Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales

ilustraciones, diagramas, mapas, planos

Autores:
Aranguren Canal, Daniel Alfonso
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85037
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85037
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra
Movimientos tectónicos
Sismología
Earth movements
Seismology
Tectónica
Sismología
Anisotropía Sísmica
Esquina Noroccidental de Suramérica
Shear Wave Splitting
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_383df6adb3c75676db118277676cc8da
oai_identifier_str oai:repositorio.unal.edu.co:unal/85037
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales
dc.title.translated.eng.fl_str_mv Estimation of seismic anisotropy in Colombia and its relationship with regional tectonic features
title Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales
spellingShingle Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales
550 - Ciencias de la tierra
Movimientos tectónicos
Sismología
Earth movements
Seismology
Tectónica
Sismología
Anisotropía Sísmica
Esquina Noroccidental de Suramérica
Shear Wave Splitting
title_short Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales
title_full Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales
title_fullStr Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales
title_full_unstemmed Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales
title_sort Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales
dc.creator.fl_str_mv Aranguren Canal, Daniel Alfonso
dc.contributor.advisor.none.fl_str_mv Vargas Jiménez, Carlos Alberto
dc.contributor.author.none.fl_str_mv Aranguren Canal, Daniel Alfonso
dc.contributor.orcid.spa.fl_str_mv Daniel Aranguren Canal [https://orcid.org/0000-0001-8257-5497]
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra
topic 550 - Ciencias de la tierra
Movimientos tectónicos
Sismología
Earth movements
Seismology
Tectónica
Sismología
Anisotropía Sísmica
Esquina Noroccidental de Suramérica
Shear Wave Splitting
dc.subject.lemb.spa.fl_str_mv Movimientos tectónicos
Sismología
dc.subject.lemb.eng.fl_str_mv Earth movements
Seismology
dc.subject.proposal.spa.fl_str_mv Tectónica
Sismología
Anisotropía Sísmica
Esquina Noroccidental de Suramérica
dc.subject.proposal.eng.fl_str_mv Shear Wave Splitting
description ilustraciones, diagramas, mapas, planos
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-06T14:44:23Z
dc.date.available.none.fl_str_mv 2023-12-06T14:44:23Z
dc.date.issued.none.fl_str_mv 2023-12-05
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv DataPaper
Image
Model
Text
Workflow
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85037
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85037
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acevedo, J., Fernández-Viejo, G., Llana-Fúnez, S., López-Fernández, C., Olona, J. (2020). Upper-Crustal Seismic Anisotropy in the Cantabrian Mountains (North Spain) from Shear-Wave Splitting and Ambient Noise Interferometry Analysis, Seismol. Res. Lett. XX, 1–16.
Akazawa, T. (2004), A technique for automatic detection of onset time of P-and S-Phases in strong motion records, 13th World Conference on Earthquake Engineering.
Bacon, C.A., Johnson, J.H., White, R.S., Rawlinson, N. (2022). On the origin of seismic anisotropy in the shallow crust of the Northern Volcanic Zone, Iceland. Journal of Geophysical Research: Solid Earth, 127, e2021JB022655.
Barruol, G., Wustefeld, A., Bokelmann, G. (2009). SKS-Splitting-database. Université de Montpellier, Laboratoire Géosciences. Disponible en línea: http://splitting.gm.univ-montp2.fr/DB/index.html
Boness, N., Zoback, M. (2006). Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geological Society of America. Geology; October 2006; v. 34; no. 10; p. 825–828.
Cornthwaite, J., Bezada, M. J., Miao, W., Schmitz, M., Prieto, G. A., Dionicio, V., et al. (2021). Caribbean slab segmentation beneath northwest South America revealed by 3-D finite frequency teleseismic P-wave tomography. Geochemistry, Geophysics, Geosystems, 22(4), e2020GC009431. https://doi.org/10.1029/2020GC009431.
Crampin, S., Peacock, S. (2008). A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation. Elsevier, Wave Motion 45 (2008) 675–722.
Crotwell, H.P., Owens, T.J., Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, Seismological Research Letters, 70 (2), 154-160.
Davis, J.C. (2002). Statistics and Data Analysis in Geology. Third Edition. John Wiley & Sons, Inc. Chapter 5, p. 316-330.
Demouchy, S. (2021). Defects in Olivine. European Journal of Mineralogy. 33, 249–282, 2021.
GeoRose 0.5.1. (2022). Yong Technology – Geotechnical Engineering Software Solutions. Disponible en línea: https://www.yongtechnology.com/download/
GEOFON Program (2022). GFZ-Helmholtz Centre Potsdam. Disponible en línea: https://geofon.gfz-potsdam.de/
Gomez Alba, S., Vargas, C.A., Zang, A. (2020). Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitán (Colombia) earthquake sequence from 2013 to 2015. Geophysical Journal International, 220(1), 335-344. https://doi. org/10.1093/gji/ggz433
Heidbach, O., Ziegler, M. (2018). Smoothed global stress maps based on the World Stress Map database release 2016. GFZ Data Services. http://doi.org/10.5880/WSM.2018.002
Idárraga, J., Kendall, J.M., Vargas, C.A. (2016). Shear Wave Anisotropy in Northwestern South America and Its Link to the Caribbean and Nazca Subduction Geodynamics. American Geophysical Union: Geochemistry, Geophysics, Geosystems 17 (2016).
IRIS (2021). Shear Wave Splitting Product Query. Disponible en línea: http://ds.iris.edu/spud/swsmeasurement
Jung, H. (2017). Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: a review. Geosciences Journal. Vol. 21, No. 6, p. 985−1011, December 2017. http://dx.doi.org/10.1007/s12303-017-0045-1
Karato, S., Jung, H., Katayama, I., Skemer, P. (2008). Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annu. Rev. Earth Planet. Sci. 2008. 36:59–95.
Katayama, I., Hirauchi, K., Michibayashi, K., Ando, J. (2009). Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature Letters. Vol 461, 22 October 2009, doi:10.1038/nature08513
KIT (Karlsruhe Institute of Technology) Lehre und Wissen. (2019) Basic Geophysics: Shear Wave Splitting. Disponible en línea: https://www.youtube.com/watch?v=T2zh wg8kgpM.
Mardia, K. V. (2000). Statistics of Directional Data. Academic Press, Inc. Chapter 1-2.
Masy, J., Niu, F., Levander, A., Schmitz, M. (2011). Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes. Earth and Planetary Science Letters, 305 (2011), 396–404.
Mojica Boada, M.J., Poveda, E., Tary, J.B. (2022). Lithospheric and slab configurations from receiver function imaging in northwestern South America, Colombia. Journal of Geophysical Research: Solid Earth,127, e2022JB024475. https://doi.org/10.1029/2022JB024475.
Molina I., Velásquez, J.S., Rubinstein, J.L., Garcia-Aristizabal, A., Dionicio, V. (2020) Seismicity induced by massive wastewater injection near Puerto Gaitán. Colombia Geophys J Int 223(2):777–791. https://doi.org/10.1093/gji/ggaa326
Nagaya, T. et al. (2016). Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone. Sci. Rep. 6, 29981.
Piñero-Feliciangeli, L.T., Kendall, J.M. (2008). Sub-Slab mantle flow parallel to the Caribbean plate boundaries: Inferences from SKS Splitting. Tectonophysics, 462 (2008), 22–34.
Porritt, R.W., Becker, T.W., Monsalve, G. (2014). Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia. Geophys. Res. Lett., 41, 8775–8783.
Red Sismológica Nacional de Colombia (2021). Catálogo de sismicidad. Disponible en línea: http://bdrsnc.sgc.gov.co/paginas1/catalogo/index.php
Russo, R.M. Silver, P.G. (1994). Trench-Parallel Flow Beneath the Nazca Plate from Seismic Anisotropy. Science. Vol. 263. 25 February 1994.
Shearer, P.M. (2009). Introduction to Seismology. Second Edition. Cambridge University Press.
Shih, X., Schneider, J.F., Meyer, R.P. (1991). Polarities of P and S waves, and Shear Wave Splitting Observed from the Bucaramanga Nest, Colombia. Journal Of Geophysical Research, Vol. 96, NO. B7, Pg. 12,069-12,082, July 10, 1991.
Silver, P.G., Chan, W.W. (1991). Shear Wave Splitting and Subcontinental Mantle Deformation. Journal of Geophysical Research, Vol. 96, No. B10, p. 16,429 - 16,454. September 10, 1991.
Sun, M., Bezada, M.J., Cornthwaite, J., Prieto, G.A., Niu, F., Levander, A. (2022). Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth and Planetary Science Letters, 577, 117253. https://doi.org/10.1016/jepsl.2021.117253.
Uchida, N., Nakajima, J., Wang, K. (2020). Stagnant forearc mantle wedge inferred from mapping of shear-wave anisotropy using S-net seafloor seismometers. Nat Commun 11, 5676.
Vargas, C.A., Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama arc indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328
Vargas, C.A. (2020). Subduction geometries in northwestern South America. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 397–422. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.11
Walpole, J. (2017). SplitWavePy: Splitting made easy in Python. Disponible en línea: https://splitwavepy.readthedocs.io/en/latest/ y https://github.com/JackWalpole/splitwavepy.
Wüstefeld, A., Bokelmann, G., Zaroli, C., Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5), 515–528.
Yarce, J., Monsalve, G., Becker, T. W., Cardona, A., Poveda, E., Alvira, D., & Ordoñez-Carmona, O. (2014). Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics,637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006.
Zal, H. (2020). Seismic anisotropy and velocity structure in the North Island, New Zealand. PhD. Thesis. Victoria University of Wellington. New Zealand.
Zhao, L. Xue, M. (2015). An observation related to directional attenuation of SKS waves propagating in anisotropic media. Geophysical Journal International, Volume 201, Issue 1, April 2015, Pages 276–290, https://doi.org/10.1093/gji/ggv019.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 124 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Geología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85037/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85037/2/1032480570.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85037/3/1032480570.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
9a9764c6ffabf225c51de03af67c5631
7ddff9cc061d4e625d9589e2e1e25794
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089464004214784
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Jiménez, Carlos Alberto5555241492e147a4b8190b7788f625f4Aranguren Canal, Daniel Alfonsoacfeb4f10f62c605b7f9d222d381db9dDaniel Aranguren Canal [https://orcid.org/0000-0001-8257-5497]2023-12-06T14:44:23Z2023-12-06T14:44:23Z2023-12-05https://repositorio.unal.edu.co/handle/unal/85037Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, planosEsta tesis consiste en la estimación de los parámetros de anisotropía sísmica (φ, δt) para las distintas estaciones sísmicas en Colombia, relacionando los resultados obtenidos con los distintos aspectos tectónicos regionales de la esquina noroccidental de Suramérica. Para ello, se estudia la polarización de las ondas correspondientes a las fases S de eventos locales (asociados con los procesos de subducción Nazca-Suramérica y Caribe-Suramérica), al igual que la polarización de las ondas correspondientes a las fases SKS de eventos telesísmicos. Los eventos locales tienen una profundidad mayor a los 70 km, al igual que magnitudes mayores o iguales a 4.5, mientras que los eventos telesísmicos tienen distancias hipocentrales entre los 90°-130°, y magnitudes mayores o iguales a 6.5. La obtención de los parámetros de anisotropía sísmica (φ, δt) se realiza para cada una de las estaciones sísmicas pertenecientes a la Red Sismológica Nacional de Colombia, comprendiendo un periodo de registro de seis años consecutivos (2016-2021). Esta se lleva a cabo mediante los paquetes de libre acceso de Python llamados ObsPy y SplitWavePy. Como resultado, se establece un control mixto de la anisotropía en la corteza donde predomina la polarización de las ondas S al interior de las fallas sobre la polarización por acción de esfuerzos; se observan patrones erráticos de φ por la presencia de fluidos en la corteza; y se obtienen las orientaciones del flujo astenosférico bajo las losas que subducen con una convergencia generalizada orientada SW-NE bajo la esquina noroccidental de Suramérica. (Texto tomado de la fuente)This thesis consists of the estimation of seismic anisotropy parameters (φ, δt) for the different seismic stations in Colombia, relating the obtained results with the different regional tectonic features of the northwestern corner of South America. To achieve it, the polarization of S phases of local events (associated with Nazca-South America and Caribbean-South America subduction processes) and SKS phases of teleseismic events is studied. The local events have a depth below 70 km, as well as magnitudes above or equal to 4.5, while the teleseismic events have hypocentral distances between 90°-130°, and magnitudes above or equal to 6.5. The obtention of seismic anisotropy parameters (φ, δt) is done for each one of the seismic stations which belong to the Colombian National Seismological Network, comprising a record time of six consecutive years (2016-2021). This is done by free-access Python software known as ObsPy and SplitWavePy. As a result, a mixed control of the anisotropy in the crust is established, where it prevails a S wave polarization inside the faults rather than a polarization due to stresses; erratic patterns of φ due to the presence of fluids in the crust are observed; and orientations of astenospheric flow under the subducting slabs are obtained with a generalized convergence oriented SW-NE under the NW corner of South America.MaestríaSismología y Tectónica124 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - GeologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierraMovimientos tectónicosSismologíaEarth movementsSeismologyTectónicaSismologíaAnisotropía SísmicaEsquina Noroccidental de SuraméricaShear Wave SplittingEstimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionalesEstimation of seismic anisotropy in Colombia and its relationship with regional tectonic featuresTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperImageModelTextWorkflowhttp://purl.org/redcol/resource_type/TMColombiaAcevedo, J., Fernández-Viejo, G., Llana-Fúnez, S., López-Fernández, C., Olona, J. (2020). Upper-Crustal Seismic Anisotropy in the Cantabrian Mountains (North Spain) from Shear-Wave Splitting and Ambient Noise Interferometry Analysis, Seismol. Res. Lett. XX, 1–16.Akazawa, T. (2004), A technique for automatic detection of onset time of P-and S-Phases in strong motion records, 13th World Conference on Earthquake Engineering.Bacon, C.A., Johnson, J.H., White, R.S., Rawlinson, N. (2022). On the origin of seismic anisotropy in the shallow crust of the Northern Volcanic Zone, Iceland. Journal of Geophysical Research: Solid Earth, 127, e2021JB022655.Barruol, G., Wustefeld, A., Bokelmann, G. (2009). SKS-Splitting-database. Université de Montpellier, Laboratoire Géosciences. Disponible en línea: http://splitting.gm.univ-montp2.fr/DB/index.htmlBoness, N., Zoback, M. (2006). Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geological Society of America. Geology; October 2006; v. 34; no. 10; p. 825–828.Cornthwaite, J., Bezada, M. J., Miao, W., Schmitz, M., Prieto, G. A., Dionicio, V., et al. (2021). Caribbean slab segmentation beneath northwest South America revealed by 3-D finite frequency teleseismic P-wave tomography. Geochemistry, Geophysics, Geosystems, 22(4), e2020GC009431. https://doi.org/10.1029/2020GC009431.Crampin, S., Peacock, S. (2008). A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation. Elsevier, Wave Motion 45 (2008) 675–722.Crotwell, H.P., Owens, T.J., Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, Seismological Research Letters, 70 (2), 154-160.Davis, J.C. (2002). Statistics and Data Analysis in Geology. Third Edition. John Wiley & Sons, Inc. Chapter 5, p. 316-330.Demouchy, S. (2021). Defects in Olivine. European Journal of Mineralogy. 33, 249–282, 2021.GeoRose 0.5.1. (2022). Yong Technology – Geotechnical Engineering Software Solutions. Disponible en línea: https://www.yongtechnology.com/download/GEOFON Program (2022). GFZ-Helmholtz Centre Potsdam. Disponible en línea: https://geofon.gfz-potsdam.de/Gomez Alba, S., Vargas, C.A., Zang, A. (2020). Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitán (Colombia) earthquake sequence from 2013 to 2015. Geophysical Journal International, 220(1), 335-344. https://doi. org/10.1093/gji/ggz433Heidbach, O., Ziegler, M. (2018). Smoothed global stress maps based on the World Stress Map database release 2016. GFZ Data Services. http://doi.org/10.5880/WSM.2018.002Idárraga, J., Kendall, J.M., Vargas, C.A. (2016). Shear Wave Anisotropy in Northwestern South America and Its Link to the Caribbean and Nazca Subduction Geodynamics. American Geophysical Union: Geochemistry, Geophysics, Geosystems 17 (2016).IRIS (2021). Shear Wave Splitting Product Query. Disponible en línea: http://ds.iris.edu/spud/swsmeasurementJung, H. (2017). Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: a review. Geosciences Journal. Vol. 21, No. 6, p. 985−1011, December 2017. http://dx.doi.org/10.1007/s12303-017-0045-1Karato, S., Jung, H., Katayama, I., Skemer, P. (2008). Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annu. Rev. Earth Planet. Sci. 2008. 36:59–95.Katayama, I., Hirauchi, K., Michibayashi, K., Ando, J. (2009). Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature Letters. Vol 461, 22 October 2009, doi:10.1038/nature08513KIT (Karlsruhe Institute of Technology) Lehre und Wissen. (2019) Basic Geophysics: Shear Wave Splitting. Disponible en línea: https://www.youtube.com/watch?v=T2zh wg8kgpM.Mardia, K. V. (2000). Statistics of Directional Data. Academic Press, Inc. Chapter 1-2.Masy, J., Niu, F., Levander, A., Schmitz, M. (2011). Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes. Earth and Planetary Science Letters, 305 (2011), 396–404.Mojica Boada, M.J., Poveda, E., Tary, J.B. (2022). Lithospheric and slab configurations from receiver function imaging in northwestern South America, Colombia. Journal of Geophysical Research: Solid Earth,127, e2022JB024475. https://doi.org/10.1029/2022JB024475.Molina I., Velásquez, J.S., Rubinstein, J.L., Garcia-Aristizabal, A., Dionicio, V. (2020) Seismicity induced by massive wastewater injection near Puerto Gaitán. Colombia Geophys J Int 223(2):777–791. https://doi.org/10.1093/gji/ggaa326Nagaya, T. et al. (2016). Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone. Sci. Rep. 6, 29981.Piñero-Feliciangeli, L.T., Kendall, J.M. (2008). Sub-Slab mantle flow parallel to the Caribbean plate boundaries: Inferences from SKS Splitting. Tectonophysics, 462 (2008), 22–34.Porritt, R.W., Becker, T.W., Monsalve, G. (2014). Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia. Geophys. Res. Lett., 41, 8775–8783.Red Sismológica Nacional de Colombia (2021). Catálogo de sismicidad. Disponible en línea: http://bdrsnc.sgc.gov.co/paginas1/catalogo/index.phpRusso, R.M. Silver, P.G. (1994). Trench-Parallel Flow Beneath the Nazca Plate from Seismic Anisotropy. Science. Vol. 263. 25 February 1994.Shearer, P.M. (2009). Introduction to Seismology. Second Edition. Cambridge University Press.Shih, X., Schneider, J.F., Meyer, R.P. (1991). Polarities of P and S waves, and Shear Wave Splitting Observed from the Bucaramanga Nest, Colombia. Journal Of Geophysical Research, Vol. 96, NO. B7, Pg. 12,069-12,082, July 10, 1991.Silver, P.G., Chan, W.W. (1991). Shear Wave Splitting and Subcontinental Mantle Deformation. Journal of Geophysical Research, Vol. 96, No. B10, p. 16,429 - 16,454. September 10, 1991.Sun, M., Bezada, M.J., Cornthwaite, J., Prieto, G.A., Niu, F., Levander, A. (2022). Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth and Planetary Science Letters, 577, 117253. https://doi.org/10.1016/jepsl.2021.117253.Uchida, N., Nakajima, J., Wang, K. (2020). Stagnant forearc mantle wedge inferred from mapping of shear-wave anisotropy using S-net seafloor seismometers. Nat Commun 11, 5676.Vargas, C.A., Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama arc indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328Vargas, C.A. (2020). Subduction geometries in northwestern South America. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 397–422. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.11Walpole, J. (2017). SplitWavePy: Splitting made easy in Python. Disponible en línea: https://splitwavepy.readthedocs.io/en/latest/ y https://github.com/JackWalpole/splitwavepy.Wüstefeld, A., Bokelmann, G., Zaroli, C., Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5), 515–528.Yarce, J., Monsalve, G., Becker, T. W., Cardona, A., Poveda, E., Alvira, D., & Ordoñez-Carmona, O. (2014). Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics,637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006.Zal, H. (2020). Seismic anisotropy and velocity structure in the North Island, New Zealand. PhD. Thesis. Victoria University of Wellington. New Zealand.Zhao, L. Xue, M. (2015). An observation related to directional attenuation of SKS waves propagating in anisotropic media. Geophysical Journal International, Volume 201, Issue 1, April 2015, Pages 276–290, https://doi.org/10.1093/gji/ggv019.LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85037/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032480570.2023.pdf1032480570.2023.pdfTesis de Maestría en Ciencias - Geologíaapplication/pdf14664048https://repositorio.unal.edu.co/bitstream/unal/85037/2/1032480570.2023.pdf9a9764c6ffabf225c51de03af67c5631MD52THUMBNAIL1032480570.2023.pdf.jpg1032480570.2023.pdf.jpgGenerated Thumbnailimage/jpeg4964https://repositorio.unal.edu.co/bitstream/unal/85037/3/1032480570.2023.pdf.jpg7ddff9cc061d4e625d9589e2e1e25794MD53unal/85037oai:repositorio.unal.edu.co:unal/850372024-08-20 23:10:07.41Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=