Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales
ilustraciones, diagramas, mapas, planos
- Autores:
-
Aranguren Canal, Daniel Alfonso
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85037
- Palabra clave:
- 550 - Ciencias de la tierra
Movimientos tectónicos
Sismología
Earth movements
Seismology
Tectónica
Sismología
Anisotropía Sísmica
Esquina Noroccidental de Suramérica
Shear Wave Splitting
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_383df6adb3c75676db118277676cc8da |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85037 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales |
dc.title.translated.eng.fl_str_mv |
Estimation of seismic anisotropy in Colombia and its relationship with regional tectonic features |
title |
Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales |
spellingShingle |
Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales 550 - Ciencias de la tierra Movimientos tectónicos Sismología Earth movements Seismology Tectónica Sismología Anisotropía Sísmica Esquina Noroccidental de Suramérica Shear Wave Splitting |
title_short |
Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales |
title_full |
Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales |
title_fullStr |
Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales |
title_full_unstemmed |
Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales |
title_sort |
Estimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionales |
dc.creator.fl_str_mv |
Aranguren Canal, Daniel Alfonso |
dc.contributor.advisor.none.fl_str_mv |
Vargas Jiménez, Carlos Alberto |
dc.contributor.author.none.fl_str_mv |
Aranguren Canal, Daniel Alfonso |
dc.contributor.orcid.spa.fl_str_mv |
Daniel Aranguren Canal [https://orcid.org/0000-0001-8257-5497] |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra |
topic |
550 - Ciencias de la tierra Movimientos tectónicos Sismología Earth movements Seismology Tectónica Sismología Anisotropía Sísmica Esquina Noroccidental de Suramérica Shear Wave Splitting |
dc.subject.lemb.spa.fl_str_mv |
Movimientos tectónicos Sismología |
dc.subject.lemb.eng.fl_str_mv |
Earth movements Seismology |
dc.subject.proposal.spa.fl_str_mv |
Tectónica Sismología Anisotropía Sísmica Esquina Noroccidental de Suramérica |
dc.subject.proposal.eng.fl_str_mv |
Shear Wave Splitting |
description |
ilustraciones, diagramas, mapas, planos |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-12-06T14:44:23Z |
dc.date.available.none.fl_str_mv |
2023-12-06T14:44:23Z |
dc.date.issued.none.fl_str_mv |
2023-12-05 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
DataPaper Image Model Text Workflow |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85037 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85037 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Acevedo, J., Fernández-Viejo, G., Llana-Fúnez, S., López-Fernández, C., Olona, J. (2020). Upper-Crustal Seismic Anisotropy in the Cantabrian Mountains (North Spain) from Shear-Wave Splitting and Ambient Noise Interferometry Analysis, Seismol. Res. Lett. XX, 1–16. Akazawa, T. (2004), A technique for automatic detection of onset time of P-and S-Phases in strong motion records, 13th World Conference on Earthquake Engineering. Bacon, C.A., Johnson, J.H., White, R.S., Rawlinson, N. (2022). On the origin of seismic anisotropy in the shallow crust of the Northern Volcanic Zone, Iceland. Journal of Geophysical Research: Solid Earth, 127, e2021JB022655. Barruol, G., Wustefeld, A., Bokelmann, G. (2009). SKS-Splitting-database. Université de Montpellier, Laboratoire Géosciences. Disponible en línea: http://splitting.gm.univ-montp2.fr/DB/index.html Boness, N., Zoback, M. (2006). Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geological Society of America. Geology; October 2006; v. 34; no. 10; p. 825–828. Cornthwaite, J., Bezada, M. J., Miao, W., Schmitz, M., Prieto, G. A., Dionicio, V., et al. (2021). Caribbean slab segmentation beneath northwest South America revealed by 3-D finite frequency teleseismic P-wave tomography. Geochemistry, Geophysics, Geosystems, 22(4), e2020GC009431. https://doi.org/10.1029/2020GC009431. Crampin, S., Peacock, S. (2008). A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation. Elsevier, Wave Motion 45 (2008) 675–722. Crotwell, H.P., Owens, T.J., Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, Seismological Research Letters, 70 (2), 154-160. Davis, J.C. (2002). Statistics and Data Analysis in Geology. Third Edition. John Wiley & Sons, Inc. Chapter 5, p. 316-330. Demouchy, S. (2021). Defects in Olivine. European Journal of Mineralogy. 33, 249–282, 2021. GeoRose 0.5.1. (2022). Yong Technology – Geotechnical Engineering Software Solutions. Disponible en línea: https://www.yongtechnology.com/download/ GEOFON Program (2022). GFZ-Helmholtz Centre Potsdam. Disponible en línea: https://geofon.gfz-potsdam.de/ Gomez Alba, S., Vargas, C.A., Zang, A. (2020). Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitán (Colombia) earthquake sequence from 2013 to 2015. Geophysical Journal International, 220(1), 335-344. https://doi. org/10.1093/gji/ggz433 Heidbach, O., Ziegler, M. (2018). Smoothed global stress maps based on the World Stress Map database release 2016. GFZ Data Services. http://doi.org/10.5880/WSM.2018.002 Idárraga, J., Kendall, J.M., Vargas, C.A. (2016). Shear Wave Anisotropy in Northwestern South America and Its Link to the Caribbean and Nazca Subduction Geodynamics. American Geophysical Union: Geochemistry, Geophysics, Geosystems 17 (2016). IRIS (2021). Shear Wave Splitting Product Query. Disponible en línea: http://ds.iris.edu/spud/swsmeasurement Jung, H. (2017). Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: a review. Geosciences Journal. Vol. 21, No. 6, p. 985−1011, December 2017. http://dx.doi.org/10.1007/s12303-017-0045-1 Karato, S., Jung, H., Katayama, I., Skemer, P. (2008). Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annu. Rev. Earth Planet. Sci. 2008. 36:59–95. Katayama, I., Hirauchi, K., Michibayashi, K., Ando, J. (2009). Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature Letters. Vol 461, 22 October 2009, doi:10.1038/nature08513 KIT (Karlsruhe Institute of Technology) Lehre und Wissen. (2019) Basic Geophysics: Shear Wave Splitting. Disponible en línea: https://www.youtube.com/watch?v=T2zh wg8kgpM. Mardia, K. V. (2000). Statistics of Directional Data. Academic Press, Inc. Chapter 1-2. Masy, J., Niu, F., Levander, A., Schmitz, M. (2011). Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes. Earth and Planetary Science Letters, 305 (2011), 396–404. Mojica Boada, M.J., Poveda, E., Tary, J.B. (2022). Lithospheric and slab configurations from receiver function imaging in northwestern South America, Colombia. Journal of Geophysical Research: Solid Earth,127, e2022JB024475. https://doi.org/10.1029/2022JB024475. Molina I., Velásquez, J.S., Rubinstein, J.L., Garcia-Aristizabal, A., Dionicio, V. (2020) Seismicity induced by massive wastewater injection near Puerto Gaitán. Colombia Geophys J Int 223(2):777–791. https://doi.org/10.1093/gji/ggaa326 Nagaya, T. et al. (2016). Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone. Sci. Rep. 6, 29981. Piñero-Feliciangeli, L.T., Kendall, J.M. (2008). Sub-Slab mantle flow parallel to the Caribbean plate boundaries: Inferences from SKS Splitting. Tectonophysics, 462 (2008), 22–34. Porritt, R.W., Becker, T.W., Monsalve, G. (2014). Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia. Geophys. Res. Lett., 41, 8775–8783. Red Sismológica Nacional de Colombia (2021). Catálogo de sismicidad. Disponible en línea: http://bdrsnc.sgc.gov.co/paginas1/catalogo/index.php Russo, R.M. Silver, P.G. (1994). Trench-Parallel Flow Beneath the Nazca Plate from Seismic Anisotropy. Science. Vol. 263. 25 February 1994. Shearer, P.M. (2009). Introduction to Seismology. Second Edition. Cambridge University Press. Shih, X., Schneider, J.F., Meyer, R.P. (1991). Polarities of P and S waves, and Shear Wave Splitting Observed from the Bucaramanga Nest, Colombia. Journal Of Geophysical Research, Vol. 96, NO. B7, Pg. 12,069-12,082, July 10, 1991. Silver, P.G., Chan, W.W. (1991). Shear Wave Splitting and Subcontinental Mantle Deformation. Journal of Geophysical Research, Vol. 96, No. B10, p. 16,429 - 16,454. September 10, 1991. Sun, M., Bezada, M.J., Cornthwaite, J., Prieto, G.A., Niu, F., Levander, A. (2022). Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth and Planetary Science Letters, 577, 117253. https://doi.org/10.1016/jepsl.2021.117253. Uchida, N., Nakajima, J., Wang, K. (2020). Stagnant forearc mantle wedge inferred from mapping of shear-wave anisotropy using S-net seafloor seismometers. Nat Commun 11, 5676. Vargas, C.A., Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama arc indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328 Vargas, C.A. (2020). Subduction geometries in northwestern South America. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 397–422. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.11 Walpole, J. (2017). SplitWavePy: Splitting made easy in Python. Disponible en línea: https://splitwavepy.readthedocs.io/en/latest/ y https://github.com/JackWalpole/splitwavepy. Wüstefeld, A., Bokelmann, G., Zaroli, C., Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5), 515–528. Yarce, J., Monsalve, G., Becker, T. W., Cardona, A., Poveda, E., Alvira, D., & Ordoñez-Carmona, O. (2014). Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics,637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006. Zal, H. (2020). Seismic anisotropy and velocity structure in the North Island, New Zealand. PhD. Thesis. Victoria University of Wellington. New Zealand. Zhao, L. Xue, M. (2015). An observation related to directional attenuation of SKS waves propagating in anisotropic media. Geophysical Journal International, Volume 201, Issue 1, April 2015, Pages 276–290, https://doi.org/10.1093/gji/ggv019. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
124 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Geología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85037/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85037/2/1032480570.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85037/3/1032480570.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 9a9764c6ffabf225c51de03af67c5631 7ddff9cc061d4e625d9589e2e1e25794 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089464004214784 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Jiménez, Carlos Alberto5555241492e147a4b8190b7788f625f4Aranguren Canal, Daniel Alfonsoacfeb4f10f62c605b7f9d222d381db9dDaniel Aranguren Canal [https://orcid.org/0000-0001-8257-5497]2023-12-06T14:44:23Z2023-12-06T14:44:23Z2023-12-05https://repositorio.unal.edu.co/handle/unal/85037Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, planosEsta tesis consiste en la estimación de los parámetros de anisotropía sísmica (φ, δt) para las distintas estaciones sísmicas en Colombia, relacionando los resultados obtenidos con los distintos aspectos tectónicos regionales de la esquina noroccidental de Suramérica. Para ello, se estudia la polarización de las ondas correspondientes a las fases S de eventos locales (asociados con los procesos de subducción Nazca-Suramérica y Caribe-Suramérica), al igual que la polarización de las ondas correspondientes a las fases SKS de eventos telesísmicos. Los eventos locales tienen una profundidad mayor a los 70 km, al igual que magnitudes mayores o iguales a 4.5, mientras que los eventos telesísmicos tienen distancias hipocentrales entre los 90°-130°, y magnitudes mayores o iguales a 6.5. La obtención de los parámetros de anisotropía sísmica (φ, δt) se realiza para cada una de las estaciones sísmicas pertenecientes a la Red Sismológica Nacional de Colombia, comprendiendo un periodo de registro de seis años consecutivos (2016-2021). Esta se lleva a cabo mediante los paquetes de libre acceso de Python llamados ObsPy y SplitWavePy. Como resultado, se establece un control mixto de la anisotropía en la corteza donde predomina la polarización de las ondas S al interior de las fallas sobre la polarización por acción de esfuerzos; se observan patrones erráticos de φ por la presencia de fluidos en la corteza; y se obtienen las orientaciones del flujo astenosférico bajo las losas que subducen con una convergencia generalizada orientada SW-NE bajo la esquina noroccidental de Suramérica. (Texto tomado de la fuente)This thesis consists of the estimation of seismic anisotropy parameters (φ, δt) for the different seismic stations in Colombia, relating the obtained results with the different regional tectonic features of the northwestern corner of South America. To achieve it, the polarization of S phases of local events (associated with Nazca-South America and Caribbean-South America subduction processes) and SKS phases of teleseismic events is studied. The local events have a depth below 70 km, as well as magnitudes above or equal to 4.5, while the teleseismic events have hypocentral distances between 90°-130°, and magnitudes above or equal to 6.5. The obtention of seismic anisotropy parameters (φ, δt) is done for each one of the seismic stations which belong to the Colombian National Seismological Network, comprising a record time of six consecutive years (2016-2021). This is done by free-access Python software known as ObsPy and SplitWavePy. As a result, a mixed control of the anisotropy in the crust is established, where it prevails a S wave polarization inside the faults rather than a polarization due to stresses; erratic patterns of φ due to the presence of fluids in the crust are observed; and orientations of astenospheric flow under the subducting slabs are obtained with a generalized convergence oriented SW-NE under the NW corner of South America.MaestríaSismología y Tectónica124 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - GeologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierraMovimientos tectónicosSismologíaEarth movementsSeismologyTectónicaSismologíaAnisotropía SísmicaEsquina Noroccidental de SuraméricaShear Wave SplittingEstimación de la anisotropía sísmica en Colombia y su relación con rasgos tectónicos regionalesEstimation of seismic anisotropy in Colombia and its relationship with regional tectonic featuresTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperImageModelTextWorkflowhttp://purl.org/redcol/resource_type/TMColombiaAcevedo, J., Fernández-Viejo, G., Llana-Fúnez, S., López-Fernández, C., Olona, J. (2020). Upper-Crustal Seismic Anisotropy in the Cantabrian Mountains (North Spain) from Shear-Wave Splitting and Ambient Noise Interferometry Analysis, Seismol. Res. Lett. XX, 1–16.Akazawa, T. (2004), A technique for automatic detection of onset time of P-and S-Phases in strong motion records, 13th World Conference on Earthquake Engineering.Bacon, C.A., Johnson, J.H., White, R.S., Rawlinson, N. (2022). On the origin of seismic anisotropy in the shallow crust of the Northern Volcanic Zone, Iceland. Journal of Geophysical Research: Solid Earth, 127, e2021JB022655.Barruol, G., Wustefeld, A., Bokelmann, G. (2009). SKS-Splitting-database. Université de Montpellier, Laboratoire Géosciences. Disponible en línea: http://splitting.gm.univ-montp2.fr/DB/index.htmlBoness, N., Zoback, M. (2006). Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geological Society of America. Geology; October 2006; v. 34; no. 10; p. 825–828.Cornthwaite, J., Bezada, M. J., Miao, W., Schmitz, M., Prieto, G. A., Dionicio, V., et al. (2021). Caribbean slab segmentation beneath northwest South America revealed by 3-D finite frequency teleseismic P-wave tomography. Geochemistry, Geophysics, Geosystems, 22(4), e2020GC009431. https://doi.org/10.1029/2020GC009431.Crampin, S., Peacock, S. (2008). A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation. Elsevier, Wave Motion 45 (2008) 675–722.Crotwell, H.P., Owens, T.J., Ritsema, J. (1999). The TauP Toolkit: Flexible seismic travel-time and ray-path utilities, Seismological Research Letters, 70 (2), 154-160.Davis, J.C. (2002). Statistics and Data Analysis in Geology. Third Edition. John Wiley & Sons, Inc. Chapter 5, p. 316-330.Demouchy, S. (2021). Defects in Olivine. European Journal of Mineralogy. 33, 249–282, 2021.GeoRose 0.5.1. (2022). Yong Technology – Geotechnical Engineering Software Solutions. Disponible en línea: https://www.yongtechnology.com/download/GEOFON Program (2022). GFZ-Helmholtz Centre Potsdam. Disponible en línea: https://geofon.gfz-potsdam.de/Gomez Alba, S., Vargas, C.A., Zang, A. (2020). Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitán (Colombia) earthquake sequence from 2013 to 2015. Geophysical Journal International, 220(1), 335-344. https://doi. org/10.1093/gji/ggz433Heidbach, O., Ziegler, M. (2018). Smoothed global stress maps based on the World Stress Map database release 2016. GFZ Data Services. http://doi.org/10.5880/WSM.2018.002Idárraga, J., Kendall, J.M., Vargas, C.A. (2016). Shear Wave Anisotropy in Northwestern South America and Its Link to the Caribbean and Nazca Subduction Geodynamics. American Geophysical Union: Geochemistry, Geophysics, Geosystems 17 (2016).IRIS (2021). Shear Wave Splitting Product Query. Disponible en línea: http://ds.iris.edu/spud/swsmeasurementJung, H. (2017). Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: a review. Geosciences Journal. Vol. 21, No. 6, p. 985−1011, December 2017. http://dx.doi.org/10.1007/s12303-017-0045-1Karato, S., Jung, H., Katayama, I., Skemer, P. (2008). Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annu. Rev. Earth Planet. Sci. 2008. 36:59–95.Katayama, I., Hirauchi, K., Michibayashi, K., Ando, J. (2009). Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature Letters. Vol 461, 22 October 2009, doi:10.1038/nature08513KIT (Karlsruhe Institute of Technology) Lehre und Wissen. (2019) Basic Geophysics: Shear Wave Splitting. Disponible en línea: https://www.youtube.com/watch?v=T2zh wg8kgpM.Mardia, K. V. (2000). Statistics of Directional Data. Academic Press, Inc. Chapter 1-2.Masy, J., Niu, F., Levander, A., Schmitz, M. (2011). Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes. Earth and Planetary Science Letters, 305 (2011), 396–404.Mojica Boada, M.J., Poveda, E., Tary, J.B. (2022). Lithospheric and slab configurations from receiver function imaging in northwestern South America, Colombia. Journal of Geophysical Research: Solid Earth,127, e2022JB024475. https://doi.org/10.1029/2022JB024475.Molina I., Velásquez, J.S., Rubinstein, J.L., Garcia-Aristizabal, A., Dionicio, V. (2020) Seismicity induced by massive wastewater injection near Puerto Gaitán. Colombia Geophys J Int 223(2):777–791. https://doi.org/10.1093/gji/ggaa326Nagaya, T. et al. (2016). Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone. Sci. Rep. 6, 29981.Piñero-Feliciangeli, L.T., Kendall, J.M. (2008). Sub-Slab mantle flow parallel to the Caribbean plate boundaries: Inferences from SKS Splitting. Tectonophysics, 462 (2008), 22–34.Porritt, R.W., Becker, T.W., Monsalve, G. (2014). Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia. Geophys. Res. Lett., 41, 8775–8783.Red Sismológica Nacional de Colombia (2021). Catálogo de sismicidad. Disponible en línea: http://bdrsnc.sgc.gov.co/paginas1/catalogo/index.phpRusso, R.M. Silver, P.G. (1994). Trench-Parallel Flow Beneath the Nazca Plate from Seismic Anisotropy. Science. Vol. 263. 25 February 1994.Shearer, P.M. (2009). Introduction to Seismology. Second Edition. Cambridge University Press.Shih, X., Schneider, J.F., Meyer, R.P. (1991). Polarities of P and S waves, and Shear Wave Splitting Observed from the Bucaramanga Nest, Colombia. Journal Of Geophysical Research, Vol. 96, NO. B7, Pg. 12,069-12,082, July 10, 1991.Silver, P.G., Chan, W.W. (1991). Shear Wave Splitting and Subcontinental Mantle Deformation. Journal of Geophysical Research, Vol. 96, No. B10, p. 16,429 - 16,454. September 10, 1991.Sun, M., Bezada, M.J., Cornthwaite, J., Prieto, G.A., Niu, F., Levander, A. (2022). Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth and Planetary Science Letters, 577, 117253. https://doi.org/10.1016/jepsl.2021.117253.Uchida, N., Nakajima, J., Wang, K. (2020). Stagnant forearc mantle wedge inferred from mapping of shear-wave anisotropy using S-net seafloor seismometers. Nat Commun 11, 5676.Vargas, C.A., Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the Panama arc indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328Vargas, C.A. (2020). Subduction geometries in northwestern South America. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, p. 397–422. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.11Walpole, J. (2017). SplitWavePy: Splitting made easy in Python. Disponible en línea: https://splitwavepy.readthedocs.io/en/latest/ y https://github.com/JackWalpole/splitwavepy.Wüstefeld, A., Bokelmann, G., Zaroli, C., Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5), 515–528.Yarce, J., Monsalve, G., Becker, T. W., Cardona, A., Poveda, E., Alvira, D., & Ordoñez-Carmona, O. (2014). Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics,637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006.Zal, H. (2020). Seismic anisotropy and velocity structure in the North Island, New Zealand. PhD. Thesis. Victoria University of Wellington. New Zealand.Zhao, L. Xue, M. (2015). An observation related to directional attenuation of SKS waves propagating in anisotropic media. Geophysical Journal International, Volume 201, Issue 1, April 2015, Pages 276–290, https://doi.org/10.1093/gji/ggv019.LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85037/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032480570.2023.pdf1032480570.2023.pdfTesis de Maestría en Ciencias - Geologíaapplication/pdf14664048https://repositorio.unal.edu.co/bitstream/unal/85037/2/1032480570.2023.pdf9a9764c6ffabf225c51de03af67c5631MD52THUMBNAIL1032480570.2023.pdf.jpg1032480570.2023.pdf.jpgGenerated Thumbnailimage/jpeg4964https://repositorio.unal.edu.co/bitstream/unal/85037/3/1032480570.2023.pdf.jpg7ddff9cc061d4e625d9589e2e1e25794MD53unal/85037oai:repositorio.unal.edu.co:unal/850372024-08-20 23:10:07.41Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |