,” The Lancet Oncology, vol. 21, no. 2, pp. 233–241, 2 2020.
J. S. Lara, V. H. Contreras O, S. Otálora, H. M ̈uller, and F. A. González, “Multi- modal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12265 LNCS. Springer Science and Business Media Deutschland GmbH, 2020, pp. 572–581.
J. Vaicenavicius, D. Widmann, C. Andersson, F. Lindsten, J. Roll, and T. B. Schon, “Evaluating model calibration in classification,” pp. 3459–3467, 4 2019. [Online]. Available: https://proceedings.mlr.press/v89/vaicenavicius19a.html
K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone, “Random Feature Expansions for Deep Gaussian Processes,” pp. 884–893, 7 2017. [Online]. Available: https://proceedings.mlr.press/v70/cutajar17a.html
C. E. Rasmussen, “Gaussian Processes in Machine Learning,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3176, pp. 63–71, 2003. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-28650-9 4
O. Jiménez del Toro, M. Atzori, S. Otálora, M. Andersson, K. Eurén, M. Hedlund, P. Ronnquist, and H. Muller, “Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score,” in Medical Imaging 2017: Digital Pathology, vol. 10140, 2017, p. 101400O. [Online]. Available: http://cancergenome.nih.gov/,
Y. Tolkach, T. Dohmgorgen, M. Toma, and G. Kristiansen, “High-accuracy prostate cancer pathology using deep learning,” Nature Machine Intelligence, vol. 2, no. 7, pp. 411–418, 7 2020. [Online]. Available: https://www.nature.com/articles/s42256-0 20-0200-7
D. Karimi, G. Nir, L. Fazli, P. C. Black, L. Goldenberg, and S. E. Salcudean, “Deep Learning-Based Gleason Grading of Prostate Cancer from Histopathology Images - Role of Multiscale Decision Aggregation and Data Augmentation,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 5, pp. 1413–1426, 5 2020.
E. Esteban, M. López-Pérez, A. Colomer, M. A. Sales, R. Molina, and V. Naranjo, “A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes,” Computer Methods and Programs in Biomedicine, vol. 178, pp. 303–317, 9 2019.
M. Lucas, I. Jansen, C. D. Savci-Heijink, S. L. Meijer, O. J. de Boer, T. G. van Leeuwen, D. M. de Bruin, and H. A. Marquering, “Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies,” Virchows Archiv, vol. 475, no. 1, pp. 77–83, 7 2019. [Online]. Available: https://doi.org/10.1007/s00428-019-02577-x
. A. Khani, S. A. Fatemi Jahromi, H. O. Shahreza, H. Behroozi, and M. S. Baghshah, “Towards Automatic Prostate Gleason Grading Via Deep Convolutional Neural Networks,” in 5th Iranian Conference on Signal Processing and Intelligent Systems, IC- SPIS 2019. Institute of Electrical and Electronics Engineers Inc., 12 2019.
F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 1800–1807, 10 2016. [Online]. Available: https://arxiv.org/abs/1610.02357v3
C. K. Shie, C. H. Chuang, C. N. Chou, M. H. Wu, and E. Y. Chang, “Transfer representation learning for medical image analysis,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2015-Novem, pp. 711–714, 11 2015.
J. Arevalo, F. A. González, R. Ramos-Pollán, J. L. Oliveira, and M. A. Guevara Lopez, “Representation learning for mammography mass lesion classification with convolutional neural networks,” Computer Methods and Programs in Biomedicine, vol. 127, pp. 248–257, 4 2016.
Q. Tang, Y. Liu, and H. Liu, “Medical image classification via multiscale representation learning,” Artificial Intelligence in Medicine, vol. 79, pp. 71–78, 6 2017.
T. Moriya, H. R. Roth, S. Nakamura, H. Oda, K. Nagara, M. Oda, and K. Mori, “Unsupervised segmentation of 3D medical images based on clustering and deep representation learning,” https://doi.org/10.1117/12.2293414, vol. 10578, pp. 483–489, 3 2018. [Online]. Available: https://www.spiedigitallibrary.o rg/conference-proceedings-of -spie/10578/1057820/Unsupervised-segmentation- of -3D-medical-images-based-on-clustering-and/10.1117/12.2293414.fullhttps: //www.spiedigitallibrary.org/conference-proceedings-of-spie/10578/1057820/
A. Chartsias, T. Joyce, G. Papanastasiou, S. Semple, M. Williams, D. E. Newby, R. Dharmakumar, and S. A. Tsaftaris, “Disentangled representation learning in cardiac image analysis,” Medical Image Analysis, vol. 58, p. 101535, 12 2019.
N. Dong, M. Kampffmeyer, and I. Voiculescu, “Self-supervised Multi-task Representation Learning for Sequential Medical Images,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12977 LNAI, pp. 779–794, 9 2021. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-86523-8 47
P. Zhang, F. Wang, and Y. Zheng, “Self supervised deep representation learning for fine-grained body part recognition,” Proceedings - International Symposium on Biomedical Imaging, pp. 578–582, 6 2017.
M. Adnan, S. Kalra, and H. R. Tizhoosh, “Representation Learning of Histopathology Images using Graph Neural Networks,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2020-June, pp. 4254–4261, 4 2020. [Online]. Available: https://arxiv.org/abs/2004.07399v2
M. M. Li, K. Huang, and M. Zitnik, “Graph Representation Learning in Biomedicine,” 4 2021. [Online]. Available: https://arxiv.org/abs/2104.04883v2
S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.
N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, pp. 886–893, 2005.
J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification,” 10 2021. [Online]. Available: https://arxiv.org/abs/2110.14795v1
J. N. Kather, J. Krisam, P. Charoentong, T. Luedde, E. Herpel, C. A. Weis, T. Gaiser, A. Marx, N. A. Valous, D. Ferber, L. Jansen, C. C. Reyes-Aldasoro, I. Zornig, D. Jager, H. Brenner, J. Chang-Claude, M. Hoffmeister, and N. Halama, “Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study,” PLOS Medicine, vol. 16, no. 1, p. e1002730, 2019. [Online]. Available: https://journals.plos.org/plosmedicine/article?id=10.1371/jour nal.pmed.1002730
A. Vaswani, G. Brain, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Kaiser, and I. Polosukhin, “Attention is All you Need,” Advances in Neural Information Processing Systems, vol. 30, 2017.
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandr`a, J. R. Mcclean, M. Mcewen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, p. 505, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1666-5
C. Schaeff, R. Polster, M. Huber, S. Ramelow, and A. Zeilinger, “Experimental access to higher-dimensional entangled quantum systems using integrated optics,” Optica, vol. 2, no. 6, p. 523, 6 2015. [Online]. Available: http://dx.doi.org/10.1364/OPTICA.2.000523
J. Carolan, C. Harrold, C. Sparrow, E. Mart ́ın-L ́opez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science, vol. 349, no. 6249, pp. 711–716, 8 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/26160375/
A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Gunthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, “High-dimensional intracity quantum cryptography with structured photons,” Optica, vol. 4, no. 9, p. 1006, 9 2017. [Online]. Available: https://doi.org/10.1364/OPTICA.4.001006
A. B. Klimov, R. Guzm ́an, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 67, no. 6, p. 7, 6 2003. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.67.062313
Z. Gedik, I. A. Silva, B. C ̧ akmak, G. Karpat, E. L. Vidoto, D. O. Soares-Pinto, E. R. DeAzevedo, and F. F. Fanchini, “Computational speed-up with a single qudit,” Scientific Reports, vol. 5, no. 1, p. 14671, 10 2015. [Online]. Available: www.nature.com/scientificreports/
E. Moreno-Pineda, C. Godfrin, F. Balestro, W. Wernsdorfer, and M. Ruben, “Molecular spin qudits for quantum algorithms,” pp. 501–513, 1 2018. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2018/cs/c5cs00933bhttps: //pubs.rsc.org/en/content/articlelanding/2018/cs/c5cs00933b
D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges,” Advanced Quantum Technologies, vol. 2, no. 12, p. 1900038, 12 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/qute.201900038https: //onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900038https://onlinelibrary.wile y.com/doi/10.1002/qute.201900038
L. Sheridan and V. Scarani, “Security proof for quantum key distribution using qudit systems,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 82, no. 3, p. 030301, 9 2010. [Online]. Available: https: //journals.aps.org/pra/abstract/10.1103/PhysRevA.82.030301
P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Physical Review Letters, vol. 113, no. 3, 9 2014.
N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum Deep Learning,” Quantum Information and Computation, vol. 16, no. 7-8, pp. 541–587, 12 2014. [Online]. Available: https://arxiv.org/abs/1412.3489v2
. Lu and S. L. Braunstein, “Quantum decision tree classifier,” Quantum Information Processing 2013 13:3, vol. 13, no. 3, pp. 757–770, 11 2013. [Online]. Available: https://link.springer.com/article/10.1007/s11128-013-0687-5
A. A. Ezhov and D. Ventura, “Quantum Neural Networks.” Physica, Heidelberg, 2000, pp. 213–235. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-7908-1856-7 11
I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nature Physics, vol. 15, no. 12, pp. 1273–1278, 12 2019. [Online]. Available: https://www.nature.com/articles/s41567-019-0648-8
P. L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial networks,” Physical Review A, vol. 98, no. 1, p. 012324, 7 2018. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.012324
F. A. Cárdenas-López, L. Lamata, J. C. Retamal, and E. Solano, “Multiqubit and multilevel quantum reinforcement learning with quantum technologies,” PLoS ONE, vol. 13, no. 7, p. e0200455, 7 2018. [Online]. Available: https://doi.org/10.1371/journal.pone.0200455
D. N. Diep, “Some Quantum Neural Networks,” International Journal of Theoretical Physics, vol. 59, no. 4, pp. 1179–1187, 4 2020. [Online]. Available: https://link.springer.com/article/10.1007/s10773-020-04397-1
B. Ricks and D. Ventura, “Training a Quantum Neural Network,” Advances in Neural Information Processing Systems, vol. 16, 2003.
K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann, and R. Wolf, “Efficient learning for deep quantum neural networks,” pp. 1–6, 2 2019. [Online]. Available: https://doi.org/10.1038/s41467-020-14454-2
A. Giraldo-Carvajal and J. A. Jaramillo-Villegas, “QuantumSkynet: A High- Dimensional Quantum Computing Simulator,” Optics InfoBase Conference Papers, 6 2021. [Online]. Available: https://arxiv.org/abs/2106.15833v1
F. S. Khan and M. Perkowski, “Synthesis of multi-qudit hybrid and d-valued quantum logic circuits by decomposition,” Theoretical Computer Science, vol. 367, no. 3, pp. 336–346, 12 2006.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 59 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería de Sistemas e Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81541/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81541/3/1026569527.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81541/5/1026569527.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
77f6f34a8c9715ddd655748d13fc6727
5cbb3a77b1bab9c49cec28d5bdf0ddb0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089185637695488
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fabio Augusto, Gonzaléz Osorio89dcb2596792ec8ae0085fa9e2908a87Diego Hernando, Useche Reyesb2eb7c6c4cf73215241c1ad8b37337272022-06-08T20:51:34Z2022-06-08T20:51:34Z2022-03https://repositorio.unal.edu.co/handle/unal/81541Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, tablasDeep neural networks are the state-of-the-art for medical image classification. However, these models require large data sets to be trained, and they lack some interpretability on their predictions. In recent years, there has been a growing interests of using the statistical machinery of quantum mechanics to built novel machine learning models, which may run on classical or quantum computers. One of such models is the recently proposed method quantum measurement classification (QMC) [1]. In this thesis, we present various classical-quantum machine learning strategies that combine convolutional neural networks (CNNs) with methods based on QMC [2] to the task of learning medical images in a supervised manner. We first approach the problem with a deep probabilistic regression model, showing that is competitive, and more interpretable compared to conventional deep learning architectures. We then present a representation learning technique based on CNNs which maps medical images to pure and mixed quantum states, and show that its competitive with other representation learning strategies. In addition, we propose a quantum implementation of two QMC-based models on a high-dimensional quantum computer, we demonstrate that it is possible to perform classification and density estimation in a quantum computer.Las redes neuronales profundas están a la vanguardia para la clasificación de imágenes médicas. Sin embargo, estos modelos requieren para su entrenamiento conjuntos de datos muy grandes, y a sus predicciones les falta interpretabilidad. Recientemente, se han propuesto varios métodos de inteligencia artificial basados en la mecánica cuántica, los cuales pueden ser implementados en computadores clásicos o cuánticos. Uno de estos métodos es el recientemente propuesto \textit{Quantum Measurement Classification} (QMC) [1]. En este trabajo de tesis, presentamos diferentes estrategias clásicas y cuánticas de aprendizaje automático, las cuales combinan las redes neuronales convolucionales (CNNs) y algunos métodos basados en QMC [2] para la tarea de aprendizaje supervisado de imagenes medicas. En primer lugar, planteamos el problema de clasificación con un modelo de regresión profundo y probabilístico, mostrando que es competitivo y más interpretable en comparación a arquitecturas convencionales de aprendizaje profundo. En segundo lugar, presentamos un método de aprendizaje de la representación basado en CNNs del cual se obtienen características de las imágenes médicas en forma de estados cuánticos puros y mezclados, y mostramos que los resultados del método son competitivos con otras estrategias de representación. Adicionalmente, proponemos una implementación cuántica de dos métodos de aprendizaje automático basados en QMC en un computador cuántico de altas dimensiones, mostrando que es posible el aprendizaje supervisado y la estimación de la densidad en un computador cuántico. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Ingeniería de Sistemas y Computación59 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::003 - SistemasCANCER-FORMACION DE IMAGENESCancer-imagingQuantum measurement classificationProstate cancerDeep learningQuantum machine learningclasificación con medición cuánticacáncer de próstataaprendizaje profundoaprendizaje automático cuánticoQuantum measurement learning for medical image classificationAprendizaje con medición cuántica para la clasificación de imágenes médicasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMF. A. González, V. Vargas-Calderón, and H. Vinck-Posada, “Classification with Quantum Measurements,” https://doi.org/10.7566/JPSJ.90.044002, vol. 90, no. 4, 3 2021. [Online]. Available: https://journals.jps.jp/doi/abs/10.7566/JPSJ.90.044002F. A. González, A. Gallego, S. Toledo-Cortés, and V. Vargas-Calderón, “Learning with Density Matrices and Random Features,” 2 2021. [Online]. Available: https://arxiv.org/abs/2102.04394v4Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 2015 521:7553, vol. 521, no. 7553, pp. 436–444, 5 2015. [Online]. Available: https://www.nature.com/articles/nature14539D. E. Rumelhart and J. L. McClelland, “Learning Internal Representations by Error Propagation - MIT Press books,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations. MIT Press, 1987, pp. 318–362.L. Cun, J. Henderson, Y. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Handwritten Digit Recognition with a Back-Propagation Network,” Tech. Rep.A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan, N. Shih, J. Tomaszewski, and A. Madabhushi, “Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks,” in Medical Imaging 2014: Digital Pathology, vol. 9041, 2014, p. 904103. [Online]. Available: http://spiedl.org/termsS. Otálora, O. Perdomo, F. González, and H. Muller, “Training Deep Convolutional Neural Networks with Active Learning for Exudate Classification in Eye Fundus Images,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10552 LNCS, 2017, pp. 146–154. [Online]. Available: http://www.who.int/diabetes/en/O. Perdomo, S. Otalora, F. Rodríguez, J. Arevalo, and F. A. González, “A Novel Machine Learning Model Based on Exudate Localization to Detect Diabetic Macular Edema,” Ophthalmic Medical Image Analysis International Workshop, vol. 3, no. 2016, pp. 137–144, 10 2016. [Online]. Available: https://pubs.lib.uiowa.edu/omia/article/id/27635/A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Con- ference, 2009.S. Toledo-Cortés, D. H. Useche, and F. A. González, “Prostate Tissue Grading with Deep Quantum Measurement Ordinal Regression,” 3 2021. [Online]. Available: https://arxiv.org/abs/2103.03188v1D. H. Useche, A. Giraldo-Carvajal, H. M. Zuluaga-Bucheli, J. A. Jaramillo-Villegas, and F. A. González, “Quantum measurement classification with qudits,” Quantum Information Processing 2021 21:1, vol. 21, no. 1, pp. 1–12, 12 2021. [Online]. Available: https://link.springer.com/article/10.1007/s11128-021-03363-yS. F. Faraj, S. M. Bezerra, K. Yousefi, H. Fedor, S. Glavaris, M. Han, A. W. Partin, E. Humphreys, J. Tosoian, M. H. Johnson, E. Davicioni, B. J. Trock, E. M. Schaeffer, A. E. Ross, and G. J. Netto, “Clinical Validation of the 2005 ISUP Gleason Grading System in a Cohort of Intermediate and High Risk Men Undergoing Radical Prostatectomy,” PLOS ONE, vol. 11, no. 1, p. e0146189, 1 2016. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146189Y. Li, M. Huang, Y. Zhang, J. Chen, H. Xu, G. Wang, and W. Feng, “Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer,” IEEE Access, vol. 8, pp. 117 714–117 725, 2020.P. Strom, K. Kartasalo, H. Olsson, L. Solorzano, B. Delahunt, D. M. Berney, D. G. Bostwick, A. J. Evans, D. J. Grignon, P. A. Humphrey, K. A. Iczkowski, J. G. Kench, G. Kristiansen, T. H. van der Kwast, K. R. Leite, J. K. McKenney, J. Oxley, C. C. Pan, H. Samaratunga, J. R. Srigley, H. Takahashi, T. Tsuzuki, M. Varma, M. Zhou, J. Lindberg, C. Lindskog, P. Ruusuvuori, C. W ̈ahlby, H. Gr ̈onberg, M. Rantalainen, L. Egevad, and M. Eklund, “Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study,” The Lancet Oncology, vol. 21, no. 2, pp. 222–232, 2 2020.W. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van Ginneken, J. van der Laak, C. Hulsbergen-van de Kaa, and G. Litjens, “Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study,” The Lancet Oncology, vol. 21, no. 2, pp. 233–241, 2 2020.J. S. Lara, V. H. Contreras O, S. Otálora, H. M ̈uller, and F. A. González, “Multi- modal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12265 LNCS. Springer Science and Business Media Deutschland GmbH, 2020, pp. 572–581.J. Vaicenavicius, D. Widmann, C. Andersson, F. Lindsten, J. Roll, and T. B. Schon, “Evaluating model calibration in classification,” pp. 3459–3467, 4 2019. [Online]. Available: https://proceedings.mlr.press/v89/vaicenavicius19a.htmlK. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone, “Random Feature Expansions for Deep Gaussian Processes,” pp. 884–893, 7 2017. [Online]. Available: https://proceedings.mlr.press/v70/cutajar17a.htmlC. E. Rasmussen, “Gaussian Processes in Machine Learning,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3176, pp. 63–71, 2003. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-28650-9 4O. Jiménez del Toro, M. Atzori, S. Otálora, M. Andersson, K. Eurén, M. Hedlund, P. Ronnquist, and H. Muller, “Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score,” in Medical Imaging 2017: Digital Pathology, vol. 10140, 2017, p. 101400O. [Online]. Available: http://cancergenome.nih.gov/,Y. Tolkach, T. Dohmgorgen, M. Toma, and G. Kristiansen, “High-accuracy prostate cancer pathology using deep learning,” Nature Machine Intelligence, vol. 2, no. 7, pp. 411–418, 7 2020. [Online]. Available: https://www.nature.com/articles/s42256-0 20-0200-7D. Karimi, G. Nir, L. Fazli, P. C. Black, L. Goldenberg, and S. E. Salcudean, “Deep Learning-Based Gleason Grading of Prostate Cancer from Histopathology Images - Role of Multiscale Decision Aggregation and Data Augmentation,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 5, pp. 1413–1426, 5 2020.E. Esteban, M. López-Pérez, A. Colomer, M. A. Sales, R. Molina, and V. Naranjo, “A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes,” Computer Methods and Programs in Biomedicine, vol. 178, pp. 303–317, 9 2019.M. Lucas, I. Jansen, C. D. Savci-Heijink, S. L. Meijer, O. J. de Boer, T. G. van Leeuwen, D. M. de Bruin, and H. A. Marquering, “Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies,” Virchows Archiv, vol. 475, no. 1, pp. 77–83, 7 2019. [Online]. Available: https://doi.org/10.1007/s00428-019-02577-x. A. Khani, S. A. Fatemi Jahromi, H. O. Shahreza, H. Behroozi, and M. S. Baghshah, “Towards Automatic Prostate Gleason Grading Via Deep Convolutional Neural Networks,” in 5th Iranian Conference on Signal Processing and Intelligent Systems, IC- SPIS 2019. Institute of Electrical and Electronics Engineers Inc., 12 2019.F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 1800–1807, 10 2016. [Online]. Available: https://arxiv.org/abs/1610.02357v3C. K. Shie, C. H. Chuang, C. N. Chou, M. H. Wu, and E. Y. Chang, “Transfer representation learning for medical image analysis,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2015-Novem, pp. 711–714, 11 2015.J. Arevalo, F. A. González, R. Ramos-Pollán, J. L. Oliveira, and M. A. Guevara Lopez, “Representation learning for mammography mass lesion classification with convolutional neural networks,” Computer Methods and Programs in Biomedicine, vol. 127, pp. 248–257, 4 2016.Q. Tang, Y. Liu, and H. Liu, “Medical image classification via multiscale representation learning,” Artificial Intelligence in Medicine, vol. 79, pp. 71–78, 6 2017.T. Moriya, H. R. Roth, S. Nakamura, H. Oda, K. Nagara, M. Oda, and K. Mori, “Unsupervised segmentation of 3D medical images based on clustering and deep representation learning,” https://doi.org/10.1117/12.2293414, vol. 10578, pp. 483–489, 3 2018. [Online]. Available: https://www.spiedigitallibrary.o rg/conference-proceedings-of -spie/10578/1057820/Unsupervised-segmentation- of -3D-medical-images-based-on-clustering-and/10.1117/12.2293414.fullhttps: //www.spiedigitallibrary.org/conference-proceedings-of-spie/10578/1057820/A. Chartsias, T. Joyce, G. Papanastasiou, S. Semple, M. Williams, D. E. Newby, R. Dharmakumar, and S. A. Tsaftaris, “Disentangled representation learning in cardiac image analysis,” Medical Image Analysis, vol. 58, p. 101535, 12 2019.N. Dong, M. Kampffmeyer, and I. Voiculescu, “Self-supervised Multi-task Representation Learning for Sequential Medical Images,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12977 LNAI, pp. 779–794, 9 2021. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-86523-8 47P. Zhang, F. Wang, and Y. Zheng, “Self supervised deep representation learning for fine-grained body part recognition,” Proceedings - International Symposium on Biomedical Imaging, pp. 578–582, 6 2017.M. Adnan, S. Kalra, and H. R. Tizhoosh, “Representation Learning of Histopathology Images using Graph Neural Networks,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 2020-June, pp. 4254–4261, 4 2020. [Online]. Available: https://arxiv.org/abs/2004.07399v2M. M. Li, K. Huang, and M. Zitnik, “Graph Representation Learning in Biomedicine,” 4 2021. [Online]. Available: https://arxiv.org/abs/2104.04883v2S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, pp. 886–893, 2005.J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification,” 10 2021. [Online]. Available: https://arxiv.org/abs/2110.14795v1J. N. Kather, J. Krisam, P. Charoentong, T. Luedde, E. Herpel, C. A. Weis, T. Gaiser, A. Marx, N. A. Valous, D. Ferber, L. Jansen, C. C. Reyes-Aldasoro, I. Zornig, D. Jager, H. Brenner, J. Chang-Claude, M. Hoffmeister, and N. Halama, “Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study,” PLOS Medicine, vol. 16, no. 1, p. e1002730, 2019. [Online]. Available: https://journals.plos.org/plosmedicine/article?id=10.1371/jour nal.pmed.1002730A. Vaswani, G. Brain, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Kaiser, and I. Polosukhin, “Attention is All you Need,” Advances in Neural Information Processing Systems, vol. 30, 2017.F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandr`a, J. R. Mcclean, M. Mcewen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, p. 505, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1666-5C. Schaeff, R. Polster, M. Huber, S. Ramelow, and A. Zeilinger, “Experimental access to higher-dimensional entangled quantum systems using integrated optics,” Optica, vol. 2, no. 6, p. 523, 6 2015. [Online]. Available: http://dx.doi.org/10.1364/OPTICA.2.000523J. Carolan, C. Harrold, C. Sparrow, E. Mart ́ın-L ́opez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science, vol. 349, no. 6249, pp. 711–716, 8 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/26160375/A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Gunthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, “High-dimensional intracity quantum cryptography with structured photons,” Optica, vol. 4, no. 9, p. 1006, 9 2017. [Online]. Available: https://doi.org/10.1364/OPTICA.4.001006A. B. Klimov, R. Guzm ́an, J. C. Retamal, and C. Saavedra, “Qutrit quantum computer with trapped ions,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 67, no. 6, p. 7, 6 2003. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.67.062313Z. Gedik, I. A. Silva, B. C ̧ akmak, G. Karpat, E. L. Vidoto, D. O. Soares-Pinto, E. R. DeAzevedo, and F. F. Fanchini, “Computational speed-up with a single qudit,” Scientific Reports, vol. 5, no. 1, p. 14671, 10 2015. [Online]. Available: www.nature.com/scientificreports/E. Moreno-Pineda, C. Godfrin, F. Balestro, W. Wernsdorfer, and M. Ruben, “Molecular spin qudits for quantum algorithms,” pp. 501–513, 1 2018. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2018/cs/c5cs00933bhttps: //pubs.rsc.org/en/content/articlelanding/2018/cs/c5cs00933bD. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, “High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges,” Advanced Quantum Technologies, vol. 2, no. 12, p. 1900038, 12 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/qute.201900038https: //onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900038https://onlinelibrary.wile y.com/doi/10.1002/qute.201900038L. Sheridan and V. Scarani, “Security proof for quantum key distribution using qudit systems,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 82, no. 3, p. 030301, 9 2010. [Online]. Available: https: //journals.aps.org/pra/abstract/10.1103/PhysRevA.82.030301P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Physical Review Letters, vol. 113, no. 3, 9 2014.N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum Deep Learning,” Quantum Information and Computation, vol. 16, no. 7-8, pp. 541–587, 12 2014. [Online]. Available: https://arxiv.org/abs/1412.3489v2. Lu and S. L. Braunstein, “Quantum decision tree classifier,” Quantum Information Processing 2013 13:3, vol. 13, no. 3, pp. 757–770, 11 2013. [Online]. Available: https://link.springer.com/article/10.1007/s11128-013-0687-5A. A. Ezhov and D. Ventura, “Quantum Neural Networks.” Physica, Heidelberg, 2000, pp. 213–235. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-7908-1856-7 11I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nature Physics, vol. 15, no. 12, pp. 1273–1278, 12 2019. [Online]. Available: https://www.nature.com/articles/s41567-019-0648-8P. L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial networks,” Physical Review A, vol. 98, no. 1, p. 012324, 7 2018. [Online]. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.012324F. A. Cárdenas-López, L. Lamata, J. C. Retamal, and E. Solano, “Multiqubit and multilevel quantum reinforcement learning with quantum technologies,” PLoS ONE, vol. 13, no. 7, p. e0200455, 7 2018. [Online]. Available: https://doi.org/10.1371/journal.pone.0200455D. N. Diep, “Some Quantum Neural Networks,” International Journal of Theoretical Physics, vol. 59, no. 4, pp. 1179–1187, 4 2020. [Online]. Available: https://link.springer.com/article/10.1007/s10773-020-04397-1B. Ricks and D. Ventura, “Training a Quantum Neural Network,” Advances in Neural Information Processing Systems, vol. 16, 2003.K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann, and R. Wolf, “Efficient learning for deep quantum neural networks,” pp. 1–6, 2 2019. [Online]. Available: https://doi.org/10.1038/s41467-020-14454-2A. Giraldo-Carvajal and J. A. Jaramillo-Villegas, “QuantumSkynet: A High- Dimensional Quantum Computing Simulator,” Optics InfoBase Conference Papers, 6 2021. [Online]. Available: https://arxiv.org/abs/2106.15833v1F. S. Khan and M. Perkowski, “Synthesis of multi-qudit hybrid and d-valued quantum logic circuits by decomposition,” Theoretical Computer Science, vol. 367, no. 3, pp. 336–346, 12 2006.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81541/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54ORIGINAL1026569527.2022.pdf1026569527.2022.pdfTesis de Maestría en Sistemas y Computaciónapplication/pdf1115684https://repositorio.unal.edu.co/bitstream/unal/81541/3/1026569527.2022.pdf77f6f34a8c9715ddd655748d13fc6727MD53THUMBNAIL1026569527.2022.pdf.jpg1026569527.2022.pdf.jpgGenerated Thumbnailimage/jpeg4479https://repositorio.unal.edu.co/bitstream/unal/81541/5/1026569527.2022.pdf.jpg5cbb3a77b1bab9c49cec28d5bdf0ddb0MD55unal/81541oai:repositorio.unal.edu.co:unal/815412023-08-05 23:03:35.937Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK