Caracterización de la respuesta de linfocitos T-CD4+ de memoria específicos para péptidos derivados de proteínas de Leishmania como potenciales candidatos a vacuna

ilustraciones, gráficas, tablas

Autores:
Flórez Martínez, Magda Melissa
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80814
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80814
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología
Antígenos
Leishmaniasis
Péptidos
Antigens
Leishmaniasis
Peptides
Leishmaniasis
Vacunología reversa
Péptidos sintéticos
Humanos
Células de memoria
In vivo
Vacunas
Leishmaniasis
vaccines
Reverse vaccinology
Synthetic peptides
Human
Memory cells
In vivo
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_38e06be0e10098c1d044c07b6f09cb43
oai_identifier_str oai:repositorio.unal.edu.co:unal/80814
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización de la respuesta de linfocitos T-CD4+ de memoria específicos para péptidos derivados de proteínas de Leishmania como potenciales candidatos a vacuna
dc.title.translated.eng.fl_str_mv Characterization of the memory T-CD4+ lymphocyte response specific for peptides derived from Leishmania proteins as potential vaccine candidates
title Caracterización de la respuesta de linfocitos T-CD4+ de memoria específicos para péptidos derivados de proteínas de Leishmania como potenciales candidatos a vacuna
spellingShingle Caracterización de la respuesta de linfocitos T-CD4+ de memoria específicos para péptidos derivados de proteínas de Leishmania como potenciales candidatos a vacuna
570 - Biología
Antígenos
Leishmaniasis
Péptidos
Antigens
Leishmaniasis
Peptides
Leishmaniasis
Vacunología reversa
Péptidos sintéticos
Humanos
Células de memoria
In vivo
Vacunas
Leishmaniasis
vaccines
Reverse vaccinology
Synthetic peptides
Human
Memory cells
In vivo
title_short Caracterización de la respuesta de linfocitos T-CD4+ de memoria específicos para péptidos derivados de proteínas de Leishmania como potenciales candidatos a vacuna
title_full Caracterización de la respuesta de linfocitos T-CD4+ de memoria específicos para péptidos derivados de proteínas de Leishmania como potenciales candidatos a vacuna
title_fullStr Caracterización de la respuesta de linfocitos T-CD4+ de memoria específicos para péptidos derivados de proteínas de Leishmania como potenciales candidatos a vacuna
title_full_unstemmed Caracterización de la respuesta de linfocitos T-CD4+ de memoria específicos para péptidos derivados de proteínas de Leishmania como potenciales candidatos a vacuna
title_sort Caracterización de la respuesta de linfocitos T-CD4+ de memoria específicos para péptidos derivados de proteínas de Leishmania como potenciales candidatos a vacuna
dc.creator.fl_str_mv Flórez Martínez, Magda Melissa
dc.contributor.advisor.spa.fl_str_mv Delgado Murcia, Lucy Gabriela
dc.contributor.author.spa.fl_str_mv Flórez Martínez, Magda Melissa
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Inmunotoxicología
dc.subject.ddc.spa.fl_str_mv 570 - Biología
topic 570 - Biología
Antígenos
Leishmaniasis
Péptidos
Antigens
Leishmaniasis
Peptides
Leishmaniasis
Vacunología reversa
Péptidos sintéticos
Humanos
Células de memoria
In vivo
Vacunas
Leishmaniasis
vaccines
Reverse vaccinology
Synthetic peptides
Human
Memory cells
In vivo
dc.subject.decs.spa.fl_str_mv Antígenos
Leishmaniasis
Péptidos
dc.subject.decs.eng.fl_str_mv Antigens
Leishmaniasis
Peptides
dc.subject.proposal.spa.fl_str_mv Leishmaniasis
Vacunología reversa
Péptidos sintéticos
Humanos
Células de memoria
In vivo
Vacunas
dc.subject.proposal.eng.fl_str_mv Leishmaniasis
vaccines
Reverse vaccinology
Synthetic peptides
Human
Memory cells
In vivo
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-14
dc.date.accessioned.none.fl_str_mv 2022-01-31T16:41:48Z
dc.date.available.none.fl_str_mv 2022-01-31T16:41:48Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80814
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80814
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv 1. WHO | Leishmaniasis: World Health Organization; 2015 [updated 2015-04- 09 11:14:56. Available from: http://www.who.int/leishmaniasis/en/.
2. Salud INd. Sivigila 2015 [Available from: http://www.ins.gov.co/lineas-deaccion/Subdireccion-Vigilancia/sivigila/Paginas/sivigila.aspx.
3. Tripathi P, Singh V, Naik S. Immune response to leishmania: paradox rather than paradigm. FEMS Immunol Med Microbiol. 2007;51(2):229-42.
4. INS. Estadísticas de Vigilancia Rutinaria 2021 [Available from: http://portalsivigila.ins.gov.co/Paginas/Vigilancia-Rutinaria.aspx.
5. WHO | New Technical Report Series on the Control of Leishmaniasis: World Health Organization; 2012 [updated 2011-04-07 14:36:00. Available from: http://www.who.int/neglected_diseases/integrated_media/integrated_media_2010 _leishmaniasis/en/.
6. Alvar J, Yactayo S, Bern C. Leishmaniasis and poverty. Trends in parasitology. 2006;22(12):552-7.
7. Velez ID, Universidad de Antioquia M, Colombia, Hendrickx E, Universidad de Antioquia M, Colombia, Robledo SM, Universidad de Antioquia M, Colombia, et al. Gender and cutaneous leishmaniasis in Colombia. Cad Saúde Pública. 2001;17(1):171-80.
8. WHO | Vaccines: World Health Organization; 2015 [updated 2015-06-05 16:46:11. Available from: http://www.who.int/ith/vaccines/en/.
9. Bacon KM, Hotez PJ, Kruchten SD, Kamhawi S, Bottazzi ME, Valenzuela JG, et al. The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas. Vaccine. 2013;31(3):480-6.
10. Kedzierski L, Zhu Y, Handman E. Leishmania vaccines: progress and problems. Parasitology. 2006;133 Suppl:S87-112.
11. Das S, Matlashewski G, Bhunia GS, Kesari S, Das P. Asymptomatic Leishmania infections in northern India: a threat for the elimination programme? Trans R Soc Trop Med Hyg. 2014;108(11):679-84.
12. Weigle KA, Valderrama L, Arias AL, Santrich C, Saravia NG. Leishmanin skin test standardization and evaluation of safety, dose, storage, longevity of reaction and sensitization. Am J Trop Med Hyg. 1991;44(3):260-71.
13. Andrade-Narvaez FJ, Loria-Cervera EN, Sosa-Bibiano EI, Van Wynsberghe NR. Asymptomatic infection with American cutaneous leishmaniasis: epidemiological and immunological studies. Mem Inst Oswaldo Cruz. 2016;111(10):599-604.
14. Ivan B, Angela P-M, María C, Mirko Z, Rachel B-G, Jean-Loup L, et al. IFN- γ Response Is Associated to Time Exposure Among Asymptomatic Immune Responders That Visited American Tegumentary Leishmaniasis Endemic Areas in Peru. Frontiers in cellular and infection microbiology. 2018;8.
15. Ostyn B, Gidwani K, Khanal B, Picado A, Chappuis F, Singh SP, et al. Incidence of symptomatic and asymptomatic Leishmania donovani infections in high-endemic foci in India and Nepal: a prospective study. PLoS Negl Trop Dis. 2011;5(10):e1284.
16. de Almeida MC, Vilhena V, Barral A, Barral-Netto M. Leishmanial infection: analysis of its first steps. A review. Mem Inst Oswaldo Cruz. 2003;98(7):861-70.
17. Gollob KJ, Viana AG, Dutra WO. Immunoregulation in human American leishmaniasis: balancing pathology and protection. Parasite Immunol. 2014;36(8):367-76.
18. Abbas AL, Andrew. Cellular and Molecular Immunology 5th edition: Saunders; 2004.
19. WHO | Synthetic peptide vaccines: World Health Organization; 2014 [updated 2014-01-10 10:57:28. Available from: http://www.who.int/biologicals/vaccines/synthetic_peptide_vaccines/en/.
20. Schlaphoff V, Klade CS, Jilma B, Jelovcan SB, Cornberg M, Tauber E, et al. Functional and phenotypic characterization of peptide-vaccine-induced HCVspecific CD8+ T cells in healthy individuals and chronic hepatitis C patients. Vaccine. 2007;25(37-38):6793-806.
21. Solares AM, Baladron I, Ramos T, Valenzuela C, Borbon Z, Fanjull S, et al. Safety and Immunogenicity of a Human Papillomavirus Peptide Vaccine (CIGB- 228) in Women with High-Grade Cervical Intraepithelial Neoplasia: First-in-Human, Proof-of-Concept Trial. ISRN Obstet Gynecol. 2011;2011:292951.
22. Stanekova Z, Kiraly J, Stropkovska A, Mikuskova T, Mucha V, Kostolansky F, et al. Heterosubtypic protective immunity against influenza A virus induced by fusion peptide of the hemagglutinin in comparison to ectodomain of M2 protein. Acta Virol. 2011;55(1):61-7.
23. Kolesanova AAMaEF. Synthetic Peptide Vaccines: InTech; 2012 [updated 2012-03-21. Available from: http://www.intechopen.com/books/insight-and-controlof-infectious-disease-in-global-scenario/synthetic-peptide-vaccines.
24. Sirima SB, Tiono AB, Ouedraogo A, Diarra A, Ouedraogo AL, Yaro JB, et al. Safety and immunogenicity of the malaria vaccine candidate MSP3 long synthetic peptide in 12-24 months-old Burkinabe children. PLoS One. 2009;4(10):e7549.
25. OPS/OMS. Leishmaniasis - OPS/OMS | Organización Panamericana de la Salud: @opsoms; 2021 [Available from: https://www.paho.org/es/temas/leishmaniasis.
26. Bari Au. Chronology of cutaneous leishmaniasis: An overview of the history of the disease. Journal of Pakistan Association of Dermatologists. 2006;16:24-7.
27. Leishmaniasis - Pan American Health Organization - Organización Panamericana de la Salud 2012 [Available from:http://new.paho.org/hq/index.php?option=com_content&task=blogcategory&id=38 35&Itemid=4098⟨=en.
28. Osorio LE, Castillo CM, Ochoa MT. Mucosal leishmaniasis due to Leishmania (Viannia) panamensis in Colombia: clinical characteristics. Am J Trop Med Hyg. 1998;59(1):49-52.
29. Saravia NG, Segura I, Holguin AF, Santrich C, Valderrama L, Ocampo C. Epidemiologic, genetic, and clinical associations among phenotypically distinct populations of Leishmania (Viannia) in Colombia. Am J Trop Med Hyg. 1998;59(1):86-94.
30. Guerra JA, Prestes SR, Silveira H, Coelho LI, Gama P, Moura A, et al. Mucosal Leishmaniasis caused by Leishmania (Viannia) braziliensis and Leishmania (Viannia) guyanensis in the Brazilian Amazon. PLoS Negl Trop Dis. 2011;5(3):e980.
31. MINISTÉRIO DA SAÚDE SdveS. Manual de Vigilancia da Leishmaniose Tegumentar Americana 2010 [Available from: http://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_leishmaniose_tegu mentar_americana.pdf.
32. Smith-Garvin JE, Koretzky GA, Jordan MS. T Cell Activation. Annu Rev Immunol. 2009;27:591-619.
33. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol. 2003;3(12):984-93.
34. Squires KE, Schreiber RD, McElrath MJ, Rubin BY, Anderson SL, Murray HW. Experimental visceral leishmaniasis: role of endogenous IFN-gamma in host defense and tissue granulomatous response. J Immunol. 1989;143(12):4244-9.
35. Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 1998;188(10):1941-53.
36. Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D. A natural model of Leishmania major infection reveals a prolonged "silent" phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol. 2000;165(2):969-77.
37. Ajdary S, Alimohammadian MH, Eslami MB, Kemp K, Kharazmi A. Comparison of the Immune Profile of Nonhealing Cutaneous Leishmaniasis Patients with Those with Active Lesions and Those Who Have Recovered from Infection. Infect Immun. 2000;68(4):1760-4.
38. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. 2002;420(6915):502-7.
39. Woelbing F, Kostka SL, Moelle K, Belkaid Y, Sunderkoetter C, Verbeek S, et al. Uptake of Leishmania major by dendritic cells is mediated by Fcgamma receptors and facilitates acquisition of protective immunity. J Exp Med. 2006;203(1):177-88.
40. Von Stebut E. Immunology of cutaneous leishmaniasis: the role of mast cells, phagocytes and dendritic cells for protective immunity. Eur J Dermatol. 2007;17(2):115-22.
41. Best I, Privat-Maldonado A, Cruz M, Zimic M, lBras-Gonçalves R, Lemesre J-L, et al. IFN-γ Response Is Associated to Time Exposure Among Asymptomatic Immune Responders That Visited American Tegumentary Leishmaniasis Endemic Areas in Peru. Frontiers in cellular and infection microbiology. 2018;8.
42. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745-63.
43. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708-12.
44. Zaph C, Uzonna J, Beverley SM, Scott P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat Med. 2004;10(10):1104-10.
45. Carvalho AM, Magalhaes A, Carvalho LP, Bacellar O, Scott P, Carvalho EM. Immunologic response and memory T cells in subjects cured of tegumentary leishmaniasis. BMC Infect Dis. 2013;13:529.
46. Keshavarz Valian H, Nateghi Rostami M, Tasbihi M, Miramin Mohammadi A, Eskandari SE, Sarrafnejad A, et al. CCR7+ central and CCR7- effector memory CD4+ T cells in human cutaneous leishmaniasis. J Clin Immunol. 2013;33(1):220- 34.
47. Scott P. Immunologic memory in cutaneous leishmaniasis. Cell Microbiol. 2005;7(12):1707-13.
48. Jain K, Jain NK. Vaccines for visceral leishmaniasis: A review. J Immunol Methods. 2015;422:1-12.
49. Rezvan H, Moafi M. An overview on Leishmania vaccines: A narrative review article. Vet Res Forum. 2015;6(1):1-7.
50. Kumar R, Engwerda C. Vaccines to prevent leishmaniasis. Clin Transl Immunology. 2014;3(3):e13.
51. Sundar S, Singh B. Identifying vaccine targets for anti-leishmanial vaccine development. Expert Rev Vaccines. 2014;13(4):489-505.
52. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med. 2007;13(7):843-50.
53. Matos DC, Faccioli LA, Cysne-Finkelstein L, Luca PM, Corte-Real S, Armoa GR, et al. Kinetoplastid membrane protein-11 is present in promastigotes and amastigotes of Leishmania amazonensis and its surface expression increases during metacyclogenesis. Mem Inst Oswaldo Cruz. 2010;105(3):341-7.
54. Ramirez JR, Gilchrist K, Robledo S, Sepulveda JC, Moll H, Soldati D, et al. Attenuated Toxoplasma gondii ts-4 mutants engineered to express the Leishmania antigen KMP-11 elicit a specific immune response in BALB/c mice. Vaccine. 2001;20(3-4):455-61.
55. Guha R, Das S, Ghosh J, Naskar K, Mandala A, Sundar S, et al. Heterologous priming-boosting with DNA and vaccinia virus expressing kinetoplastid membrane protein-11 induces potent cellular immune response and confers protection against infection with antimony resistant and sensitive strains of Leishmania (Leishmania) donovani. Vaccine. 2013;31(15):1905-15.
56. Basu R, Bhaumik S, Basu JM, Naskar K, De T, Roy S. Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1- and Th2-like responses in visceral leishmaniasis. J Immunol. 2005;174(11):7160-71.
57. Courret N, Prina E, Mougneau E, Saraiva EM, Sacks DL, Glaichenhaus N, et al. Presentation of the Leishmania antigen LACK by infected macrophages is dependent upon the virulence of the phagocytosed parasites. Eur J Immunol. 1999;29(3):762-73.
58. Julia V, Glaichenhaus N. CD4(+) T cells which react to the Leishmania major LACK antigen rapidly secrete interleukin-4 and are detrimental to the host in resistant B10.D2 mice. Infect Immun. 1999;67(7):3641-4.
59. Netto LES, Chae HZ, Kang SW, Rhee SG, Stadtman ER. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J Biol Chem. 1996;271(26):15315-21.
60. Webb JR, Campos-Neto A, Ovendale PJ, Martin TI, Stromberg EJ, Badaro R, et al. Human and murine immune responses to a novel Leishmania major recombinant protein encoded by members of a multicopy gene family. Infect Immun. 1998;66(7):3279-89.
61. Webb JR, Campos-Neto A, Skeiky YA, Reed SG. Molecular characterization of the heat-inducible LmSTI1 protein of Leishmania major. Mol Biochem Parasitol. 1997;89(2):179-93.
62. Webb JR, Kaufmann D, Campos-Neto A, Reed SG. Molecular cloning of a novel protein antigen of Leishmania major that elicits a potent immune response in experimental murine leishmaniasis. J Immunol. 1996;157(11):5034-41.
63. Kushawaha PK, Gupta R, Sundar S, Sahasrabuddhe AA, Dube A. Elongation factor-2, a Th1 stimulatory protein of Leishmania donovani, generates strong IFN-gamma and IL-12 response in cured Leishmania-infected patients/hamsters and protects hamsters against Leishmania challenge. J Immunol. 2011;187(12):6417-27.
64. Skeiky YAW, Guderian JA, Benson DR, Bacelar O, Carvalho Filho EMd, Kubin M, et al. A recombinant leishmania antigen that stimulates human peripheral blood mononuclear cells to express a th1-type cytokine profile and to produce interleukin 12. http://jemrupressorg/content/181/4/1527fullpdf+html. 1995.
65. Velez ID, Gilchrist K, Martinez S, Ramirez-Pineda JR, Ashman JA, Alves FP, et al. Safety and immunogenicity of a defined vaccine for the prevention of cutaneous leishmaniasis. Vaccine. 2009;28(2):329-37.
66. Llanos-Cuentas A, Calderon W, Cruz M, Ashman JA, Alves FP, Coler RN, et al. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine when used in combination with sodium stibogluconate for the treatment of mucosal leishmaniasis. Vaccine. 2010;28(46):7427-35.
67. Ben-Yedidia T, Arnon R. Design of peptide and polypeptide vaccines. Curr Opin Biotechnol. 1997;8(4):442-8.
68. van der Burg SH, Bijker MS, Welters MJ, Offringa R, Melief CJ. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Adv Drug Deliv Rev. 2006;58(8):916-30.
69. Okitsu SL, Kienzl U, Moehle K, Silvie O, Peduzzi E, Mueller MS, et al. Structure-activity-based design of a synthetic malaria peptide eliciting sporozoite inhibitory antibodies in a virosomal formulation. Chem Biol. 2007;14(5):577-87.
70. Pereira BA, Silva FS, Rebello KM, Marin-Villa M, Traub-Cseko YM, Andrade TC, et al. In silico predicted epitopes from the COOH-terminal extension of cysteine proteinase B inducing distinct immune responses during Leishmania (Leishmania) amazonensis experimental murine infection. BMC Immunol. 2011;12:44.
71. Rezvan H. Immunogenicity of HLA-DR1 Restricted Peptides Derived from Leishmania major gp63 Using FVB/N-DR1 Transgenic Mouse Model. Iran J Parasitol. 2013;8(2):273-9.
72. Resende DM, Caetano BC, Dutra MS, Penido ML, Abrantes CF, Verly RM, et al. Epitope mapping and protective immunity elicited by adenovirus expressing the Leishmania amastigote specific A2 antigen: correlation with IFN-gamma and cytolytic activity by CD8+ T cells. Vaccine. 2008;26(35):4585-93.
73. Delgado G, Parra-Lopez CA, Vargas LE, Hoya R, Estupinan M, Guzman F, et al. Characterizing cellular immune response to kinetoplastid membrane protein- 11 (KMP-11) during Leishmania (Viannia) panamensis infection using dendritic cells (DCs) as antigen presenting cells (APCs). Parasite Immunol. 2003;25(4):199-209.
74. Jones EY, Fugger L, Strominger JL, Siebold C. MHC class II proteins and disease: a structural perspective. Nat Rev Immunol. 2006;6(4):271-82.
75. Correa PA, Whitworth WC, Kuffner T, McNicholl J, Anaya JM. HLA-DR and DQB1 gene polymorphism in the North-western Colombian population. Tissue Antigens. 2002;59(5):436-9.
76. Ossa Reyes HMA, Quintanilla Sonia, Peña Villalobos Alejandro. Polimorfismos del sistema HLA (loci A*, B* y DRB1*) en población colombiana. 2016.
77. Arias-Murillo YR, Castro-Jiménez MÁ, Ríos-Espinosa MF, López-Rivera JJ, Echeverry-Coral SJ, Martínez-Nieto O. Analysis of HLA-A, HLA-B, HLA-DRB1 allelic, genotypic, and haplotypic frequencies in colombian population. 41. 2011.
78. Avila-Portillo LMC, Alejandra. Franco, Leidy. Briceño, Ignacio. Casa, Maria consuelo. Gomez, Alberto. Bajo polimorfismo en el sistema de antìgenos de leucocitos humanos en poblaciòn mestiza colombiana. Univ Med Bogotà. 2010;51(4):359-70.
79. Yunis JJ, Yunis EJ, Yunis E. MHC Class II haplotypes of Colombian Amerindian tribes. Genet Mol Biol. 362013. p. 158-66.
80. Trachtenberg EA, Keyeux G, Bernal JE, Rhodas MC, Erlich HA. Results of Expedicion Humana. I. Analysis of HLA class II (DRB1-DQA1-DPB1) alleles and DR-DQ haplotypes in nine Amerindian populations from Colombia. Tissue Antigens. 1996;48(3):174-81.
81. Laskay T, Diefenbach A, Rollinghoff M, Solbach W. Early parasite containment is decisive for resistance to Leishmania major infection. Eur J Immunol. 1995;25(8):2220-7.
82. Scott P, Eaton A, Gause WC, di Zhou X, Hondowicz B. Early IL-4 production does not predict susceptibility to Leishmania major. Exp Parasitol. 1996;84(2):178- 87.
83. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. 2002;2(11):845-58.
84. Daftarian PM, Stone GW, Kovalski L, Kumar M, Vosoughi A, Urbieta M, et al. A targeted and adjuvanted nanocarrier lowers the effective dose of liposomal amphotericin B and enhances adaptive immunity in murine cutaneous leishmaniasis. J Infect Dis. 2013;208(11):1914-22.
85. Moosavian SA, Fallah M, Jaafari MR. The activity of encapsulated meglumine antimoniate in stearylamine-bearing liposomes against cutaneous leishmaniasis in BALB/c mice. Exp Parasitol. 2019;200:30-5.
86. Neira LF, Mantilla JC, Escobar P. Anti-leishmanial activity of a topical miltefosine gel in experimental models of New World cutaneous leishmaniasis. J Antimicrob Chemother. 2019;74(6):1634-41.
87. Sakai S, Takashima Y, Matsumoto Y, Reed SG, Hayashi Y. Intranasal immunization with Leish-111f induces IFN-gamma production and protects mice from Leishmania major infection. Vaccine. 2010;28(10):2207-13.
88. Coler RN, Goto Y, Bogatzki L, Raman V, Reed SG. Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells. Infect Immun. 2007;75(9):4648-54.
89. Rezvan H, Rees R, Ali S. Leishmania mexicana Gp63 cDNA Using Gene Gun Induced Higher Immunity to L. mexicana Infection Compared to Soluble Leishmania Antigen in BALB/C. Iran J Parasitol. 2011;6(4):60-75.
90. Mazumder S, Maji M, Das A, Ali N. Potency, efficacy and durability of DNA/DNA, DNA/protein and protein/protein based vaccination using gp63 against Leishmania donovani in BALB/c mice. PLoS One. 2011;6(2):e14644.
91. De Oliveira Gomes DC, Schwedersky RP, Barbosa De-Melo LD, Da Silva Costa Souza BL, De Matos Guedes HL, Lopes UG, et al. Peripheral expression of LACK-mRNA induced by intranasal vaccination with PCI-NEO-LACK defines the protection duration against murine visceral leishmaniasis. Parasitology. 2012;139(12):1562-9.
92. Agallou M, Margaroni M, Karagouni E. Cellular vaccination with bone marrow-derived dendritic cells pulsed with a peptide of Leishmania infantum KMP- 11 and CpG oligonucleotides induces protection in a murine model of visceral leishmaniasis. Vaccine. 2011;29(31):5053-64.
93. Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 2008;4(4):e1000048.
94. Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics. 2015;67(11-12):641-50.
95. Zhang L, Chen Y, Wong HS, Zhou S, Mamitsuka H, Zhu S. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One. 2012;7(2):e30483.
96. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database issue):D457-62.
97. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636-w41.
98. Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, Foster LJ, et al. Proteomic analysis of the secretome of Leishmania donovani. Genome Biol. 2008;9(2):R35.
99. Ines M, Olga M, Ashira L, Ralph S, Juliana I. Targeting Leishmania major Antigens to Dendritic Cells In Vivo Induces Protective Immunity. PloS one. 2013;8(6).
100. Merrifield RB. Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:221-96.
101. Vanegas Murcia M. Síntesis de constructos de multicopias peptídicas de secuencias derivadas de la proteína apical sushi protein (asp) de plasmodium falciparum: caracterización fisicoquímica y estudios de inmunogenicidad [NonPeerReviewed]: Universidad Nacional de Colombia; 2014.
102. Salgado-Almario J, Hernandez CA, Ovalle CE. Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica. 2019;39(2):278-90.
103. Ovalle-Bracho C, Londoño-Barbosa D, Salgado-Almario J, González C. Evaluating the spatial distribution of Leishmania parasites in Colombia from clinical samples and human isolates (1999 to 2016). PLoS One. 2019;14(3).
104. Rodriguez-Barraquer I, Gongora R, Prager M, Pacheco R, Montero LM, Navas A, et al. Etiologic agent of an epidemic of cutaneous leishmaniasis in Tolima, Colombia. Am J Trop Med Hyg. 2008;78(2):276-82.
105. Llanes A, Restrepo CM, Vecchio GD, Anguizola FJ, Lleonart R. The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus. Scientific reports. 2015;5.
106. De Luca PM, Macedo ABB. Cutaneous Leishmaniasis Vaccination: A Matter of Quality. Front Immunol. 2016;7.
107. Rodrigues FM, Coelho Neto GT, Menezes JG, Gama ME, Goncalves EG, Silva AR, et al. Expression of Foxp3, TGF-beta and IL-10 in American cutaneous leishmaniasis lesions. Arch Dermatol Res. 2014;306(2):163-71.
108. Stober CB, Lange UG, Roberts MT, Alcami A, Blackwell JM. IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J Immunol. 2005;175(4):2517-24.
109. Bittar RC, Nogueira RS, Vieira-Goncalves R, Pinho-Ribeiro V, Mattos MS, Oliveira-Neto MP, et al. T-cell responses associated with resistance to Leishmania infection in individuals from endemic areas for Leishmania (Viannia) braziliensis. Mem Inst Oswaldo Cruz. 2007;102(5):625-30.
110. Trujillo CM, Robledo SM, Franco JL, Velez ID, Erb KJ, Patino PJ. Endemically exposed asymptomatic individuals show no increase in the specific Leishmania (Viannia) panamensis-Th1 immune response in comparison to patients with localized cutaneous leishmaniasis. Parasite Immunol. 2002;24(9-10):455-62.
111. Bosque F, Saravia NG, Valderrama L, Milon G. Distinct innate and acquired immune responses to Leishmania in putative susceptible and resistant human populations endemically exposed to L. (Viannia) panamensis infection. Scand J Immunol. 2000;51(5):533-41.
112. Heinzel S, Marchingo JM, Horton MB, Hodgkin PD. The regulation of lymphocyte activation and proliferation. Curr Opin Immunol. 2018;51:32-8.
113. van Stipdonk MJ, Sluijter M, Han WG, Offringa R. Development of CTL memory despite arrested clonal expansion. Eur J Immunol. 2008;38(7):1839-46.
114. Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol. 2000;1(1):47-53.
115. Rogers PR, Dubey C, Swain SL. Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. J Immunol. 2000;164(5):2338-46.
116. Whitmire JK, Eam B, Whitton JL. Tentative T cells: memory cells are quick to respond, but slow to divide. PLoS Pathog. 2008;4(4):e1000041.
117. Gudmundsdottir H, Wells AD, Turka LA. Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J Immunol. 1999;162(9):5212-23.
118. Cano P, Klitz W, Mack SJ, Maiers M, Marsh SG, Noreen H, et al. Common and well-documented HLA alleles: report of the Ad-Hoc committee of the american society for histocompatiblity and immunogenetics. Hum Immunol. 2007;68(5):392- 417.
119. Ribas-Silva R, Ribas A, Santos MD, Silva Wd, Lonardoni M, Borelli S, et al. Association between HLA genes and American cutaneous leishmaniasis in endemic regions of Southern Brazil. BMC infectious diseases. 2013;13.
120. Olivo-Díaz A, Debaz H, Alaez C, Islas VJ, Pérez-Pérez H, Oscar H, et al. Role of HLA class II alleles in susceptibility to and protection from localized cutaneous leishmaniasis. Human immunology. 2004;65(3).
121. Lara M, Layrisse Z, Scorza J, Garcia E, Stoikow Z, Granados J, et al. Immunogenetics of human American cutaneous leishmaniasis. Study of HLA haplotypes in 24 families from Venezuela. Human immunology. 1991;30(2).
122. Scott P, Novais F. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nature reviews Immunology. 2016;16(9).
123. Glennie N, Scott P. Memory T cells in cutaneous leishmaniasis. Cellular immunology. 2016;309.
124. Scott P. Long-Lived Skin-Resident Memory T Cells Contribute to Concomitant Immunity in Cutaneous Leishmaniasis. Cold Spring Harbor perspectives in biology. 2020;12(10).
125. Powrie F, Correa-Oliveira R, Mauze S, Coffman R. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. The Journal of experimental medicine. 1994;179(2).
126. Zaph C, Uzonna J, Beverley S, Scott P. Central memory T cells mediate longterm immunity to Leishmania major in the absence of persistent parasites. Nat Med. 2004;10(10):1104-10.
127. Mou Z, Liu D, Okwor I, Jia P, Orihara K, Uzonna J. MHC class II restricted innate-like double negative T cells contribute to optimal primary and secondary immunity to Leishmania major. PLoS pathogens. 2014;10(9).
128. Peters N, Pagán A, Lawyer P, Hand T, Henrique E, Stamper L, et al. Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection. PLoS pathogens. 2014;10(12).
129. Hamrouni S, Bras-Gonçalves R, Abdelhamid K, Aoun K, Chamakh-Ayari R, Petitdidier E, et al. Design of multi-epitope peptides containing HLA class-I and class-II-restricted epitopes derived from immunogenic Leishmania proteins, and evaluation of CD4+ and CD8+ T cell responses induced in cured cutaneous leishmaniasis subjects. PLoS neglected tropical diseases. 2020;14(3).
130. Costa P, Lahoz-Beneytez J, Boelen L, Ahmed R, Miners K, Zhang Y, et al. Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness. PLoS biology. 2018;16(6).
131. Gattinoni L, Speiser D, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nature medicine. 2017;23(1).
132. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 17. United States2011. p. 1290-7.
133. Ahmed R, Roger L, Costa P, Miners K, Jones R, Boelen L, et al. Human Stem Cell-like Memory T Cells Are Maintained in a State of Dynamic Flux. Cell reports. 2016;17(11).
134. Agallou M, Athanasiou E, Koutsoni O, Dotsika E, Karagouni E. Experimental Validation of Multi-Epitope Peptides Including Promising MHC Class I- and IIRestricted Epitopes of Four Known Leishmania infantum Proteins. Front Immunol. 2014;5.
135. Nahrevanian H, Jafary SP, Nemati S, Farahmand M, Omidinia E. Evaluation of anti-leishmanial effects of killed Leishmania vaccine with BCG adjuvant in BALB/c mice infected with Leishmania major MRHO/IR/75/ER. Folia Parasitol (Praha). 2013;60(1):1-6.
136. Jawyn N. MECHANISMS OF ADJUVANT INDUCTION OF THE INNATE IMMUNE RESPONSE: University of Akron; 2011.
137. Behr M, Divangahi M. Freund's adjuvant, NOD2 and mycobacteria. Current opinion in microbiology. 2015;23.
138. Santos JD, Damen M, Oosting M, Jong DD, Heinhuis B, Gomes R, et al. The NOD2 receptor is crucial for immune responses towards New World Leishmania species. Scientific reports. 2017;7(1).
139. Soto M, Ramírez L, Solana J, Cook E, Hernández-García E, Requena J, et al. Inoculation of the Leishmania infantum HSP70-II Null Mutant Induces Long-Term Protection against L. amazonensis Infection in BALB/c Mice. Microorganisms. 2021;9(2).
140. Salari S, Sharifi I, Bamorovat M, Ghasemi P. The immunity of the recombinant prokaryotic and eukaryotic subunit vaccines against cutaneous leishmaniasis. Microbial pathogenesis. 2021;153.
141. Shermeh A, Zahedifard F, Habibzadeh S, Taheri T, Rafati S, Seyed N. Evaluation of protection induced by in vitro maturated BMDCs presenting CD8 + T cell stimulating peptides after a heterologous vaccination regimen in BALB/c model against Leishmania major. Experimental parasitology. 2021;223.
142. Salari S, Sharifi I, Keyhani AR, Ghasemi P. Evaluation of a new live recombinant vaccine against cutaneous leishmaniasis in BALB/c mice. Parasites & vectors. 2020;13(1).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 114 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Biotecnología
dc.publisher.department.spa.fl_str_mv Instituto de Biotecnología (IBUN)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80814/3/1096948309.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80814/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80814/5/1096948309.2021.pdf.jpg
bitstream.checksum.fl_str_mv 5c393b9d99c04283fcefcb77b7b9bc7f
8153f7789df02f0a4c9e079953658ab2
13518bce7ad289ff072c9cdb1bc072d0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089622018326528
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Delgado Murcia, Lucy Gabriela5a5d74a7f279e35695f243a887783c55Flórez Martínez, Magda Melissadac967e0beb39ac616b9f4c211cafbfcGrupo de Investigación en Inmunotoxicología2022-01-31T16:41:48Z2022-01-31T16:41:48Z2021-12-14https://repositorio.unal.edu.co/handle/unal/80814Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLa leishmaniasis es una enfermedad parasitaria tropical, desatendida y ampliamente distribuida en el mundo. Hace parte de las enfermedades zoonóticas, transmitidas por vectores que genera alrededor de 1 millón de casos anualmente, siendo la forma Leishmaniasis cutánea, la presentación clínica más prevalente. Se ha desarrollado múltiples frentes para la intervención de esta enfermedad como el control de vectores, el desarrollo de productos terapéuticos y vacunas. Sin embargo, ésta última, aunque costo efectiva comparada con las demás estrategias, si avance es muy limitado hacia el licenciamiento de prototipos vacunales para uso en humanos. Este trabajo se enfocó en la identificación de epítopes naturales de Leishmania spp., es decir, aquellas secuencias que fueron reconocidas como antígenos y que indujeron respuesta inmune en la infección natural del parásito en humanos (especialmente en aquellos resistentes a la enfermedad) y su validación como candidatos a vacuna en un modelo murino. Para cumplir el objetivo, inicialmente se identificaron de péptidos derivados de proteínas inmunogénicas de Leishmania spp por medio de una estrategia in sílico y después de su síntesis, su evaluación en humanos mediante el uso de células dendríticas como Células Presentadoras de Antígenos –APCs- derivadas de sangre periférica, a partir de individuos sin exposición y expuestos al parásito, en distintos estadios de la enfermedad. Posteriormente, y luego de seleccionar in vitro los péptidos inmunogénicos, se identificaron el perfil de células de memoria específicas para los antígenos de interés (en los voluntarios humanos) y finalmente se evaluó su inmunogenicidad in vivo en el modelo murino BALB/c. Como resultados obtuvimos a partir de más de 1400 secuencias candidatas, la identificación de 11 péptidos provenientes de 3 proteínas de Leishmania spp. (LACK, STI1 y LEIF) mediante el empleo de 3 herramientas bioinformáticas simultáneamente. A partir de estos 11 péptidos identificamos que STI41, STI46 y STI43 generan linfoproliferación en PBMCs derivados de humanos naturalmente expuestos al parásito, además de secretar citoquinas del perfil inflamatorio (TNFα e IFNγ) los dos primeros y del perfil regulador (IL- 10), el último. Posteriormente, identificamos que el alelo HLA-DRβ1 04:05 podría estar asociado a la susceptibilidad de los individuos a la leishmaniasis, además que aquellos resistentes a la misma generan células TCM y Teff frente a antígenos del parásito y que los péptidos STI41 y STI46 generan células TSCM y Teff en los mismos. Finalmente, observamos en un modelo de leishmaniasis cutánea por Leishmania panamensis (L. panamensis) en ratones BALB/c que la inmunización con el péptido STI41 logró la reducción de las úlceras a tamaños más pequeños respecto a los ratones control y producción de IFNγ y TNFα en esplenocitos ex vivo, al igual que el péptido STI43 cuyo uso generó lesiones más pequeñas, pero en menor medida que STI41, junto con la bajoregulación de IL-4 e IFNγ. Concluimos que la estrategia de vacunología reversa permitió el estudio en un número reducido de candidatos (11 de 1483) que tras la experimentación in vitro confirmamos para tres de estos su caracterización como epítopes de células T en humanos naturalmente expuestos a la leishmaniasis. Dos secuencias STI41 y STI43 generaron una mejor resolución de la infección por L. panamensis en ratones BALB/c por lo que podrían ser valiosos candidatos a ser incluidos en una futura vacuna para la leishmanisis. (Texto tomado de la fuente).Leishmaniasis is a neglected tropical disease cause by Leishmania parasite, distributed worldwide. It is a zoonosis and vectorborne disease that causes around 1 million cases each year, with Cutaneous leishmanisis as the most prevalent clinical form. Multiple strategies have been developed to manage the disease as vector control, treatment, and vaccine development, however, the last one, although cost-effective compared with other strategies, so far there aren’t any licensed vaccines for use in humans. This work was focused on the identification of natural Leishmania spp. Epitopes, it means, those sequences that were identified as antigens and that generated immune response against the parasite in humans, especially in those resistant to the disease and its validation as vaccine candidates in a murine model. In order to achieve the aim, first, several peptides were identified from immunogenic Leishmania proteins, using in sílico analyses, and after, we selected sequences and synthetized and evaluated in PBMCs, using dendritic cells a APCs from human volunteers naturally exposed or not to the parasite. Next, memory cells profile were identified for these peptides chosen in the previous step, and finally selected sequences were assessed in vivo. As results, we obtained from more than 1400 candidate sequences, the identification of 11 peptides from 3 proteins of Leishmania spp. (LACK, STI1, and LEIF) by using three bioinformatics tools, simultaneously. From these 11 peptides, we identified that STI41, STI46, and STI43 generate lymphoproliferation in PBMCs derived from humans naturally exposed to the parasite. In addition, we detected cytokine secretion of the first two inflammatory profiles (TNFα e IFNγ) and the last one of the regulatory profile (IL-10). Subsequently, we identified that the HLA-DRβ1 04:05 allele could be associated with the susceptibility of individuals to leishmaniasis, in addition, that those Resistant generate TCM and Teff cells against parasite antigens and that the STI41 and STI46 peptides generate TSCM and Teff cells in them. Finally, we observed in a model of cutaneous leishmaniasis caused by L. panamensis in BALB/c mice, secondary to immunization with the STI41 peptide, a reduction of ulcers with smaller sizes than the control mice and production of IFNγ and TNFα in splenocytes ex vivo; whereas the immunization with STI43 peptide induced smaller lesions but to a lesser extent than STI41, together with the down-regulation of IL-4 and IFNγ. We conclude that the reverse vaccinology strategy allowed the study in a small number of candidates (11 out of 1483) which, after in vitro and ex vivo experimentation, confirmed for three of them their behavior as T-cell epitope in humans naturally exposed to leishmaniasis and that of these, two sequences STI41 and STI43 generate a better resolution of infection by L. panamensis in BALB/c mice, justifying the potential use as vaccine candidates to be included in a future formulation toward the prophylactic control of leishmanisis.Incluye anexosDoctoradoDoctor en BiotecnologíaBiotecnología en salud humana y animalxiii, 114 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en BiotecnologíaInstituto de Biotecnología (IBUN)Facultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - BiologíaAntígenosLeishmaniasisPéptidosAntigensLeishmaniasisPeptidesLeishmaniasisVacunología reversaPéptidos sintéticosHumanosCélulas de memoriaIn vivoVacunasLeishmaniasisvaccinesReverse vaccinologySynthetic peptidesHumanMemory cellsIn vivoCaracterización de la respuesta de linfocitos T-CD4+ de memoria específicos para péptidos derivados de proteínas de Leishmania como potenciales candidatos a vacunaCharacterization of the memory T-CD4+ lymphocyte response specific for peptides derived from Leishmania proteins as potential vaccine candidatesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDBireme1. WHO | Leishmaniasis: World Health Organization; 2015 [updated 2015-04- 09 11:14:56. Available from: http://www.who.int/leishmaniasis/en/.2. Salud INd. Sivigila 2015 [Available from: http://www.ins.gov.co/lineas-deaccion/Subdireccion-Vigilancia/sivigila/Paginas/sivigila.aspx.3. Tripathi P, Singh V, Naik S. Immune response to leishmania: paradox rather than paradigm. FEMS Immunol Med Microbiol. 2007;51(2):229-42.4. INS. Estadísticas de Vigilancia Rutinaria 2021 [Available from: http://portalsivigila.ins.gov.co/Paginas/Vigilancia-Rutinaria.aspx.5. WHO | New Technical Report Series on the Control of Leishmaniasis: World Health Organization; 2012 [updated 2011-04-07 14:36:00. Available from: http://www.who.int/neglected_diseases/integrated_media/integrated_media_2010 _leishmaniasis/en/.6. Alvar J, Yactayo S, Bern C. Leishmaniasis and poverty. Trends in parasitology. 2006;22(12):552-7.7. Velez ID, Universidad de Antioquia M, Colombia, Hendrickx E, Universidad de Antioquia M, Colombia, Robledo SM, Universidad de Antioquia M, Colombia, et al. Gender and cutaneous leishmaniasis in Colombia. Cad Saúde Pública. 2001;17(1):171-80.8. WHO | Vaccines: World Health Organization; 2015 [updated 2015-06-05 16:46:11. Available from: http://www.who.int/ith/vaccines/en/.9. Bacon KM, Hotez PJ, Kruchten SD, Kamhawi S, Bottazzi ME, Valenzuela JG, et al. The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas. Vaccine. 2013;31(3):480-6.10. Kedzierski L, Zhu Y, Handman E. Leishmania vaccines: progress and problems. Parasitology. 2006;133 Suppl:S87-112.11. Das S, Matlashewski G, Bhunia GS, Kesari S, Das P. Asymptomatic Leishmania infections in northern India: a threat for the elimination programme? Trans R Soc Trop Med Hyg. 2014;108(11):679-84.12. Weigle KA, Valderrama L, Arias AL, Santrich C, Saravia NG. Leishmanin skin test standardization and evaluation of safety, dose, storage, longevity of reaction and sensitization. Am J Trop Med Hyg. 1991;44(3):260-71.13. Andrade-Narvaez FJ, Loria-Cervera EN, Sosa-Bibiano EI, Van Wynsberghe NR. Asymptomatic infection with American cutaneous leishmaniasis: epidemiological and immunological studies. Mem Inst Oswaldo Cruz. 2016;111(10):599-604.14. Ivan B, Angela P-M, María C, Mirko Z, Rachel B-G, Jean-Loup L, et al. IFN- γ Response Is Associated to Time Exposure Among Asymptomatic Immune Responders That Visited American Tegumentary Leishmaniasis Endemic Areas in Peru. Frontiers in cellular and infection microbiology. 2018;8.15. Ostyn B, Gidwani K, Khanal B, Picado A, Chappuis F, Singh SP, et al. Incidence of symptomatic and asymptomatic Leishmania donovani infections in high-endemic foci in India and Nepal: a prospective study. PLoS Negl Trop Dis. 2011;5(10):e1284.16. de Almeida MC, Vilhena V, Barral A, Barral-Netto M. Leishmanial infection: analysis of its first steps. A review. Mem Inst Oswaldo Cruz. 2003;98(7):861-70.17. Gollob KJ, Viana AG, Dutra WO. Immunoregulation in human American leishmaniasis: balancing pathology and protection. Parasite Immunol. 2014;36(8):367-76.18. Abbas AL, Andrew. Cellular and Molecular Immunology 5th edition: Saunders; 2004.19. WHO | Synthetic peptide vaccines: World Health Organization; 2014 [updated 2014-01-10 10:57:28. Available from: http://www.who.int/biologicals/vaccines/synthetic_peptide_vaccines/en/.20. Schlaphoff V, Klade CS, Jilma B, Jelovcan SB, Cornberg M, Tauber E, et al. Functional and phenotypic characterization of peptide-vaccine-induced HCVspecific CD8+ T cells in healthy individuals and chronic hepatitis C patients. Vaccine. 2007;25(37-38):6793-806.21. Solares AM, Baladron I, Ramos T, Valenzuela C, Borbon Z, Fanjull S, et al. Safety and Immunogenicity of a Human Papillomavirus Peptide Vaccine (CIGB- 228) in Women with High-Grade Cervical Intraepithelial Neoplasia: First-in-Human, Proof-of-Concept Trial. ISRN Obstet Gynecol. 2011;2011:292951.22. Stanekova Z, Kiraly J, Stropkovska A, Mikuskova T, Mucha V, Kostolansky F, et al. Heterosubtypic protective immunity against influenza A virus induced by fusion peptide of the hemagglutinin in comparison to ectodomain of M2 protein. Acta Virol. 2011;55(1):61-7.23. Kolesanova AAMaEF. Synthetic Peptide Vaccines: InTech; 2012 [updated 2012-03-21. Available from: http://www.intechopen.com/books/insight-and-controlof-infectious-disease-in-global-scenario/synthetic-peptide-vaccines.24. Sirima SB, Tiono AB, Ouedraogo A, Diarra A, Ouedraogo AL, Yaro JB, et al. Safety and immunogenicity of the malaria vaccine candidate MSP3 long synthetic peptide in 12-24 months-old Burkinabe children. PLoS One. 2009;4(10):e7549.25. OPS/OMS. Leishmaniasis - OPS/OMS | Organización Panamericana de la Salud: @opsoms; 2021 [Available from: https://www.paho.org/es/temas/leishmaniasis.26. Bari Au. Chronology of cutaneous leishmaniasis: An overview of the history of the disease. Journal of Pakistan Association of Dermatologists. 2006;16:24-7.27. Leishmaniasis - Pan American Health Organization - Organización Panamericana de la Salud 2012 [Available from:http://new.paho.org/hq/index.php?option=com_content&task=blogcategory&id=38 35&Itemid=4098⟨=en.28. Osorio LE, Castillo CM, Ochoa MT. Mucosal leishmaniasis due to Leishmania (Viannia) panamensis in Colombia: clinical characteristics. Am J Trop Med Hyg. 1998;59(1):49-52.29. Saravia NG, Segura I, Holguin AF, Santrich C, Valderrama L, Ocampo C. Epidemiologic, genetic, and clinical associations among phenotypically distinct populations of Leishmania (Viannia) in Colombia. Am J Trop Med Hyg. 1998;59(1):86-94.30. Guerra JA, Prestes SR, Silveira H, Coelho LI, Gama P, Moura A, et al. Mucosal Leishmaniasis caused by Leishmania (Viannia) braziliensis and Leishmania (Viannia) guyanensis in the Brazilian Amazon. PLoS Negl Trop Dis. 2011;5(3):e980.31. MINISTÉRIO DA SAÚDE SdveS. Manual de Vigilancia da Leishmaniose Tegumentar Americana 2010 [Available from: http://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_leishmaniose_tegu mentar_americana.pdf.32. Smith-Garvin JE, Koretzky GA, Jordan MS. T Cell Activation. Annu Rev Immunol. 2009;27:591-619.33. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol. 2003;3(12):984-93.34. Squires KE, Schreiber RD, McElrath MJ, Rubin BY, Anderson SL, Murray HW. Experimental visceral leishmaniasis: role of endogenous IFN-gamma in host defense and tissue granulomatous response. J Immunol. 1989;143(12):4244-9.35. Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 1998;188(10):1941-53.36. Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D. A natural model of Leishmania major infection reveals a prolonged "silent" phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol. 2000;165(2):969-77.37. Ajdary S, Alimohammadian MH, Eslami MB, Kemp K, Kharazmi A. Comparison of the Immune Profile of Nonhealing Cutaneous Leishmaniasis Patients with Those with Active Lesions and Those Who Have Recovered from Infection. Infect Immun. 2000;68(4):1760-4.38. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature. 2002;420(6915):502-7.39. Woelbing F, Kostka SL, Moelle K, Belkaid Y, Sunderkoetter C, Verbeek S, et al. Uptake of Leishmania major by dendritic cells is mediated by Fcgamma receptors and facilitates acquisition of protective immunity. J Exp Med. 2006;203(1):177-88.40. Von Stebut E. Immunology of cutaneous leishmaniasis: the role of mast cells, phagocytes and dendritic cells for protective immunity. Eur J Dermatol. 2007;17(2):115-22.41. Best I, Privat-Maldonado A, Cruz M, Zimic M, lBras-Gonçalves R, Lemesre J-L, et al. IFN-γ Response Is Associated to Time Exposure Among Asymptomatic Immune Responders That Visited American Tegumentary Leishmaniasis Endemic Areas in Peru. Frontiers in cellular and infection microbiology. 2018;8.42. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745-63.43. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708-12.44. Zaph C, Uzonna J, Beverley SM, Scott P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat Med. 2004;10(10):1104-10.45. Carvalho AM, Magalhaes A, Carvalho LP, Bacellar O, Scott P, Carvalho EM. Immunologic response and memory T cells in subjects cured of tegumentary leishmaniasis. BMC Infect Dis. 2013;13:529.46. Keshavarz Valian H, Nateghi Rostami M, Tasbihi M, Miramin Mohammadi A, Eskandari SE, Sarrafnejad A, et al. CCR7+ central and CCR7- effector memory CD4+ T cells in human cutaneous leishmaniasis. J Clin Immunol. 2013;33(1):220- 34.47. Scott P. Immunologic memory in cutaneous leishmaniasis. Cell Microbiol. 2005;7(12):1707-13.48. Jain K, Jain NK. Vaccines for visceral leishmaniasis: A review. J Immunol Methods. 2015;422:1-12.49. Rezvan H, Moafi M. An overview on Leishmania vaccines: A narrative review article. Vet Res Forum. 2015;6(1):1-7.50. Kumar R, Engwerda C. Vaccines to prevent leishmaniasis. Clin Transl Immunology. 2014;3(3):e13.51. Sundar S, Singh B. Identifying vaccine targets for anti-leishmanial vaccine development. Expert Rev Vaccines. 2014;13(4):489-505.52. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med. 2007;13(7):843-50.53. Matos DC, Faccioli LA, Cysne-Finkelstein L, Luca PM, Corte-Real S, Armoa GR, et al. Kinetoplastid membrane protein-11 is present in promastigotes and amastigotes of Leishmania amazonensis and its surface expression increases during metacyclogenesis. Mem Inst Oswaldo Cruz. 2010;105(3):341-7.54. Ramirez JR, Gilchrist K, Robledo S, Sepulveda JC, Moll H, Soldati D, et al. Attenuated Toxoplasma gondii ts-4 mutants engineered to express the Leishmania antigen KMP-11 elicit a specific immune response in BALB/c mice. Vaccine. 2001;20(3-4):455-61.55. Guha R, Das S, Ghosh J, Naskar K, Mandala A, Sundar S, et al. Heterologous priming-boosting with DNA and vaccinia virus expressing kinetoplastid membrane protein-11 induces potent cellular immune response and confers protection against infection with antimony resistant and sensitive strains of Leishmania (Leishmania) donovani. Vaccine. 2013;31(15):1905-15.56. Basu R, Bhaumik S, Basu JM, Naskar K, De T, Roy S. Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1- and Th2-like responses in visceral leishmaniasis. J Immunol. 2005;174(11):7160-71.57. Courret N, Prina E, Mougneau E, Saraiva EM, Sacks DL, Glaichenhaus N, et al. Presentation of the Leishmania antigen LACK by infected macrophages is dependent upon the virulence of the phagocytosed parasites. Eur J Immunol. 1999;29(3):762-73.58. Julia V, Glaichenhaus N. CD4(+) T cells which react to the Leishmania major LACK antigen rapidly secrete interleukin-4 and are detrimental to the host in resistant B10.D2 mice. Infect Immun. 1999;67(7):3641-4.59. Netto LES, Chae HZ, Kang SW, Rhee SG, Stadtman ER. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J Biol Chem. 1996;271(26):15315-21.60. Webb JR, Campos-Neto A, Ovendale PJ, Martin TI, Stromberg EJ, Badaro R, et al. Human and murine immune responses to a novel Leishmania major recombinant protein encoded by members of a multicopy gene family. Infect Immun. 1998;66(7):3279-89.61. Webb JR, Campos-Neto A, Skeiky YA, Reed SG. Molecular characterization of the heat-inducible LmSTI1 protein of Leishmania major. Mol Biochem Parasitol. 1997;89(2):179-93.62. Webb JR, Kaufmann D, Campos-Neto A, Reed SG. Molecular cloning of a novel protein antigen of Leishmania major that elicits a potent immune response in experimental murine leishmaniasis. J Immunol. 1996;157(11):5034-41.63. Kushawaha PK, Gupta R, Sundar S, Sahasrabuddhe AA, Dube A. Elongation factor-2, a Th1 stimulatory protein of Leishmania donovani, generates strong IFN-gamma and IL-12 response in cured Leishmania-infected patients/hamsters and protects hamsters against Leishmania challenge. J Immunol. 2011;187(12):6417-27.64. Skeiky YAW, Guderian JA, Benson DR, Bacelar O, Carvalho Filho EMd, Kubin M, et al. A recombinant leishmania antigen that stimulates human peripheral blood mononuclear cells to express a th1-type cytokine profile and to produce interleukin 12. http://jemrupressorg/content/181/4/1527fullpdf+html. 1995.65. Velez ID, Gilchrist K, Martinez S, Ramirez-Pineda JR, Ashman JA, Alves FP, et al. Safety and immunogenicity of a defined vaccine for the prevention of cutaneous leishmaniasis. Vaccine. 2009;28(2):329-37.66. Llanos-Cuentas A, Calderon W, Cruz M, Ashman JA, Alves FP, Coler RN, et al. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine when used in combination with sodium stibogluconate for the treatment of mucosal leishmaniasis. Vaccine. 2010;28(46):7427-35.67. Ben-Yedidia T, Arnon R. Design of peptide and polypeptide vaccines. Curr Opin Biotechnol. 1997;8(4):442-8.68. van der Burg SH, Bijker MS, Welters MJ, Offringa R, Melief CJ. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Adv Drug Deliv Rev. 2006;58(8):916-30.69. Okitsu SL, Kienzl U, Moehle K, Silvie O, Peduzzi E, Mueller MS, et al. Structure-activity-based design of a synthetic malaria peptide eliciting sporozoite inhibitory antibodies in a virosomal formulation. Chem Biol. 2007;14(5):577-87.70. Pereira BA, Silva FS, Rebello KM, Marin-Villa M, Traub-Cseko YM, Andrade TC, et al. In silico predicted epitopes from the COOH-terminal extension of cysteine proteinase B inducing distinct immune responses during Leishmania (Leishmania) amazonensis experimental murine infection. BMC Immunol. 2011;12:44.71. Rezvan H. Immunogenicity of HLA-DR1 Restricted Peptides Derived from Leishmania major gp63 Using FVB/N-DR1 Transgenic Mouse Model. Iran J Parasitol. 2013;8(2):273-9.72. Resende DM, Caetano BC, Dutra MS, Penido ML, Abrantes CF, Verly RM, et al. Epitope mapping and protective immunity elicited by adenovirus expressing the Leishmania amastigote specific A2 antigen: correlation with IFN-gamma and cytolytic activity by CD8+ T cells. Vaccine. 2008;26(35):4585-93.73. Delgado G, Parra-Lopez CA, Vargas LE, Hoya R, Estupinan M, Guzman F, et al. Characterizing cellular immune response to kinetoplastid membrane protein- 11 (KMP-11) during Leishmania (Viannia) panamensis infection using dendritic cells (DCs) as antigen presenting cells (APCs). Parasite Immunol. 2003;25(4):199-209.74. Jones EY, Fugger L, Strominger JL, Siebold C. MHC class II proteins and disease: a structural perspective. Nat Rev Immunol. 2006;6(4):271-82.75. Correa PA, Whitworth WC, Kuffner T, McNicholl J, Anaya JM. HLA-DR and DQB1 gene polymorphism in the North-western Colombian population. Tissue Antigens. 2002;59(5):436-9.76. Ossa Reyes HMA, Quintanilla Sonia, Peña Villalobos Alejandro. Polimorfismos del sistema HLA (loci A*, B* y DRB1*) en población colombiana. 2016.77. Arias-Murillo YR, Castro-Jiménez MÁ, Ríos-Espinosa MF, López-Rivera JJ, Echeverry-Coral SJ, Martínez-Nieto O. Analysis of HLA-A, HLA-B, HLA-DRB1 allelic, genotypic, and haplotypic frequencies in colombian population. 41. 2011.78. Avila-Portillo LMC, Alejandra. Franco, Leidy. Briceño, Ignacio. Casa, Maria consuelo. Gomez, Alberto. Bajo polimorfismo en el sistema de antìgenos de leucocitos humanos en poblaciòn mestiza colombiana. Univ Med Bogotà. 2010;51(4):359-70.79. Yunis JJ, Yunis EJ, Yunis E. MHC Class II haplotypes of Colombian Amerindian tribes. Genet Mol Biol. 362013. p. 158-66.80. Trachtenberg EA, Keyeux G, Bernal JE, Rhodas MC, Erlich HA. Results of Expedicion Humana. I. Analysis of HLA class II (DRB1-DQA1-DPB1) alleles and DR-DQ haplotypes in nine Amerindian populations from Colombia. Tissue Antigens. 1996;48(3):174-81.81. Laskay T, Diefenbach A, Rollinghoff M, Solbach W. Early parasite containment is decisive for resistance to Leishmania major infection. Eur J Immunol. 1995;25(8):2220-7.82. Scott P, Eaton A, Gause WC, di Zhou X, Hondowicz B. Early IL-4 production does not predict susceptibility to Leishmania major. Exp Parasitol. 1996;84(2):178- 87.83. Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol. 2002;2(11):845-58.84. Daftarian PM, Stone GW, Kovalski L, Kumar M, Vosoughi A, Urbieta M, et al. A targeted and adjuvanted nanocarrier lowers the effective dose of liposomal amphotericin B and enhances adaptive immunity in murine cutaneous leishmaniasis. J Infect Dis. 2013;208(11):1914-22.85. Moosavian SA, Fallah M, Jaafari MR. The activity of encapsulated meglumine antimoniate in stearylamine-bearing liposomes against cutaneous leishmaniasis in BALB/c mice. Exp Parasitol. 2019;200:30-5.86. Neira LF, Mantilla JC, Escobar P. Anti-leishmanial activity of a topical miltefosine gel in experimental models of New World cutaneous leishmaniasis. J Antimicrob Chemother. 2019;74(6):1634-41.87. Sakai S, Takashima Y, Matsumoto Y, Reed SG, Hayashi Y. Intranasal immunization with Leish-111f induces IFN-gamma production and protects mice from Leishmania major infection. Vaccine. 2010;28(10):2207-13.88. Coler RN, Goto Y, Bogatzki L, Raman V, Reed SG. Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells. Infect Immun. 2007;75(9):4648-54.89. Rezvan H, Rees R, Ali S. Leishmania mexicana Gp63 cDNA Using Gene Gun Induced Higher Immunity to L. mexicana Infection Compared to Soluble Leishmania Antigen in BALB/C. Iran J Parasitol. 2011;6(4):60-75.90. Mazumder S, Maji M, Das A, Ali N. Potency, efficacy and durability of DNA/DNA, DNA/protein and protein/protein based vaccination using gp63 against Leishmania donovani in BALB/c mice. PLoS One. 2011;6(2):e14644.91. De Oliveira Gomes DC, Schwedersky RP, Barbosa De-Melo LD, Da Silva Costa Souza BL, De Matos Guedes HL, Lopes UG, et al. Peripheral expression of LACK-mRNA induced by intranasal vaccination with PCI-NEO-LACK defines the protection duration against murine visceral leishmaniasis. Parasitology. 2012;139(12):1562-9.92. Agallou M, Margaroni M, Karagouni E. Cellular vaccination with bone marrow-derived dendritic cells pulsed with a peptide of Leishmania infantum KMP- 11 and CpG oligonucleotides induces protection in a murine model of visceral leishmaniasis. Vaccine. 2011;29(31):5053-64.93. Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 2008;4(4):e1000048.94. Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics. 2015;67(11-12):641-50.95. Zhang L, Chen Y, Wong HS, Zhou S, Mamitsuka H, Zhu S. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One. 2012;7(2):e30483.96. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database issue):D457-62.97. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636-w41.98. Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, Foster LJ, et al. Proteomic analysis of the secretome of Leishmania donovani. Genome Biol. 2008;9(2):R35.99. Ines M, Olga M, Ashira L, Ralph S, Juliana I. Targeting Leishmania major Antigens to Dendritic Cells In Vivo Induces Protective Immunity. PloS one. 2013;8(6).100. Merrifield RB. Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:221-96.101. Vanegas Murcia M. Síntesis de constructos de multicopias peptídicas de secuencias derivadas de la proteína apical sushi protein (asp) de plasmodium falciparum: caracterización fisicoquímica y estudios de inmunogenicidad [NonPeerReviewed]: Universidad Nacional de Colombia; 2014.102. Salgado-Almario J, Hernandez CA, Ovalle CE. Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica. 2019;39(2):278-90.103. Ovalle-Bracho C, Londoño-Barbosa D, Salgado-Almario J, González C. Evaluating the spatial distribution of Leishmania parasites in Colombia from clinical samples and human isolates (1999 to 2016). PLoS One. 2019;14(3).104. Rodriguez-Barraquer I, Gongora R, Prager M, Pacheco R, Montero LM, Navas A, et al. Etiologic agent of an epidemic of cutaneous leishmaniasis in Tolima, Colombia. Am J Trop Med Hyg. 2008;78(2):276-82.105. Llanes A, Restrepo CM, Vecchio GD, Anguizola FJ, Lleonart R. The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus. Scientific reports. 2015;5.106. De Luca PM, Macedo ABB. Cutaneous Leishmaniasis Vaccination: A Matter of Quality. Front Immunol. 2016;7.107. Rodrigues FM, Coelho Neto GT, Menezes JG, Gama ME, Goncalves EG, Silva AR, et al. Expression of Foxp3, TGF-beta and IL-10 in American cutaneous leishmaniasis lesions. Arch Dermatol Res. 2014;306(2):163-71.108. Stober CB, Lange UG, Roberts MT, Alcami A, Blackwell JM. IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J Immunol. 2005;175(4):2517-24.109. Bittar RC, Nogueira RS, Vieira-Goncalves R, Pinho-Ribeiro V, Mattos MS, Oliveira-Neto MP, et al. T-cell responses associated with resistance to Leishmania infection in individuals from endemic areas for Leishmania (Viannia) braziliensis. Mem Inst Oswaldo Cruz. 2007;102(5):625-30.110. Trujillo CM, Robledo SM, Franco JL, Velez ID, Erb KJ, Patino PJ. Endemically exposed asymptomatic individuals show no increase in the specific Leishmania (Viannia) panamensis-Th1 immune response in comparison to patients with localized cutaneous leishmaniasis. Parasite Immunol. 2002;24(9-10):455-62.111. Bosque F, Saravia NG, Valderrama L, Milon G. Distinct innate and acquired immune responses to Leishmania in putative susceptible and resistant human populations endemically exposed to L. (Viannia) panamensis infection. Scand J Immunol. 2000;51(5):533-41.112. Heinzel S, Marchingo JM, Horton MB, Hodgkin PD. The regulation of lymphocyte activation and proliferation. Curr Opin Immunol. 2018;51:32-8.113. van Stipdonk MJ, Sluijter M, Han WG, Offringa R. Development of CTL memory despite arrested clonal expansion. Eur J Immunol. 2008;38(7):1839-46.114. Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol. 2000;1(1):47-53.115. Rogers PR, Dubey C, Swain SL. Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. J Immunol. 2000;164(5):2338-46.116. Whitmire JK, Eam B, Whitton JL. Tentative T cells: memory cells are quick to respond, but slow to divide. PLoS Pathog. 2008;4(4):e1000041.117. Gudmundsdottir H, Wells AD, Turka LA. Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J Immunol. 1999;162(9):5212-23.118. Cano P, Klitz W, Mack SJ, Maiers M, Marsh SG, Noreen H, et al. Common and well-documented HLA alleles: report of the Ad-Hoc committee of the american society for histocompatiblity and immunogenetics. Hum Immunol. 2007;68(5):392- 417.119. Ribas-Silva R, Ribas A, Santos MD, Silva Wd, Lonardoni M, Borelli S, et al. Association between HLA genes and American cutaneous leishmaniasis in endemic regions of Southern Brazil. BMC infectious diseases. 2013;13.120. Olivo-Díaz A, Debaz H, Alaez C, Islas VJ, Pérez-Pérez H, Oscar H, et al. Role of HLA class II alleles in susceptibility to and protection from localized cutaneous leishmaniasis. Human immunology. 2004;65(3).121. Lara M, Layrisse Z, Scorza J, Garcia E, Stoikow Z, Granados J, et al. Immunogenetics of human American cutaneous leishmaniasis. Study of HLA haplotypes in 24 families from Venezuela. Human immunology. 1991;30(2).122. Scott P, Novais F. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nature reviews Immunology. 2016;16(9).123. Glennie N, Scott P. Memory T cells in cutaneous leishmaniasis. Cellular immunology. 2016;309.124. Scott P. Long-Lived Skin-Resident Memory T Cells Contribute to Concomitant Immunity in Cutaneous Leishmaniasis. Cold Spring Harbor perspectives in biology. 2020;12(10).125. Powrie F, Correa-Oliveira R, Mauze S, Coffman R. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. The Journal of experimental medicine. 1994;179(2).126. Zaph C, Uzonna J, Beverley S, Scott P. Central memory T cells mediate longterm immunity to Leishmania major in the absence of persistent parasites. Nat Med. 2004;10(10):1104-10.127. Mou Z, Liu D, Okwor I, Jia P, Orihara K, Uzonna J. MHC class II restricted innate-like double negative T cells contribute to optimal primary and secondary immunity to Leishmania major. PLoS pathogens. 2014;10(9).128. Peters N, Pagán A, Lawyer P, Hand T, Henrique E, Stamper L, et al. Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection. PLoS pathogens. 2014;10(12).129. Hamrouni S, Bras-Gonçalves R, Abdelhamid K, Aoun K, Chamakh-Ayari R, Petitdidier E, et al. Design of multi-epitope peptides containing HLA class-I and class-II-restricted epitopes derived from immunogenic Leishmania proteins, and evaluation of CD4+ and CD8+ T cell responses induced in cured cutaneous leishmaniasis subjects. PLoS neglected tropical diseases. 2020;14(3).130. Costa P, Lahoz-Beneytez J, Boelen L, Ahmed R, Miners K, Zhang Y, et al. Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness. PLoS biology. 2018;16(6).131. Gattinoni L, Speiser D, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nature medicine. 2017;23(1).132. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 17. United States2011. p. 1290-7.133. Ahmed R, Roger L, Costa P, Miners K, Jones R, Boelen L, et al. Human Stem Cell-like Memory T Cells Are Maintained in a State of Dynamic Flux. Cell reports. 2016;17(11).134. Agallou M, Athanasiou E, Koutsoni O, Dotsika E, Karagouni E. Experimental Validation of Multi-Epitope Peptides Including Promising MHC Class I- and IIRestricted Epitopes of Four Known Leishmania infantum Proteins. Front Immunol. 2014;5.135. Nahrevanian H, Jafary SP, Nemati S, Farahmand M, Omidinia E. Evaluation of anti-leishmanial effects of killed Leishmania vaccine with BCG adjuvant in BALB/c mice infected with Leishmania major MRHO/IR/75/ER. Folia Parasitol (Praha). 2013;60(1):1-6.136. Jawyn N. MECHANISMS OF ADJUVANT INDUCTION OF THE INNATE IMMUNE RESPONSE: University of Akron; 2011.137. Behr M, Divangahi M. Freund's adjuvant, NOD2 and mycobacteria. Current opinion in microbiology. 2015;23.138. Santos JD, Damen M, Oosting M, Jong DD, Heinhuis B, Gomes R, et al. The NOD2 receptor is crucial for immune responses towards New World Leishmania species. Scientific reports. 2017;7(1).139. Soto M, Ramírez L, Solana J, Cook E, Hernández-García E, Requena J, et al. Inoculation of the Leishmania infantum HSP70-II Null Mutant Induces Long-Term Protection against L. amazonensis Infection in BALB/c Mice. Microorganisms. 2021;9(2).140. Salari S, Sharifi I, Bamorovat M, Ghasemi P. The immunity of the recombinant prokaryotic and eukaryotic subunit vaccines against cutaneous leishmaniasis. Microbial pathogenesis. 2021;153.141. Shermeh A, Zahedifard F, Habibzadeh S, Taheri T, Rafati S, Seyed N. Evaluation of protection induced by in vitro maturated BMDCs presenting CD8 + T cell stimulating peptides after a heterologous vaccination regimen in BALB/c model against Leishmania major. Experimental parasitology. 2021;223.142. Salari S, Sharifi I, Keyhani AR, Ghasemi P. Evaluation of a new live recombinant vaccine against cutaneous leishmaniasis in BALB/c mice. Parasites & vectors. 2020;13(1).Público generalORIGINAL1096948309.2021.pdf1096948309.2021.pdfTesis de Doctorado en Biotecnologíaapplication/pdf9868913https://repositorio.unal.edu.co/bitstream/unal/80814/3/1096948309.2021.pdf5c393b9d99c04283fcefcb77b7b9bc7fMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80814/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1096948309.2021.pdf.jpg1096948309.2021.pdf.jpgGenerated Thumbnailimage/jpeg3902https://repositorio.unal.edu.co/bitstream/unal/80814/5/1096948309.2021.pdf.jpg13518bce7ad289ff072c9cdb1bc072d0MD55unal/80814oai:repositorio.unal.edu.co:unal/808142024-08-02 23:10:43.448Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK