Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins
Ilustraciones, mapas
- Autores:
-
Cataño Álvarez, Santiago
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81480
- Palabra clave:
- 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Transporte de sedimentos
Balance hídrico (Hidrología)
Hidrogeomorfología
Deslizamientos
Geometría hidráulica
Landslides
Hydraulic geometry
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_38cf430f264a2bc8f8bec4b0896fecf8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81480 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins |
dc.title.translated.spa.fl_str_mv |
Acople del suministro de sedimentos desde la hidrología de ladera con la morfodinámica fluvial en cuencas tropicales de montaña |
title |
Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins |
spellingShingle |
Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Transporte de sedimentos Balance hídrico (Hidrología) Hidrogeomorfología Deslizamientos Geometría hidráulica Landslides Hydraulic geometry |
title_short |
Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins |
title_full |
Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins |
title_fullStr |
Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins |
title_full_unstemmed |
Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins |
title_sort |
Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins |
dc.creator.fl_str_mv |
Cataño Álvarez, Santiago |
dc.contributor.advisor.none.fl_str_mv |
Vélez Upegui, Jaime Ignacio |
dc.contributor.author.none.fl_str_mv |
Cataño Álvarez, Santiago |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica |
topic |
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Transporte de sedimentos Balance hídrico (Hidrología) Hidrogeomorfología Deslizamientos Geometría hidráulica Landslides Hydraulic geometry |
dc.subject.lemb.none.fl_str_mv |
Transporte de sedimentos Balance hídrico (Hidrología) |
dc.subject.proposal.spa.fl_str_mv |
Hidrogeomorfología Deslizamientos Geometría hidráulica |
dc.subject.proposal.eng.fl_str_mv |
Landslides Hydraulic geometry |
description |
Ilustraciones, mapas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-01T19:45:04Z |
dc.date.available.none.fl_str_mv |
2022-06-01T19:45:04Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81480 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81480 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Sidle, R. C. [Roy C.], Gomi, T., & Tsukamoto, Y. (2018). Discovery of zero-order basins as an important link for progress in hydrogeomorphology. Hydrological Processes, 32(19), 3059–3065. Rickenmann, D.&Recking, A. [Alain]. (2011, July). Evaluation of flow resistance in gravel bed rivers through a large field data set.Water Resources Research, 47(7). Addy, S. & Wilkinson, M. E. (2021). Embankment lowering and natural self-recovery improves river-floodplain hydro-geomorphic connectivity of a gravel bed river. Science of The Total Environment, 770, 144626. Allen, P. A. & Hovius, N. (1998, March). Sediment supply from landslide-dominated catchments: implications for basin-margin fans. Basin Research, 10(1), 19–35. doi:10. 1046/j.1365-2117.1998.00060.x Basile, P., Riccardi, G.,&Rodrıguez, J. (2016). Modelaci´on matem´atica hidro-morfodin´amica a escala de cuenca en rıos con lechos de sedimentos no-uniformes. Cuadernos del CURIHAM, 22, 1–25. Bathurst, J. C., Burton, A., Clarke, B. G., & Gallart, F. (2006). Application of the SHETRAN basin-scale, landslide sediment yield model to the llobregat basin, spanish pyrenees. Hydrological Processes, 20(14), 3119–3138. doi:10.1002/hyp.6151 Brayshaw, D. & Hassan, M. A. [Marwan A.]. (2009, August). Debris flow initiation and sediment recharge in gullies. Geomorphology, 109(3-4), 122–131. doi:10.1016/j.geomorph. 2009.02.021 Brunetti, M. T., Guzzetti, F., & Rossi, M. (2009, March). Probability distributions of landslide volumes. Nonlinear Processes in Geophysics, 16(2), 179–188. doi:10.5194/npg-16- 179-2009 Comiti, F. & Mao, L. (2012). Recent advances in the dynamics of steep channels. Gravel-Bed Rivers: Processes, Tools, Environments, 351–377. Cordoba, J. P., Mergili, M.,&Aristiz´abal, E. (2020, March). Probabilistic landslide susceptibility analysis in tropical mountainous terrain using the physically based r.slope.stability model. Natural Hazards and Earth System Sciences, 20(3), 815–829. doi:10.5194/nhess- 20-815-2020 Dietrich, W. E. [William E.], Wilson, C. J., & Reneau, S. L. (1986, May). Hollows, colluvium, and landslides in soil-mantled landscapes. In Hillslope processes (pp. 362–388). Routledge. doi:10.4324/9781003028840-17 Dietrich, W., Reiss, R., Hsu, M.-L., & Montgomery, D. R. (1995). A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological processes, 9(3-4), 383–400. Garcia, M. H. (2008, May). Sediment transport and morphodynamics. In Sedimentation engineering (pp. 21–163). American Society of Civil Engineers. doi:10.1061/9780784408148. ch02 Gasparini, N. M., Tucker, G. E., & Bras, R. L. (2004). Network-scale dynamics of grain-size sorting: implications for downstream fining, stream-profile concavity, and drainage basin morphology. Earth Surface Processes and Landforms, 29(4), 401–421. doi:10.1002/ esp.1031. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/esp.1031 Hardy, R. J. (n.d.). The potential of using high-resolution process models to inform parameterizations of morphodynamic models. In Gravelbed rivers (Chap. 10, pp. 116– 122). John Wiley Sons, Ltd. doi:https ://doi.org/10.1002/9781119952497. ch10. Hassan, M. A. [Marwan A], Bird, S., Reid, D., Ferrer-Boix, C., Hogan, D., Brardinoni, F., & Chartrand, S. (2019). Variable hillslope-channel coupling and channel characteristics of forested mountain streams in glaciated landscapes. Earth Surface Processes and Landforms, 44(3), 736–751. Hoyos, E. M. (2019, September). Soil moisture dynamics in water- and energy-limited ecosystems. application to slope stability (Doctoral dissertation, Universidad Nacional de Colombia - Sede Medell´ın). Retrieved from http://bdigital.unal.edu.co/73824/ Hu, C., Ji, Z., & Guo, Q. (2010). Flow movement and sediment transport in compound channels. Journal of Hydraulic Research, 48(1), 23–32. Korup, O. (2005, April). Geomorphic imprint of landslides on alpine river systems, southwest new zealand. Earth Surface Processes and Landforms, 30(7), 783–800. doi:10.1002/ esp.1171 Korup, O., Densmore, A. L., & Schlunegger, F. (2010). The role of landslides in mountain range evolution. Geomorphology, 120(1-2), 77–90. Loritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H., & Zehe, E. (2019, March). A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. doi:10.5194/hess-2019-68 Luxon, N., Christopher, M., & Pius, C. (2013). Validating the soil conservation service triangular unit hydrograph (scs-tuh) model in estimating runoff peak discharge of a catchment in masvingo, zimbabwe. International Journal of Water Resources and Environmental Engineering, 5(3), 157–162. Montgomery, D. R. [David R.] & Foufoula-Georgiou, E. [Efi]. (1993). Channel network source representation using digital elevation models.Water Resources Research, 29(12), 3925–3934. doi:10.1029/93WR02463. eprint: https://agupubs.onlinelibrary.wiley. com/doi/pdf/10.1029/93WR02463 Morgan, J. A., Brogan, D. J., & Nelson, P. A. (2017). Application of structure-from-motion photogrammetry in laboratory flumes. Geomorphology, 276, 125–143. Owczarek, P. (2008). Hillslope deposits in gravel-bed rivers and their effects on the evolution of alluvial channel forms: a case study from the sudetes and carpathian mountains. Geomorphology, 98(1-2), 111–125. Paine, A. D. (1985). ’ergodic’ reasoning in geomorphology: time for a review of the term? Progress in Physical Geography: Earth and Environment, 9(1), 1–15. Phillips, C. B. & Jerolmack, D. J. [Douglas J.]. (2016). Self-organization of river channels as a critical filter on climate signals. Science, 352(6286), 694–697. doi:10.1126/science. aad3348. Poveda, G., Espinoza, J. C., Zuluaga, M. D., Solman, S. A., Garreaud, R., & van Oevelen, P. J. (2020, May). High impact weather events in the andes. Frontiers in Earth Science, 8. doi:10.3389/feart.2020.00162 Restrepo, J. & Kjerfve, B. (2004). The pacific and caribbean rivers of colombia: water discharge, sediment transport and dissolved loads. In Environmental geochemistry in tropical and subtropical environments (pp. 169–187). Springer. Sals´on, S. & Garcia-Bartual, R. (2003, April). A space-time rainfall generator for highly convective mediterranean rainstorms. Natural Hazards and Earth System Sciences, 3(1/2), 103–114. doi:10.5194/nhess-3-103-2003 Takahashi, T. (2018). Debris flow: mechanics, prediction and countermeasures, 2nd edition. CRC Press. Van De Wiel, M. J. [Marco J.] & Coulthard, T. J. [Tom J.]. (2010). Self-organized criticality in river basins: Challenging sedimentary records of environmental change. Geology, 38(1), 87–90. doi:10.1130/G30490.1 Wohl, E., Lane, S. N., &Wilcox, A. C. (2015). The science and practice of river restoration. Water Resources Research, 51(8), 5974–5997. Zuluaga, M. D. & Houze, R. A. (2015). Extreme convection of the near-equatorial americas, africa, and adjoining oceans as seen by trmm. Monthly Weather Review, 143(1), 298–316. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
ix, 160 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicos |
dc.publisher.department.spa.fl_str_mv |
Departamento de Geociencias y Medo Ambiente |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81480/3/1020427238_2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81480/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81480/5/1020427238_2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
546ac962fde6c0918da175746e3f9588 8153f7789df02f0a4c9e079953658ab2 0a68777e8b2b2e26a93af8f59062a386 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089408834437120 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vélez Upegui, Jaime Ignacio1701acf8f87b39312eb4a6394d7cfe7a600Cataño Álvarez, Santiagoff77b26729dbcdc70237af548994e84e6002022-06-01T19:45:04Z2022-06-01T19:45:04Z2022https://repositorio.unal.edu.co/handle/unal/81480Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, mapasMountain basins are open dynamic systems which organize at multiple scales to transform hillslope sediment supply to fluvial sediment transport. In a given river reach, its form and sediment regime depend on basin processes and are contingent to geomorphic history. Lack of such information makes modelling the way to estimate this spatiotemporal context. However, there is a gap of combining spatiotemporal variability of hydrology and landslides sediment supply with its effect: the feedback between channel form and sediment transport. Hillslope and fluvial modules of a new model called Fluvial Hydro- Geomorphology Model (FHGM) are produced which, in hollows and river reaches that are deformable, encapsulates complexity via parameterization or random forcing. FHGM solves responses to every major rain event, and accumulate them in decadal timescale, to include occurrence of channel forming floods as well as landslides with varied sizes and source zones. FHGM landslides module reproduces power law spatial distribution of landslide volumes, as well as magnitud and frecuency of sediment supply. FHGM fluvial module, calibrated with a new gravel flume experiment, reproduces a broad range of morphologic conditions, from incised to clogged, and produces mean bankfull capacity consistent to mean maximum annual flood and with empirical dimensionless hydraulic geometry patterns for channel depth and width. This work shows how mountain basins organize to minimize the duration of formative events, by editing channels capacity and deforming sediment storages to recover stability and structure; a resilience akin to living beings.Las cuencas monta˜ nosas son sistemas din´amicos abiertos que se organizan en m´ ultiples escalas para transformar el suministro de sedimentos de las laderas en transporte fluvial de sedimentos. En un tramo de r´ıo determinado, su forma y el r´egimen de sedimentos dependen de los procesos de la cuenca y de la historia geom´orfica. La falta de dicha informaci ´on hace que la modelaci´on sea la forma de estimar este contexto espaciotemporal. Sin embargo, existe una brecha en la combinaci´on de la variabilidad espaciotemporal de la hidrolog´ıa y el suministro de sedimentos por deslizamientos de tierra con su efecto: la retroalimentaci´on entre la forma del canal y el transporte de sedimentos. Se producen m´odulos de ladera y fluviales de un nuevo modelo denominado Fluvial HydroGeomorphology Model (FHGM) que, en vaguadas y tramos de r´ıo deformables, encapsula la complejidad mediante parametrizaci´on o forzamiento aleatorio. FHGM resuelve las respuestas a cada evento de lluvia importante y las acumula en una escala de tiempo devi cenal, para incluir la ocurrencia de inundaciones que forman canales, as´ı como deslizamientos de tierra con diversos tama˜nos y zonas de origen. El m´odulo de deslizamientos de FHGM reproduce la distribuci ´on espacial de la ley potencial de vol ´umenes de deslizamientos, as´ı como la magnitud y frecuencia del suministro de sedimentos. El m´odulo fluvial FHGM, calibrado con un nuevo experimento de canal de grava, reproduce una amplia gama de condiciones morfol´ogicas, desde incisamiento hasta colmataci´on, y produce una capacidad media de banca llena consistente con la inundaci´on anual m´axima media y con patrones de geometr´ıa hidr´aulica adimensionales emp´ıricos para la profundidad y el ancho del canal. Este trabajo muestra c´omo las cuencas de monta˜na se organizan para minimizar la duraci´on de los eventos formadores, modificando la capacidad de los canales y deformando los dep´ositos de sedimentos para recuperar la estabilidad y la estructura; una resiliencia similar a la de los seres vivos.DoctoradoDoctorado en Ingeniería - Recursos HidráulicosÁrea Curricular de Medio Ambienteix, 160 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Recursos HidráulicosDepartamento de Geociencias y Medo AmbienteFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaTransporte de sedimentosBalance hídrico (Hidrología)HidrogeomorfologíaDeslizamientosGeometría hidráulicaLandslidesHydraulic geometryCoupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basinsAcople del suministro de sedimentos desde la hidrología de ladera con la morfodinámica fluvial en cuencas tropicales de montañaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDSidle, R. C. [Roy C.], Gomi, T., & Tsukamoto, Y. (2018). Discovery of zero-order basins as an important link for progress in hydrogeomorphology. Hydrological Processes, 32(19), 3059–3065.Rickenmann, D.&Recking, A. [Alain]. (2011, July). Evaluation of flow resistance in gravel bed rivers through a large field data set.Water Resources Research, 47(7).Addy, S. & Wilkinson, M. E. (2021). Embankment lowering and natural self-recovery improves river-floodplain hydro-geomorphic connectivity of a gravel bed river. Science of The Total Environment, 770, 144626.Allen, P. A. & Hovius, N. (1998, March). Sediment supply from landslide-dominated catchments: implications for basin-margin fans. Basin Research, 10(1), 19–35. doi:10. 1046/j.1365-2117.1998.00060.xBasile, P., Riccardi, G.,&Rodrıguez, J. (2016). Modelaci´on matem´atica hidro-morfodin´amica a escala de cuenca en rıos con lechos de sedimentos no-uniformes. Cuadernos del CURIHAM, 22, 1–25.Bathurst, J. C., Burton, A., Clarke, B. G., & Gallart, F. (2006). Application of the SHETRAN basin-scale, landslide sediment yield model to the llobregat basin, spanish pyrenees. Hydrological Processes, 20(14), 3119–3138. doi:10.1002/hyp.6151Brayshaw, D. & Hassan, M. A. [Marwan A.]. (2009, August). Debris flow initiation and sediment recharge in gullies. Geomorphology, 109(3-4), 122–131. doi:10.1016/j.geomorph. 2009.02.021Brunetti, M. T., Guzzetti, F., & Rossi, M. (2009, March). Probability distributions of landslide volumes. Nonlinear Processes in Geophysics, 16(2), 179–188. doi:10.5194/npg-16- 179-2009Comiti, F. & Mao, L. (2012). Recent advances in the dynamics of steep channels. Gravel-Bed Rivers: Processes, Tools, Environments, 351–377.Cordoba, J. P., Mergili, M.,&Aristiz´abal, E. (2020, March). Probabilistic landslide susceptibility analysis in tropical mountainous terrain using the physically based r.slope.stability model. Natural Hazards and Earth System Sciences, 20(3), 815–829. doi:10.5194/nhess- 20-815-2020Dietrich, W. E. [William E.], Wilson, C. J., & Reneau, S. L. (1986, May). Hollows, colluvium, and landslides in soil-mantled landscapes. In Hillslope processes (pp. 362–388). Routledge. doi:10.4324/9781003028840-17Dietrich, W., Reiss, R., Hsu, M.-L., & Montgomery, D. R. (1995). A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological processes, 9(3-4), 383–400.Garcia, M. H. (2008, May). Sediment transport and morphodynamics. In Sedimentation engineering (pp. 21–163). American Society of Civil Engineers. doi:10.1061/9780784408148. ch02Gasparini, N. M., Tucker, G. E., & Bras, R. L. (2004). Network-scale dynamics of grain-size sorting: implications for downstream fining, stream-profile concavity, and drainage basin morphology. Earth Surface Processes and Landforms, 29(4), 401–421. doi:10.1002/ esp.1031. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/esp.1031Hardy, R. J. (n.d.). The potential of using high-resolution process models to inform parameterizations of morphodynamic models. In Gravelbed rivers (Chap. 10, pp. 116– 122). John Wiley Sons, Ltd. doi:https ://doi.org/10.1002/9781119952497. ch10.Hassan, M. A. [Marwan A], Bird, S., Reid, D., Ferrer-Boix, C., Hogan, D., Brardinoni, F., & Chartrand, S. (2019). Variable hillslope-channel coupling and channel characteristics of forested mountain streams in glaciated landscapes. Earth Surface Processes and Landforms, 44(3), 736–751.Hoyos, E. M. (2019, September). Soil moisture dynamics in water- and energy-limited ecosystems. application to slope stability (Doctoral dissertation, Universidad Nacional de Colombia - Sede Medell´ın). Retrieved from http://bdigital.unal.edu.co/73824/Hu, C., Ji, Z., & Guo, Q. (2010). Flow movement and sediment transport in compound channels. Journal of Hydraulic Research, 48(1), 23–32.Korup, O. (2005, April). Geomorphic imprint of landslides on alpine river systems, southwest new zealand. Earth Surface Processes and Landforms, 30(7), 783–800. doi:10.1002/ esp.1171Korup, O., Densmore, A. L., & Schlunegger, F. (2010). The role of landslides in mountain range evolution. Geomorphology, 120(1-2), 77–90.Loritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H., & Zehe, E. (2019, March). A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. doi:10.5194/hess-2019-68Luxon, N., Christopher, M., & Pius, C. (2013). Validating the soil conservation service triangular unit hydrograph (scs-tuh) model in estimating runoff peak discharge of a catchment in masvingo, zimbabwe. International Journal of Water Resources and Environmental Engineering, 5(3), 157–162.Montgomery, D. R. [David R.] & Foufoula-Georgiou, E. [Efi]. (1993). Channel network source representation using digital elevation models.Water Resources Research, 29(12), 3925–3934. doi:10.1029/93WR02463. eprint: https://agupubs.onlinelibrary.wiley. com/doi/pdf/10.1029/93WR02463Morgan, J. A., Brogan, D. J., & Nelson, P. A. (2017). Application of structure-from-motion photogrammetry in laboratory flumes. Geomorphology, 276, 125–143.Owczarek, P. (2008). Hillslope deposits in gravel-bed rivers and their effects on the evolution of alluvial channel forms: a case study from the sudetes and carpathian mountains. Geomorphology, 98(1-2), 111–125.Paine, A. D. (1985). ’ergodic’ reasoning in geomorphology: time for a review of the term? Progress in Physical Geography: Earth and Environment, 9(1), 1–15.Phillips, C. B. & Jerolmack, D. J. [Douglas J.]. (2016). Self-organization of river channels as a critical filter on climate signals. Science, 352(6286), 694–697. doi:10.1126/science. aad3348.Poveda, G., Espinoza, J. C., Zuluaga, M. D., Solman, S. A., Garreaud, R., & van Oevelen, P. J. (2020, May). High impact weather events in the andes. Frontiers in Earth Science, 8. doi:10.3389/feart.2020.00162Restrepo, J. & Kjerfve, B. (2004). The pacific and caribbean rivers of colombia: water discharge, sediment transport and dissolved loads. In Environmental geochemistry in tropical and subtropical environments (pp. 169–187). Springer.Sals´on, S. & Garcia-Bartual, R. (2003, April). A space-time rainfall generator for highly convective mediterranean rainstorms. Natural Hazards and Earth System Sciences, 3(1/2), 103–114. doi:10.5194/nhess-3-103-2003Takahashi, T. (2018). Debris flow: mechanics, prediction and countermeasures, 2nd edition. CRC Press.Van De Wiel, M. J. [Marco J.] & Coulthard, T. J. [Tom J.]. (2010). Self-organized criticality in river basins: Challenging sedimentary records of environmental change. Geology, 38(1), 87–90. doi:10.1130/G30490.1Wohl, E., Lane, S. N., &Wilcox, A. C. (2015). The science and practice of river restoration. Water Resources Research, 51(8), 5974–5997.Zuluaga, M. D. & Houze, R. A. (2015). Extreme convection of the near-equatorial americas, africa, and adjoining oceans as seen by trmm. Monthly Weather Review, 143(1), 298–316.InvestigadoresORIGINAL1020427238_2022.pdf1020427238_2022.pdfTesis Doctorado en Ingeniería - Recursos Hidráulicosapplication/pdf10406339https://repositorio.unal.edu.co/bitstream/unal/81480/3/1020427238_2022.pdf546ac962fde6c0918da175746e3f9588MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81480/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1020427238_2022.pdf.jpg1020427238_2022.pdf.jpgGenerated Thumbnailimage/jpeg5472https://repositorio.unal.edu.co/bitstream/unal/81480/5/1020427238_2022.pdf.jpg0a68777e8b2b2e26a93af8f59062a386MD55unal/81480oai:repositorio.unal.edu.co:unal/814802023-08-04 23:04:43.296Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |