Estudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónica

ilustraciones, graficas

Autores:
Calderón Cómbita, Jorge Arturo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81348
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81348
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::537 - Electricidad y electrónica
530 - Física::538 - Magnetismo
530 - Física::539 - Física moderna
ESPINTRONICA
Spintronics
DC Magnetron Sputtering
GaMnSb
M-RRAM
Multilayer Architectures
DMS
Exchange Bias
Resistive Commutation
Arquitecturas Multicapa
Pulverización Catódica asistida por campo magnético de corriente continua
GaMnSb
MM-RAA
Sesgo de Intercambio
SMD
Conmutación Resistiva
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_381ea60ed6a056c6e0f7e3a1997e982e
oai_identifier_str oai:repositorio.unal.edu.co:unal/81348
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónica
dc.title.translated.eng.fl_str_mv Study of the physical properties of multilayer systems based on GaMnSb for applications in spintronics
title Estudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónica
spellingShingle Estudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónica
530 - Física::537 - Electricidad y electrónica
530 - Física::538 - Magnetismo
530 - Física::539 - Física moderna
ESPINTRONICA
Spintronics
DC Magnetron Sputtering
GaMnSb
M-RRAM
Multilayer Architectures
DMS
Exchange Bias
Resistive Commutation
Arquitecturas Multicapa
Pulverización Catódica asistida por campo magnético de corriente continua
GaMnSb
MM-RAA
Sesgo de Intercambio
SMD
Conmutación Resistiva
title_short Estudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónica
title_full Estudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónica
title_fullStr Estudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónica
title_full_unstemmed Estudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónica
title_sort Estudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónica
dc.creator.fl_str_mv Calderón Cómbita, Jorge Arturo
dc.contributor.advisor.none.fl_str_mv Dussán Cuenca, Anderson
dc.contributor.author.none.fl_str_mv Calderón Cómbita, Jorge Arturo
dc.contributor.researchgroup.spa.fl_str_mv Materiales Nanoestructurados y Sus Aplicaciones
dc.subject.ddc.spa.fl_str_mv 530 - Física::537 - Electricidad y electrónica
530 - Física::538 - Magnetismo
530 - Física::539 - Física moderna
topic 530 - Física::537 - Electricidad y electrónica
530 - Física::538 - Magnetismo
530 - Física::539 - Física moderna
ESPINTRONICA
Spintronics
DC Magnetron Sputtering
GaMnSb
M-RRAM
Multilayer Architectures
DMS
Exchange Bias
Resistive Commutation
Arquitecturas Multicapa
Pulverización Catódica asistida por campo magnético de corriente continua
GaMnSb
MM-RAA
Sesgo de Intercambio
SMD
Conmutación Resistiva
dc.subject.lemb.spa.fl_str_mv ESPINTRONICA
dc.subject.lemb.eng.fl_str_mv Spintronics
dc.subject.proposal.eng.fl_str_mv DC Magnetron Sputtering
GaMnSb
M-RRAM
Multilayer Architectures
DMS
Exchange Bias
Resistive Commutation
dc.subject.proposal.spa.fl_str_mv Arquitecturas Multicapa
Pulverización Catódica asistida por campo magnético de corriente continua
GaMnSb
MM-RAA
Sesgo de Intercambio
SMD
Conmutación Resistiva
description ilustraciones, graficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-24T12:20:37Z
dc.date.available.none.fl_str_mv 2022-03-24T12:20:37Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81348
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81348
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] J. B. Rodriguez, K. Madiomanana, L. Cerutti, A. Castellano, and E. Tournié, “X-ray diffraction study of GaSb grown by molecular beam epitaxy on silicon substrates,” J. Cryst. Growth, vol. 439, pp. 33–39, 2016, doi: 10.1016/j.jcrysgro.2016.01.005.
[2] A. Ruiz and L. González, “Epitaxia por Haces Moleculares (Molecular Beam Epitaxy), MBE,” in Capas Delgadas y Modificación Superficial de Materiales, Primera., J. M. Albella, Ed. Madrid, España: Consejo Superior de Investigaciones Científicas, 2018, pp. 219–243.
[3] P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys., vol. 81, no. 9, pp. 5821–5870, 1997, doi: 10.1063/1.365356.
[4] J. A. Calderón, S. M. López, H. P. Quiroz, and A. Dussan, “Effect of annealing process on natural zeolites from volcanic ash for environmental applications: Structural and morphological characterizations,” Solid State Phenom., vol. 257, pp. 233–236, 2017, doi: 10.4028/www.scientific.net/SSP.257.233.
[5] K. Khaing Oo, S. Vorathamrong, S. Panyakeow, P. Praserthdam, and S. Ratanathammaphan, “Effect of substrate temperature on GaAs nanowires growth directly on Si (111) substrates by molecular beam epitaxy,” Mater. Today Proc., vol. 23, no. December 2018, pp. 685–689, 2020, doi: 10.1016/j.matpr.2019.12.259.
[6] G. J. Ackland, “High-pressure phases of group IV and III-V semiconductors,” Reports Prog. Phys., vol. 64, no. 4, pp. 483–516, 2001, doi: 10.1088/0034-4885/64/4/202.
[7] E. Chusovitin et al., “Formation of a thin continuous GaSb film on Si(001) by solid phase epitaxy,” Nanomaterials, vol. 8, no. 12, pp. 7–9, 2018, doi: 10.3390/nano8120987.
[8] H. V. Atkinson, “Overview no. 65. Theories of normal grain growth in pure single phase systems,” Acta Metall., vol. 36, no. 3, pp. 469–491, 1988, doi: 10.1016/0001-6160(88)90079-X.
[9] S. Koch, Carl C.; Ovid’ko, Ilya A.; Seal , Sudipta; Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications, First Edit. Cambridge: Cambridge University press, 2007.
[10] F. Sun, A. Zúñiga, P. Rojas, and E. J. Lavernia, “Thermal stability and recrystallization of nanocrystalline Ti produced by cryogenic milling,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 37, no. 7, pp. 2069–2078, 2006, doi: 10.1007/BF02586127.
[11] J. E. Burke and D. Turnbull, “Recrystallization and grain growth,” Prog. Met. Phys., vol. 3, no. C, 1952, doi: 10.1016/0502-8205(52)90009-9.
[12] P. Cao, L. Lu, and M. O. Lai, “Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying,” Mater. Res. Bull., vol. 36, no. 5–6, pp. 981–988, 2001, doi: 10.1016/S0025-5408(01)00578-5.
[13] R. L. Doiphode, S. V. S. N. Murty, N. Prabhu, and B. P. Kashyap, “Grain growth in calibre rolled Mg-3Al-1Zn alloy and its effect on hardness,” J. Magnes. Alloy., vol. 3, no. 4, pp. 322–329, 2015, doi: 10.1016/j.jma.2015.11.003.
[14] C. Q. Zhou and Q. A. Zhang, “Effect of Pr3Al11 nanoparticles on crystallite growth kinetics of nanocrystalline Mg,” J. Alloys Compd., vol. 804, pp. 299–304, 2019, doi: 10.1016/j.jallcom.2019.07.047.
[15] R. G. Pavelko et al., “Crystallite growth kinetics of highly pure nanocrystalline tin dioxide: The effect of palladium doping,” Mater. Chem. Phys., vol. 121, no. 1–2, pp. 267–273, 2010, doi: 10.1016/j.matchemphys.2010.01.034.
[16] L. Hao and W. Xiong, “An evaluation of the Mn–Ga system: Phase diagram, crystal structure, magnetism, and thermodynamic properties,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 68, no. December 2019, 2020, doi: 10.1016/j.calphad.2019.101722.
[17] A. Talantsev, O. Koplak, and R. Morgunov, “Effect of MnSb clusters recharge on ferromagnetism in GaSb-MnSb thin films,” Superlattices Microstruct., vol. 95, pp. 14–23, Jul. 2016, doi: 10.1016/j.spmi.2016.04.012.
[18] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, pp. 1113–1118, 2017, doi: 10.1016/j.apsusc.2016.11.096.
[19] R. M. Gutiérrez-Pérez, R. López Antón, K. Załęski, J. T. Holguín-Momaca, F. Espinosa-Magaña, and S. F. Olive-Méndez, “Tailoring magnetization and anisotropy of tetragonal Mn3Ga thin films by strain-induced growth and spin orbit coupling,” Intermetallics, vol. 92, no. September 2017, pp. 20–24, 2018, doi: 10.1016/j.intermet.2017.09.008.
[20] L. Fan et al., “Promising spintronics: Mn-based Heusler alloys Mn3Ga, Mn2YGa (Y = V, Nb, Ta), ScMnVGa,” J. Magn. Magn. Mater., no. March, 2019, doi: 10.1016/j.jmmm.2019.166060.
[21] W. Liu, P. K. J. Wong, and Y. Xu, “Hybrid spintronic materials: Growth, structure and properties,” Prog. Mater. Sci., vol. 99, no. February 2018, pp. 27–105, 2019, doi: 10.1016/j.pmatsci.2018.08.001.
[22] A. Lahiri, N. Borisenko, M. Olschewski, R. Gustus, J. Zahlbach, and F. Endres, “Electroless Deposition of III-V Semiconductor Nanostructures from Ionic Liquids at Room Temperature,” Angew. Chemie - Int. Ed., vol. 54, no. 40, pp. 11870–11874, 2015, doi: 10.1002/anie.201504764.
[23] K. Sato and E. Saitoh, Spintronics for Next Generation. 2015.
[24] B. C. Johnson, J. C. McCallum, and M. J. Aziz, Handbook of Crystal Growth: Thin Films and Epitaxy, vol. 3. 2015.
[25] H. L. Li et al., “Sonochemical preparation of GaSb nanoparticles,” Inorg. Chem., vol. 41, no. 4, pp. 637–639, 2002, doi: 10.1021/ic015616j.
[26] B. D. McCombe et al., “Novel ferromagnetism in digital GaAs/Mn and GaSb/Mn alloys,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 16, no. 1, pp. 90–98, 2003.
[27] G. I. Boishin, J. M. Sullivan, and L. J. Whitman, “Structure of GaSb digitally doped with Mn,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 71, no. 19, pp. 0–4, 2005, doi: 10.1103/PhysRevB.71.193307.
[28] G. B. Kim, M. Cheon, S. Wang, H. Luo, and B. D. McCombe, “Magnetic and electrical properties of random and digital alloys of GaSb:Mn,” J. Supercond. Nov. Magn., vol. 18, no. 1, pp. 87–92, 2005, doi: 10.1007/s10948-005-2156-6.
[29] J. A. Calderón, F. Mesa, A. Dussan, R. González-Hernandez, and J. G. Ramirez, “The effect of Mn2Sb2 and Mn2Sb secondary phases on magnetism in (GaMn)Sb thin films,” PLoS One, vol. 15, no. 4, pp. 1–10, 2020, doi: 10.1371/journal.pone.0231538.
[30] H. P. Quiroz, J. A. Calderón, and A. Dussan, “Micro-structural and morphological properties and magnetic behavior of GaΛSb (Λ = Mn, Ni) nanostructured thin films by magnetron co-sputtering,” J. Magn. Magn. Mater., vol. 497, no. May 2019, p. 165942, 2020, doi: 10.1016/j.jmmm.2019.165942.
[31] J. A. Calderón Cómbita, “Estudio de las propiedades Ópticas y eléctricas del compuesto Ga1-xMnxSb usado para aplicaciones en espintrónica,” p. 134, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/55516/.
[32] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, pp. 1113–1118, Feb. 2017, doi: 10.1016/j.apsusc.2016.11.096.
[33] L. Vásquez, “Medida del Espesor y Análisis de la Rugosidad,” in Láminas delgadas y Recubrimientos: Preparación, propiedades y aplicaciones, Primera., J. M. Albella, Ed. Consejo Superior de Investigaciones Científicas, 2003, pp. 337–363.
[34] J. Maslar, W. Hurst, and C. A. Wang, “Raman spectroscopy of n-type and p-type GaSb with multiple excitation wavelengths,” Appl. Spectrosc., vol. 61, no. 10, pp. 1093–1102, 2007, doi: 10.1366/000370207782217789.
[35] X. Zhou et al., “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–6, 2011, doi: 10.1007/s11671-010-9739-2.
[36] G. Yang, F. Zhu, and S. Dong, “Fabrication of ferromagnetic GaMnSb by thermal diffusion of evaporated Mn,” Journal of Crystal Growth, vol. 316, no. 1, North-Holland, pp. 145–148, 01-Feb-2011.
[37] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, 2017, doi: 10.1016/j.apsusc.2016.11.096.
[38] G. Yang, F. Zhu, and S. Dong, “Fabrication of ferromagnetic GaMnSb by thermal diffusion of evaporated Mn,” J. Cryst. Growth, vol. 316, no. 1, pp. 145–148, Feb. 2011, doi: 10.1016/j.jcrysgro.2010.12.022.
[39] A. I. Dmitriev, A. D. Talantsev, O. V. Koplak, and R. B. Morgunov, “Magnetic fluctuations sorted by magnetic field in MnSb clusters embedded in GaMnSb thin films,” Journal of Applied Physics, vol. 119, no. 7, 2016.
[40] A. I. Dmitriev and A. A. Filatov, “Effect of the Magnetic Anisotropy Energy Distribution of MnSb Clusters on Spontaneous Magnetization Reversal of GaMnSb Thin Films,” vol. 58, no. 10, pp. 2005–2010, 2016, doi: 10.1134/S1063783416100127.
[41] X. Chen et al., “Above-room-temperature ferromagnetism in GaSb/Mn digital alloys,” Appl. Phys. Lett., vol. 81, no. 3, pp. 511–513, 2002, doi: 10.1063/1.1481184.
[42] G. I. Boishin, J. M. Sullivan, and L. J. Whitman, “Structure of GaSb digitally doped with Mn,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 71, no. 19, pp. 1–4, 2005, doi: 10.1103/PhysRevB.71.193307.
[43] H. Bracht, S. P. Nicols, W. Walukiewicz, J. P. Silveira, and F. Briones, “Large disparity between gallium and antimony self-diffusion in gallium antimonide,” vol. 408, no. November, pp. 1–4, 2000.
[44] H. A. Tahini, A. Chroneos, H. Bracht, S. T. Murphy, R. W. Grimes, and U. Schwingenschlögl, “Antisites and anisotropic diffusion in GaAs and GaSb,” Appl. Phys. Lett., vol. 103, no. 14, pp. 1–5, 2013, doi: 10.1063/1.4824126.
[45] Springer Handbook of Electronic and Photonic Materials. 2007.
[46] A. Chroneos and H. Bracht, “Concentration of intrinsic defects and self-diffusion in GaSb,” J. Appl. Phys., vol. 104, no. 9, 2008, doi: 10.1063/1.3010300.
[47] R. W. Balluffi, S. M. Allen, and W. C. Carter, Kinetics of Materials, no. 1. 2005.
[48] D. Wbiler and H. Mehrer, “Self-diffusion of gallium and antimony in GaSb,” Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., vol. 49, no. 2, pp. 309–325, 1984, doi: 10.1080/01418618408234931.
[49] B. Namnuan, K. Yoodee, and S. Chatraphorn, “Probing diffusion of In and Ga in CuInSe2/CuGaSe2 bilayer thin films by x-ray diffraction,” J. Cryst. Growth, vol. 432, pp. 24–32, 2015, doi: 10.1016/j.jcrysgro.2015.09.010.
[50] A. Paul and S. Divinski, Handbook of Solid State Diffusion, First edit., vol. 2. Elsevier Inc., 2017.
[51] R. Jakiela, K. Gas, M. Sawicki, and A. Barcz, “Diffusion of Mn in gallium nitride: Experiment and modelling,” J. Alloys Compd., vol. 771, pp. 215–220, 2019, doi: 10.1016/j.jallcom.2018.08.263.
[52] I. S. Yahia, S. AlFaify, F. Yakuphanoglu, S. Chusnutdinow, T. Wojtowicz, and G. Karczewski, “Impedance Spectroscopy of n-CdTe/p-CdMnTe/p-GaAs Diluted Magnetic Diode,” J. Electron. Mater., vol. 44, no. 8, pp. 2768–2772, 2015, doi: 10.1007/s11664-015-3707-7.
[53] J. M. Slaughter, W. Weber, G. Güntherodt, and C. M. Falco, “Quantitative Auger and XPS Analysis of Thin Films,” MRS Bulletin, vol. 17, no. 12, pp. 39–45, 1992.
[54] J. F. Watts and J. Wolstenholme, An Introduction to surface analysis by XPS and AES, Primera., vol. 1. John Wiley & Sons Ltd., 2015.
[55] I. Montero and R. Gago, “Análisis con haces de iones: RBS, ERDA, PIXE, NRA y SIMS,” in Capas Delgadas y Modificación Superficial de Materiales, Consejo Superior de Investigaciones Científicas, 2018, pp. 489–503.
[56] A. Michels, C. E. Krill, H. Ehrhardt, R. Birringer, and D. T. Wu, “Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials,” Acta Mater., vol. 47, no. 7, pp. 2143–2152, 1999, doi: 10.1016/S1359-6454(99)00079-8.
[57] J. R. Ares, A. Pascual, I. J. Ferrer, and C. Sánchez, “Grain and crystallite size in polycrystalline pyrite thin films,” Thin Solid Films, vol. 480–481, pp. 477–481, 2005, doi: 10.1016/j.tsf.2004.11.064.
[58] A. Palmero and J. M. Albella, “Mecanismos de Nucleación y Crecimiento de capas delgadas,” in Capas Delgadas y Modificación Superficial de Materiales, J. M. Albella, Ed. Madrid, España: Consejo Superior de Investigaciones Científicas, 2018, pp. 105–136.
[59] A. Krier, M. K. Parry, and D. S. Lanchester, “Optoelectronic properties of gallium antimonide light emitting diodes,” Semicond. Sci. Technol., vol. 6, no. 11, pp. 1066–1071, 1991, doi: 10.1088/0268-1242/6/11/006.
[60] Z. Qiao, Y. Sun, W. He, Q. He, and C. Li, “Polycrystalline GaSb thin films grown by co-evaporation,” J. Semicond., vol. 30, no. 3, 2009, doi: 10.1088/1674-4926/30/3/033004.
[61] S. Basu and T. Adhikari, “Variation of band gap with Mn concentration in Ga1-xMnxSb - A new III-V diluted magnetic semiconductor,” Solid State Commun., vol. 95, no. 1, pp. 53–55, 1995, doi: 10.1016/0038-1098(95)00160-3.
[62] L. Patrick, “Antiferromagnetism of manganese,” Phys. Rev., vol. 93, no. 3, p. 370, 1954, doi: 10.1103/PhysRev.93.370.
[63] J. S. Kasper and B. W. Roberts, “Antiferromagnetic structure of α-manganese and a magnetic structure study of β-manganese,” Phys. Rev., vol. 101, no. 2, pp. 537–544, 1956, doi: 10.1103/PhysRev.101.537.
[64] A. C. Lawson et al., “Magnetic and crystallographic order in α-manganese,” J. Appl. Phys., vol. 76, no. 10, pp. 7049–7051, 1994, doi: 10.1063/1.358024.
[65] T. Sahu, S. K. Nayak, and R. N. Acharya, “Diamagnetic and Dielectric Susceptibilities of AlSb and GaSb,” Phys. Status Solidi, vol. 178, no. 2, pp. 343–351, 1993, doi: 10.1002/pssb.2221780211.
[66] A. E. Taylor et al., “Influence of interstitial Mn on magnetism in the room-temperature ferromagnet Mn1+δSb,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 91, no. 22, p. 224418, Jun. 2015, doi: 10.1103/PhysRevB.91.224418.
[67] E. Lu, D. C. Ingram, A. R. Smith, J. W. Knepper, and F. Y. Yang, “Reconstruction control of magnetic properties during epitaxial growth of ferromagnetic Mn3-δGa on wurtzite GaN(0001),” Phys. Rev. Lett., vol. 97, no. 14, pp. 1–4, 2006, doi: 10.1103/PhysRevLett.97.146101.
[68] S. N. Sofronova, N. V. Kazak, E. V. Eremin, E. M. Moshkina, A. V. Chernyshov, and A. F. Bovina, “Magnetization reversal and sign reversal exchange bias field in polycrystalline Ni5.33Ta0.67B2O10,” J. Alloys Compd., vol. 864, p. 158200, 2021, doi: 10.1016/j.jallcom.2020.158200.
[69] A. G. Kolesnikov et al., “Magnetic properties and the interfacial Dzyaloshinskii-Moriya interaction in exchange biased Pt/Co/NixOy films,” Appl. Surf. Sci., vol. 543, no. November 2020, p. 148720, 2021, doi: 10.1016/j.apsusc.2020.148720.
[70] P. Sharma, S. K. Srivastav, and R. Chatterjee, “Evidence of two dimensional dilute antiferromagnet mediated exchange bias field and vertical shift in LaFeO3-NiO nanocomposite,” J. Magn. Magn. Mater., vol. 523, no. August 2020, p. 167619, 2021, doi: 10.1016/j.jmmm.2020.167619.
[71] W. B. Cui et al., “Cooling-field dependence of exchange bias in Mg-diluted Ni1-xMgxO/Ni granular systems,” J. Magn. Magn. Mater., vol. 321, no. 13, pp. 1943–1946, 2009, doi: 10.1016/j.jmmm.2008.12.016.
[72] H. P. Quiroz Gaitán, “Estudio de las propiedades físicas del TiO 2 : Co como un semiconductor magnético diluido para aplicaciones en espintrónica,” Universidad Nacional de Colombia, 2019.
[73] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv., vol. 4, no. 10, pp. 0–22, 2014, doi: 10.1063/1.4899186.
[74] J. De Clercq, J. Leliaert, and B. Van Waeyenberge, “Modelling compensated antiferromagnetic interfaces with MuMax 3 Supplementary Material 1 Implementation of a compensated AFM/FM interface in MuMax 3,” vol. 2, no. 1, pp. 1–10, [Online]. Available: http://mumax.github.io/api.html.
[75] J. De Clercq, J. Leliaert, and B. Van Waeyenberge, “Modelling compensated antiferromagnetic interfaces with MuMax3,” arXiv, 2017.
[76] O. Koplak et al., “Spin filtering on the MnSb cluster interface in GaSbMn thin films,” Solid State Phenom., vol. 233–234, pp. 643–647, 2015, doi: 10.4028/www.scientific.net/SSP.233-234.643.
[77] M. D. Kuz’min, K. P. Skokov, L. V. B. Diop, I. A. Radulov, and O. Gutfleisch, “Exchange stiffness of ferromagnets,” Eur. Phys. J. Plus, vol. 135, no. 3, 2020, doi: 10.1140/epjp/s13360-020-00294-y.
[78] H. Lee et al., “2017 - Interlayer exchange coupling in MBE-grown GaMnAs-based multilayer.pdf,” J. Cryst. Growth, vol. 477, pp. 188–192, 2017.
[79] Z. Kurant, M. Tekielak, I. Sveklo, A. Wawro, and A. Maziewski, “Interlayer coupling-driven magnetic ordering and magnetization processes in ultrathin Au/Co/Mo/Co/Au film,” Journal of Magnetism and Magnetic Materials, vol. 475, no. December 2018, Elsevier B.V., pp. 683–694, 2019.
[80] H. P. Quiroz Gaitán, J. A. Calderón Cómbita, and A. Dussán Cuenca, Nanomateriales que revolucionan la tecnología Perspectivas y aplicaciones en espintrónica, Primera Ed. Bogotá D.C., Colombia: Universidad Nacional de Colombia, 2020.
[81] I. Ammar, N. Sfina, and M. Fnaiech, “Optical gain and threshold current density for mid-infrared GaSbBi/GaSb quantum-well laser structure,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 266, no. August 2020, p. 115056, 2021, doi: 10.1016/j.mseb.2021.115056.
[82] Zon et al., “Investigation of hybrid InSb and GaSb quantum nanostructures,” Microelectron. Eng., vol. 237, no. September 2020, p. 111494, 2021, doi: 10.1016/j.mee.2020.111494.
[83] B. Kochman et al., “Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron., vol. 39, no. 3, pp. 459–467, 2003, doi: 10.1109/JQE.2002.808169.
[84] W. H. Lin et al., “High-temperature operation GaSb/GaAs quantum-dot infrared photodetectors,” IEEE Photonics Technol. Lett., vol. 23, no. 2, pp. 106–108, 2011, doi: 10.1109/LPT.2010.2091949.
[85] A. Martí et al., “Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell,” Thin Solid Films, vol. 511–512, pp. 638–644, 2006, doi: 10.1016/j.tsf.2005.12.122.
[86] C. Chevuntulak et al., “Molecular beam epitaxial growth of interdigitated quantum dots for heterojunction solar cells,” J. Cryst. Growth, vol. 512, no. February, pp. 159–163, 2019, doi: 10.1016/j.jcrysgro.2019.02.031.
[87] M. Yang et al., “Electric transmission behavior of self-assembled Cu–W nano multilayers,” Prog. Nat. Sci. Mater. Int., no. February, pp. 1–8, 2020, doi: 10.1016/j.pnsc.2020.11.001.
[88] D. Josell, S. H. Brongersma, and Z. Tokei, “Size-dependent resistivity in nanoscale interconnects,” Annu. Rev. Mater. Res., vol. 39, pp. 231–254, 2009, doi: 10.1146/annurev-matsci-082908-145415.
[89] F. Zhuge et al., “Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments,” Nanotechnology, vol. 22, no. 27, 2011, doi: 10.1088/0957-4484/22/27/275204.
[90] P. C. Lacaze and J.-C. Lacroix, Non-Volatile Memory. Wiley UK, 2014.
[91] Z. H. U. Jian-Gang, “Magnetoresistive random access memory: The path to competitiveness and scalability,” Proc. IEEE, vol. 96, no. 11, pp. 1786–1798, 2008, doi: 10.1109/JPROC.2008.2004313.
[92] H.-S. P. Wong et al., “Phase change memory,” Proc. IEEE, vol. 98, pp. 2201–2227, 2010.
[93] S. Yu and K. Iniewski, Resistive Random Access Memory (RRAM) From Devices to Array Architectures SyntheSiS LectureS on emerging engineering technoLogieS SyntheSiS LectureS on emerging engineering technoLo. 2016.
[94] R. L. de Orio et al., “Robust magnetic field-free switching of a perpendicularly magnetized free layer for SOT-MRAM,” Solid. State. Electron., vol. 168, no. November 2019, p. 107730, 2020, doi: 10.1016/j.sse.2019.107730.
[95] S. Seo et al., “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 85, no. 23, pp. 5655–5657, 2004, doi: 10.1063/1.1831560.
[96] B. J. Choi et al., “Resistive switching mechanism of TiO 2 thin films grown by atomic-layer deposition,” J. Appl. Phys., vol. 98, no. 3, 2005, doi: 10.1063/1.2001146.
[97] A. Chen et al., “Non-volatile resistive switching for advanced memory applications,” Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 2005, no. c, pp. 746–749, 2005, doi: 10.1109/iedm.2005.1609461.
[98] H. P. Quiroz, J. E. Serrano, and A. Dussan, “Magnetic behavior and conductive wall switching in TiO2 and TiO2:Co self-organized nanotube arrays,” J. Alloys Compd., vol. 825, p. 154006, 2020, doi: 10.1016/j.jallcom.2020.154006.
[99] H. P. Quiroz, M. Manso-Silván, A. Dussan, C. Busó-Rogero, P. Prieto, and F. Mesa, “TiO2 and Co multilayer thin films via DC magnetron sputtering at room temperature: Interface properties,” Mater. Charact., vol. 163, no. February, 2020, doi: 10.1016/j.matchar.2020.110293.
[100] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Erratum: Electrochemical metallization memories - Fundamentals, applications, prospects (Nanotechnology (2011) 22 (254003)),” Nanotechnology, vol. 22, no. 28, 2011, doi: 10.1088/0957-4484/22/28/289502.
[101] Z. Çaldiran, M. Şinoforoʇlu, Ö. Metin, Ş. Aydoʇan, and K. Meral, “Space charge limited current mechanism (SCLC) in the graphene oxide-Fe3O4 nanocomposites/n-Si heterojunctions,” J. Alloys Compd., vol. 631, pp. 261–265, 2015, doi: 10.1016/j.jallcom.2015.01.117.
[102] Y. Caglar, M. Caglar, S. Ilican, and F. Yakuphanoglu, “Thermally stimulated current and space charge limited current mechanism in film of the gold/zinc oxide/gold type,” Phys. B Condens. Matter, vol. 392, no. 1–2, pp. 99–103, 2007, doi: 10.1016/j.physb.2006.11.014.
[103] H. P. Quiroz, J. A. Calderón, and A. Dussan, “Magnetic switching control in Co/TiO2 bilayer and TiO2:Co thin films for Magnetic-Resistive Random Access Memories (M-RRAM),” J. Alloys Compd., vol. 840, pp. 2–7, 2020, doi: 10.1016/j.jallcom.2020.155674.
[104] R. L. Sime and F. Ajzenberg‐Selove, “ Lise Meitner: A Life in Physics ,” Phys. Today, vol. 49, no. 6, pp. 55–58, 1996, doi: 10.1063/1.2807657.
[105] O. H. Duparc, L. Meitner, and C. D. Ellis, “Pierre Auger – Lise Meitner :,” vol. 100, 2009.
[106] D. Matsakis, A. Coster, B. Laster, and R. Sime, “A renaming proposal: ‘The Auger–Meitner effect,’” Phys. Today, vol. 72, no. 9, pp. 10–11, 2019, doi: 10.1063/pt.3.4281.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 234 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Departamento de Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81348/1/1023863546.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81348/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81348/3/1023863546.2021.pdf.jpg
bitstream.checksum.fl_str_mv 8fb38548706bdafb27106227c4a3e58f
8153f7789df02f0a4c9e079953658ab2
266beda30e9e11cec0720168fc184cab
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886006879682560
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dussán Cuenca, Anderson393dbd423635d474564f566b8ee5f549Calderón Cómbita, Jorge Arturocf0804d5f93317f8eba6c3b4430c4decMateriales Nanoestructurados y Sus Aplicaciones2022-03-24T12:20:37Z2022-03-24T12:20:37Z2021https://repositorio.unal.edu.co/handle/unal/81348Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEn este trabajo se fabricaron muestras de películas delgadas de GaSb y sistemas multicapas de [GaSb/Mn]_n por medio de la técnica de pulverización catódica asistida por Campo Magnético de corriente directa (“DC magnetron Sputtering”), para valores de n=1,3,6 y 12. Utilizando XRD, FTIR y Raman se estableció la presencia de fases de GaSb, Mn2Sb2, para las muestras depositadas a temperatura ambiente (300 K), junto con Mn3Ga para muestras con temperatura de sustrato de 423 K. A través de medidas de SEM, HR-SEM y AFM-MFM fue posible estudiar la formación granular en la superficie de las muestras. Se estableció que la formación de granos está descrita por el modelo de Burke para crecimiento anormal y no se tiene una correlación de la formación de dominios magnéticos en la superficie. Además, la constitución de las multicapas sigue el crecimiento columnar denso dado por el modelo MD. A partir de medidas espectroscopia de electrones Auger-Meitner y RBS fue posible estudiar los procesos de auto-difusión (D_Ga≈D_Sb~5,03×10^(-17) cm^2/s) y se propuso una solución para la segunda ley de Fick para sistemas multicapas obteniendo coeficientes de difusión de D_Mn~6,50×10^(-15) cm^2/s. Adicionalmente, el comportamiento magnético de las muestras fue estudiado utilizando un magnetrómetro SQUID y se evidenció la manifestación del fenómeno de sesgo de intercambio (“Exchange Bias”) correlacionado con la contribución ferromagnética de las fases Mn2Sb2, Mn3Ga y la contribución del comportamiento tipo ferromagnético del diluido GaSb:Mn, todas presentes en las regiones de interfaz para las muestras multicapas y la contribución antiferromagnética del Mn a 5 K; junto con la generación de histéresis a temperatura ambiente para sistemas de n=3 y n=6. A partir de medidas de I-V fue posible establecer la conmutación resistiva de las muestras, la cual se ve alterada bajo la presencia de un campo magnético externo, cuyo comportamiento fue explicado basándose en la conjunción de dos mecanismos de conducción dados por la presencia de regiones espaciales de carga y la formación de hilos de conducción manifestando su potencial uso como memorias M-RRAM. (Texto tomado de la fuente)In this work, thin film samples of GaSb and multilayer systems of [GaSb/Mn]_n were manufactured by DC magnetron Sputtering, for values of n = 1, 3, 6 and 12. Using XRD, FTIR and Raman, the presence of GaSb phases, Mn2Sb2, was established for the samples deposited at room temperature (300 K), together with Mn3Ga for samples with a substrate temperature of 423 K. SEM, HR-SEM and AFM-MFM measurements allowed to study the granular formation on the surface of the samples. The grain formation was described by the abnormal growth using the Burke model, and the magnetic responses is not correlated with the grains on the surface. Furthermore, the constitution of the multilayers follows the dense columnar growth given by MD model. From Auger-Meitner electron spectroscopy and RBS measurements it was possible to study the self-diffusion processes (D_Ga≈D_Sb~5,03×10^(-17) cm^2/s) and a solution was proposed for the second Fick's law for multilayer systems obtaining diffusion coefficients of D_Mn~6,50×10^(-15) cm^2/s. Additionally, the magnetic behavior of the samples was studied using a SQUID magnetrometer, and the Exchange Bias phenomenon was correlated with the ferromagnetic contribution of the Mn2Sb2, Mn3Ga phases and the contribution of the ferromagnetic-type behavior of the diluted GaSb: Mn, all present in the interface regions for the multilayer samples and the antiferromagnetic contribution of Mn at 5 K; together with the generation of hysteresis at room temperature for systems of n = 3 and n = 6. From I-V curves, it was possible to establish the resistive switching of the samples, which is altered under the presence of an external magnetic field, whose behavior was explained based on the conjunction of two conduction mechanisms given by the presence of spatial regions and the formation of conduction wires manifesting their potential use as M-RRAM memories.DoctoradoDoctor en Ciencias - FísicaBecas de Doctorados Nacionales convocatoria 785 de 2017Este trabajo corresponde a una investigación experimental.Fabricación de Dispositivos Nanoestructurados con Aplicaciones Tecnológicasxx, 234 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::537 - Electricidad y electrónica530 - Física::538 - Magnetismo530 - Física::539 - Física modernaESPINTRONICASpintronicsDC Magnetron SputteringGaMnSbM-RRAMMultilayer ArchitecturesDMSExchange BiasResistive CommutationArquitecturas MulticapaPulverización Catódica asistida por campo magnético de corriente continuaGaMnSbMM-RAASesgo de IntercambioSMDConmutación ResistivaEstudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónicaStudy of the physical properties of multilayer systems based on GaMnSb for applications in spintronicsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[1] J. B. Rodriguez, K. Madiomanana, L. Cerutti, A. Castellano, and E. Tournié, “X-ray diffraction study of GaSb grown by molecular beam epitaxy on silicon substrates,” J. Cryst. Growth, vol. 439, pp. 33–39, 2016, doi: 10.1016/j.jcrysgro.2016.01.005.[2] A. Ruiz and L. González, “Epitaxia por Haces Moleculares (Molecular Beam Epitaxy), MBE,” in Capas Delgadas y Modificación Superficial de Materiales, Primera., J. M. Albella, Ed. Madrid, España: Consejo Superior de Investigaciones Científicas, 2018, pp. 219–243.[3] P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys., vol. 81, no. 9, pp. 5821–5870, 1997, doi: 10.1063/1.365356.[4] J. A. Calderón, S. M. López, H. P. Quiroz, and A. Dussan, “Effect of annealing process on natural zeolites from volcanic ash for environmental applications: Structural and morphological characterizations,” Solid State Phenom., vol. 257, pp. 233–236, 2017, doi: 10.4028/www.scientific.net/SSP.257.233.[5] K. Khaing Oo, S. Vorathamrong, S. Panyakeow, P. Praserthdam, and S. Ratanathammaphan, “Effect of substrate temperature on GaAs nanowires growth directly on Si (111) substrates by molecular beam epitaxy,” Mater. Today Proc., vol. 23, no. December 2018, pp. 685–689, 2020, doi: 10.1016/j.matpr.2019.12.259.[6] G. J. Ackland, “High-pressure phases of group IV and III-V semiconductors,” Reports Prog. Phys., vol. 64, no. 4, pp. 483–516, 2001, doi: 10.1088/0034-4885/64/4/202.[7] E. Chusovitin et al., “Formation of a thin continuous GaSb film on Si(001) by solid phase epitaxy,” Nanomaterials, vol. 8, no. 12, pp. 7–9, 2018, doi: 10.3390/nano8120987.[8] H. V. Atkinson, “Overview no. 65. Theories of normal grain growth in pure single phase systems,” Acta Metall., vol. 36, no. 3, pp. 469–491, 1988, doi: 10.1016/0001-6160(88)90079-X.[9] S. Koch, Carl C.; Ovid’ko, Ilya A.; Seal , Sudipta; Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications, First Edit. Cambridge: Cambridge University press, 2007.[10] F. Sun, A. Zúñiga, P. Rojas, and E. J. Lavernia, “Thermal stability and recrystallization of nanocrystalline Ti produced by cryogenic milling,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 37, no. 7, pp. 2069–2078, 2006, doi: 10.1007/BF02586127.[11] J. E. Burke and D. Turnbull, “Recrystallization and grain growth,” Prog. Met. Phys., vol. 3, no. C, 1952, doi: 10.1016/0502-8205(52)90009-9.[12] P. Cao, L. Lu, and M. O. Lai, “Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying,” Mater. Res. Bull., vol. 36, no. 5–6, pp. 981–988, 2001, doi: 10.1016/S0025-5408(01)00578-5.[13] R. L. Doiphode, S. V. S. N. Murty, N. Prabhu, and B. P. Kashyap, “Grain growth in calibre rolled Mg-3Al-1Zn alloy and its effect on hardness,” J. Magnes. Alloy., vol. 3, no. 4, pp. 322–329, 2015, doi: 10.1016/j.jma.2015.11.003.[14] C. Q. Zhou and Q. A. Zhang, “Effect of Pr3Al11 nanoparticles on crystallite growth kinetics of nanocrystalline Mg,” J. Alloys Compd., vol. 804, pp. 299–304, 2019, doi: 10.1016/j.jallcom.2019.07.047.[15] R. G. Pavelko et al., “Crystallite growth kinetics of highly pure nanocrystalline tin dioxide: The effect of palladium doping,” Mater. Chem. Phys., vol. 121, no. 1–2, pp. 267–273, 2010, doi: 10.1016/j.matchemphys.2010.01.034.[16] L. Hao and W. Xiong, “An evaluation of the Mn–Ga system: Phase diagram, crystal structure, magnetism, and thermodynamic properties,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 68, no. December 2019, 2020, doi: 10.1016/j.calphad.2019.101722.[17] A. Talantsev, O. Koplak, and R. Morgunov, “Effect of MnSb clusters recharge on ferromagnetism in GaSb-MnSb thin films,” Superlattices Microstruct., vol. 95, pp. 14–23, Jul. 2016, doi: 10.1016/j.spmi.2016.04.012.[18] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, pp. 1113–1118, 2017, doi: 10.1016/j.apsusc.2016.11.096.[19] R. M. Gutiérrez-Pérez, R. López Antón, K. Załęski, J. T. Holguín-Momaca, F. Espinosa-Magaña, and S. F. Olive-Méndez, “Tailoring magnetization and anisotropy of tetragonal Mn3Ga thin films by strain-induced growth and spin orbit coupling,” Intermetallics, vol. 92, no. September 2017, pp. 20–24, 2018, doi: 10.1016/j.intermet.2017.09.008.[20] L. Fan et al., “Promising spintronics: Mn-based Heusler alloys Mn3Ga, Mn2YGa (Y = V, Nb, Ta), ScMnVGa,” J. Magn. Magn. Mater., no. March, 2019, doi: 10.1016/j.jmmm.2019.166060.[21] W. Liu, P. K. J. Wong, and Y. Xu, “Hybrid spintronic materials: Growth, structure and properties,” Prog. Mater. Sci., vol. 99, no. February 2018, pp. 27–105, 2019, doi: 10.1016/j.pmatsci.2018.08.001.[22] A. Lahiri, N. Borisenko, M. Olschewski, R. Gustus, J. Zahlbach, and F. Endres, “Electroless Deposition of III-V Semiconductor Nanostructures from Ionic Liquids at Room Temperature,” Angew. Chemie - Int. Ed., vol. 54, no. 40, pp. 11870–11874, 2015, doi: 10.1002/anie.201504764.[23] K. Sato and E. Saitoh, Spintronics for Next Generation. 2015.[24] B. C. Johnson, J. C. McCallum, and M. J. Aziz, Handbook of Crystal Growth: Thin Films and Epitaxy, vol. 3. 2015.[25] H. L. Li et al., “Sonochemical preparation of GaSb nanoparticles,” Inorg. Chem., vol. 41, no. 4, pp. 637–639, 2002, doi: 10.1021/ic015616j.[26] B. D. McCombe et al., “Novel ferromagnetism in digital GaAs/Mn and GaSb/Mn alloys,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 16, no. 1, pp. 90–98, 2003.[27] G. I. Boishin, J. M. Sullivan, and L. J. Whitman, “Structure of GaSb digitally doped with Mn,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 71, no. 19, pp. 0–4, 2005, doi: 10.1103/PhysRevB.71.193307.[28] G. B. Kim, M. Cheon, S. Wang, H. Luo, and B. D. McCombe, “Magnetic and electrical properties of random and digital alloys of GaSb:Mn,” J. Supercond. Nov. Magn., vol. 18, no. 1, pp. 87–92, 2005, doi: 10.1007/s10948-005-2156-6.[29] J. A. Calderón, F. Mesa, A. Dussan, R. González-Hernandez, and J. G. Ramirez, “The effect of Mn2Sb2 and Mn2Sb secondary phases on magnetism in (GaMn)Sb thin films,” PLoS One, vol. 15, no. 4, pp. 1–10, 2020, doi: 10.1371/journal.pone.0231538.[30] H. P. Quiroz, J. A. Calderón, and A. Dussan, “Micro-structural and morphological properties and magnetic behavior of GaΛSb (Λ = Mn, Ni) nanostructured thin films by magnetron co-sputtering,” J. Magn. Magn. Mater., vol. 497, no. May 2019, p. 165942, 2020, doi: 10.1016/j.jmmm.2019.165942.[31] J. A. Calderón Cómbita, “Estudio de las propiedades Ópticas y eléctricas del compuesto Ga1-xMnxSb usado para aplicaciones en espintrónica,” p. 134, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/55516/.[32] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, pp. 1113–1118, Feb. 2017, doi: 10.1016/j.apsusc.2016.11.096.[33] L. Vásquez, “Medida del Espesor y Análisis de la Rugosidad,” in Láminas delgadas y Recubrimientos: Preparación, propiedades y aplicaciones, Primera., J. M. Albella, Ed. Consejo Superior de Investigaciones Científicas, 2003, pp. 337–363.[34] J. Maslar, W. Hurst, and C. A. Wang, “Raman spectroscopy of n-type and p-type GaSb with multiple excitation wavelengths,” Appl. Spectrosc., vol. 61, no. 10, pp. 1093–1102, 2007, doi: 10.1366/000370207782217789.[35] X. Zhou et al., “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–6, 2011, doi: 10.1007/s11671-010-9739-2.[36] G. Yang, F. Zhu, and S. Dong, “Fabrication of ferromagnetic GaMnSb by thermal diffusion of evaporated Mn,” Journal of Crystal Growth, vol. 316, no. 1, North-Holland, pp. 145–148, 01-Feb-2011.[37] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, 2017, doi: 10.1016/j.apsusc.2016.11.096.[38] G. Yang, F. Zhu, and S. Dong, “Fabrication of ferromagnetic GaMnSb by thermal diffusion of evaporated Mn,” J. Cryst. Growth, vol. 316, no. 1, pp. 145–148, Feb. 2011, doi: 10.1016/j.jcrysgro.2010.12.022.[39] A. I. Dmitriev, A. D. Talantsev, O. V. Koplak, and R. B. Morgunov, “Magnetic fluctuations sorted by magnetic field in MnSb clusters embedded in GaMnSb thin films,” Journal of Applied Physics, vol. 119, no. 7, 2016.[40] A. I. Dmitriev and A. A. Filatov, “Effect of the Magnetic Anisotropy Energy Distribution of MnSb Clusters on Spontaneous Magnetization Reversal of GaMnSb Thin Films,” vol. 58, no. 10, pp. 2005–2010, 2016, doi: 10.1134/S1063783416100127.[41] X. Chen et al., “Above-room-temperature ferromagnetism in GaSb/Mn digital alloys,” Appl. Phys. Lett., vol. 81, no. 3, pp. 511–513, 2002, doi: 10.1063/1.1481184.[42] G. I. Boishin, J. M. Sullivan, and L. J. Whitman, “Structure of GaSb digitally doped with Mn,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 71, no. 19, pp. 1–4, 2005, doi: 10.1103/PhysRevB.71.193307.[43] H. Bracht, S. P. Nicols, W. Walukiewicz, J. P. Silveira, and F. Briones, “Large disparity between gallium and antimony self-diffusion in gallium antimonide,” vol. 408, no. November, pp. 1–4, 2000.[44] H. A. Tahini, A. Chroneos, H. Bracht, S. T. Murphy, R. W. Grimes, and U. Schwingenschlögl, “Antisites and anisotropic diffusion in GaAs and GaSb,” Appl. Phys. Lett., vol. 103, no. 14, pp. 1–5, 2013, doi: 10.1063/1.4824126.[45] Springer Handbook of Electronic and Photonic Materials. 2007.[46] A. Chroneos and H. Bracht, “Concentration of intrinsic defects and self-diffusion in GaSb,” J. Appl. Phys., vol. 104, no. 9, 2008, doi: 10.1063/1.3010300.[47] R. W. Balluffi, S. M. Allen, and W. C. Carter, Kinetics of Materials, no. 1. 2005.[48] D. Wbiler and H. Mehrer, “Self-diffusion of gallium and antimony in GaSb,” Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., vol. 49, no. 2, pp. 309–325, 1984, doi: 10.1080/01418618408234931.[49] B. Namnuan, K. Yoodee, and S. Chatraphorn, “Probing diffusion of In and Ga in CuInSe2/CuGaSe2 bilayer thin films by x-ray diffraction,” J. Cryst. Growth, vol. 432, pp. 24–32, 2015, doi: 10.1016/j.jcrysgro.2015.09.010.[50] A. Paul and S. Divinski, Handbook of Solid State Diffusion, First edit., vol. 2. Elsevier Inc., 2017.[51] R. Jakiela, K. Gas, M. Sawicki, and A. Barcz, “Diffusion of Mn in gallium nitride: Experiment and modelling,” J. Alloys Compd., vol. 771, pp. 215–220, 2019, doi: 10.1016/j.jallcom.2018.08.263.[52] I. S. Yahia, S. AlFaify, F. Yakuphanoglu, S. Chusnutdinow, T. Wojtowicz, and G. Karczewski, “Impedance Spectroscopy of n-CdTe/p-CdMnTe/p-GaAs Diluted Magnetic Diode,” J. Electron. Mater., vol. 44, no. 8, pp. 2768–2772, 2015, doi: 10.1007/s11664-015-3707-7.[53] J. M. Slaughter, W. Weber, G. Güntherodt, and C. M. Falco, “Quantitative Auger and XPS Analysis of Thin Films,” MRS Bulletin, vol. 17, no. 12, pp. 39–45, 1992.[54] J. F. Watts and J. Wolstenholme, An Introduction to surface analysis by XPS and AES, Primera., vol. 1. John Wiley & Sons Ltd., 2015.[55] I. Montero and R. Gago, “Análisis con haces de iones: RBS, ERDA, PIXE, NRA y SIMS,” in Capas Delgadas y Modificación Superficial de Materiales, Consejo Superior de Investigaciones Científicas, 2018, pp. 489–503.[56] A. Michels, C. E. Krill, H. Ehrhardt, R. Birringer, and D. T. Wu, “Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials,” Acta Mater., vol. 47, no. 7, pp. 2143–2152, 1999, doi: 10.1016/S1359-6454(99)00079-8.[57] J. R. Ares, A. Pascual, I. J. Ferrer, and C. Sánchez, “Grain and crystallite size in polycrystalline pyrite thin films,” Thin Solid Films, vol. 480–481, pp. 477–481, 2005, doi: 10.1016/j.tsf.2004.11.064.[58] A. Palmero and J. M. Albella, “Mecanismos de Nucleación y Crecimiento de capas delgadas,” in Capas Delgadas y Modificación Superficial de Materiales, J. M. Albella, Ed. Madrid, España: Consejo Superior de Investigaciones Científicas, 2018, pp. 105–136.[59] A. Krier, M. K. Parry, and D. S. Lanchester, “Optoelectronic properties of gallium antimonide light emitting diodes,” Semicond. Sci. Technol., vol. 6, no. 11, pp. 1066–1071, 1991, doi: 10.1088/0268-1242/6/11/006.[60] Z. Qiao, Y. Sun, W. He, Q. He, and C. Li, “Polycrystalline GaSb thin films grown by co-evaporation,” J. Semicond., vol. 30, no. 3, 2009, doi: 10.1088/1674-4926/30/3/033004.[61] S. Basu and T. Adhikari, “Variation of band gap with Mn concentration in Ga1-xMnxSb - A new III-V diluted magnetic semiconductor,” Solid State Commun., vol. 95, no. 1, pp. 53–55, 1995, doi: 10.1016/0038-1098(95)00160-3.[62] L. Patrick, “Antiferromagnetism of manganese,” Phys. Rev., vol. 93, no. 3, p. 370, 1954, doi: 10.1103/PhysRev.93.370.[63] J. S. Kasper and B. W. Roberts, “Antiferromagnetic structure of α-manganese and a magnetic structure study of β-manganese,” Phys. Rev., vol. 101, no. 2, pp. 537–544, 1956, doi: 10.1103/PhysRev.101.537.[64] A. C. Lawson et al., “Magnetic and crystallographic order in α-manganese,” J. Appl. Phys., vol. 76, no. 10, pp. 7049–7051, 1994, doi: 10.1063/1.358024.[65] T. Sahu, S. K. Nayak, and R. N. Acharya, “Diamagnetic and Dielectric Susceptibilities of AlSb and GaSb,” Phys. Status Solidi, vol. 178, no. 2, pp. 343–351, 1993, doi: 10.1002/pssb.2221780211.[66] A. E. Taylor et al., “Influence of interstitial Mn on magnetism in the room-temperature ferromagnet Mn1+δSb,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 91, no. 22, p. 224418, Jun. 2015, doi: 10.1103/PhysRevB.91.224418.[67] E. Lu, D. C. Ingram, A. R. Smith, J. W. Knepper, and F. Y. Yang, “Reconstruction control of magnetic properties during epitaxial growth of ferromagnetic Mn3-δGa on wurtzite GaN(0001),” Phys. Rev. Lett., vol. 97, no. 14, pp. 1–4, 2006, doi: 10.1103/PhysRevLett.97.146101.[68] S. N. Sofronova, N. V. Kazak, E. V. Eremin, E. M. Moshkina, A. V. Chernyshov, and A. F. Bovina, “Magnetization reversal and sign reversal exchange bias field in polycrystalline Ni5.33Ta0.67B2O10,” J. Alloys Compd., vol. 864, p. 158200, 2021, doi: 10.1016/j.jallcom.2020.158200.[69] A. G. Kolesnikov et al., “Magnetic properties and the interfacial Dzyaloshinskii-Moriya interaction in exchange biased Pt/Co/NixOy films,” Appl. Surf. Sci., vol. 543, no. November 2020, p. 148720, 2021, doi: 10.1016/j.apsusc.2020.148720.[70] P. Sharma, S. K. Srivastav, and R. Chatterjee, “Evidence of two dimensional dilute antiferromagnet mediated exchange bias field and vertical shift in LaFeO3-NiO nanocomposite,” J. Magn. Magn. Mater., vol. 523, no. August 2020, p. 167619, 2021, doi: 10.1016/j.jmmm.2020.167619.[71] W. B. Cui et al., “Cooling-field dependence of exchange bias in Mg-diluted Ni1-xMgxO/Ni granular systems,” J. Magn. Magn. Mater., vol. 321, no. 13, pp. 1943–1946, 2009, doi: 10.1016/j.jmmm.2008.12.016.[72] H. P. Quiroz Gaitán, “Estudio de las propiedades físicas del TiO 2 : Co como un semiconductor magnético diluido para aplicaciones en espintrónica,” Universidad Nacional de Colombia, 2019.[73] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv., vol. 4, no. 10, pp. 0–22, 2014, doi: 10.1063/1.4899186.[74] J. De Clercq, J. Leliaert, and B. Van Waeyenberge, “Modelling compensated antiferromagnetic interfaces with MuMax 3 Supplementary Material 1 Implementation of a compensated AFM/FM interface in MuMax 3,” vol. 2, no. 1, pp. 1–10, [Online]. Available: http://mumax.github.io/api.html.[75] J. De Clercq, J. Leliaert, and B. Van Waeyenberge, “Modelling compensated antiferromagnetic interfaces with MuMax3,” arXiv, 2017.[76] O. Koplak et al., “Spin filtering on the MnSb cluster interface in GaSbMn thin films,” Solid State Phenom., vol. 233–234, pp. 643–647, 2015, doi: 10.4028/www.scientific.net/SSP.233-234.643.[77] M. D. Kuz’min, K. P. Skokov, L. V. B. Diop, I. A. Radulov, and O. Gutfleisch, “Exchange stiffness of ferromagnets,” Eur. Phys. J. Plus, vol. 135, no. 3, 2020, doi: 10.1140/epjp/s13360-020-00294-y.[78] H. Lee et al., “2017 - Interlayer exchange coupling in MBE-grown GaMnAs-based multilayer.pdf,” J. Cryst. Growth, vol. 477, pp. 188–192, 2017.[79] Z. Kurant, M. Tekielak, I. Sveklo, A. Wawro, and A. Maziewski, “Interlayer coupling-driven magnetic ordering and magnetization processes in ultrathin Au/Co/Mo/Co/Au film,” Journal of Magnetism and Magnetic Materials, vol. 475, no. December 2018, Elsevier B.V., pp. 683–694, 2019.[80] H. P. Quiroz Gaitán, J. A. Calderón Cómbita, and A. Dussán Cuenca, Nanomateriales que revolucionan la tecnología Perspectivas y aplicaciones en espintrónica, Primera Ed. Bogotá D.C., Colombia: Universidad Nacional de Colombia, 2020.[81] I. Ammar, N. Sfina, and M. Fnaiech, “Optical gain and threshold current density for mid-infrared GaSbBi/GaSb quantum-well laser structure,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 266, no. August 2020, p. 115056, 2021, doi: 10.1016/j.mseb.2021.115056.[82] Zon et al., “Investigation of hybrid InSb and GaSb quantum nanostructures,” Microelectron. Eng., vol. 237, no. September 2020, p. 111494, 2021, doi: 10.1016/j.mee.2020.111494.[83] B. Kochman et al., “Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron., vol. 39, no. 3, pp. 459–467, 2003, doi: 10.1109/JQE.2002.808169.[84] W. H. Lin et al., “High-temperature operation GaSb/GaAs quantum-dot infrared photodetectors,” IEEE Photonics Technol. Lett., vol. 23, no. 2, pp. 106–108, 2011, doi: 10.1109/LPT.2010.2091949.[85] A. Martí et al., “Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell,” Thin Solid Films, vol. 511–512, pp. 638–644, 2006, doi: 10.1016/j.tsf.2005.12.122.[86] C. Chevuntulak et al., “Molecular beam epitaxial growth of interdigitated quantum dots for heterojunction solar cells,” J. Cryst. Growth, vol. 512, no. February, pp. 159–163, 2019, doi: 10.1016/j.jcrysgro.2019.02.031.[87] M. Yang et al., “Electric transmission behavior of self-assembled Cu–W nano multilayers,” Prog. Nat. Sci. Mater. Int., no. February, pp. 1–8, 2020, doi: 10.1016/j.pnsc.2020.11.001.[88] D. Josell, S. H. Brongersma, and Z. Tokei, “Size-dependent resistivity in nanoscale interconnects,” Annu. Rev. Mater. Res., vol. 39, pp. 231–254, 2009, doi: 10.1146/annurev-matsci-082908-145415.[89] F. Zhuge et al., “Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments,” Nanotechnology, vol. 22, no. 27, 2011, doi: 10.1088/0957-4484/22/27/275204.[90] P. C. Lacaze and J.-C. Lacroix, Non-Volatile Memory. Wiley UK, 2014.[91] Z. H. U. Jian-Gang, “Magnetoresistive random access memory: The path to competitiveness and scalability,” Proc. IEEE, vol. 96, no. 11, pp. 1786–1798, 2008, doi: 10.1109/JPROC.2008.2004313.[92] H.-S. P. Wong et al., “Phase change memory,” Proc. IEEE, vol. 98, pp. 2201–2227, 2010.[93] S. Yu and K. Iniewski, Resistive Random Access Memory (RRAM) From Devices to Array Architectures SyntheSiS LectureS on emerging engineering technoLogieS SyntheSiS LectureS on emerging engineering technoLo. 2016.[94] R. L. de Orio et al., “Robust magnetic field-free switching of a perpendicularly magnetized free layer for SOT-MRAM,” Solid. State. Electron., vol. 168, no. November 2019, p. 107730, 2020, doi: 10.1016/j.sse.2019.107730.[95] S. Seo et al., “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 85, no. 23, pp. 5655–5657, 2004, doi: 10.1063/1.1831560.[96] B. J. Choi et al., “Resistive switching mechanism of TiO 2 thin films grown by atomic-layer deposition,” J. Appl. Phys., vol. 98, no. 3, 2005, doi: 10.1063/1.2001146.[97] A. Chen et al., “Non-volatile resistive switching for advanced memory applications,” Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 2005, no. c, pp. 746–749, 2005, doi: 10.1109/iedm.2005.1609461.[98] H. P. Quiroz, J. E. Serrano, and A. Dussan, “Magnetic behavior and conductive wall switching in TiO2 and TiO2:Co self-organized nanotube arrays,” J. Alloys Compd., vol. 825, p. 154006, 2020, doi: 10.1016/j.jallcom.2020.154006.[99] H. P. Quiroz, M. Manso-Silván, A. Dussan, C. Busó-Rogero, P. Prieto, and F. Mesa, “TiO2 and Co multilayer thin films via DC magnetron sputtering at room temperature: Interface properties,” Mater. Charact., vol. 163, no. February, 2020, doi: 10.1016/j.matchar.2020.110293.[100] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Erratum: Electrochemical metallization memories - Fundamentals, applications, prospects (Nanotechnology (2011) 22 (254003)),” Nanotechnology, vol. 22, no. 28, 2011, doi: 10.1088/0957-4484/22/28/289502.[101] Z. Çaldiran, M. Şinoforoʇlu, Ö. Metin, Ş. Aydoʇan, and K. Meral, “Space charge limited current mechanism (SCLC) in the graphene oxide-Fe3O4 nanocomposites/n-Si heterojunctions,” J. Alloys Compd., vol. 631, pp. 261–265, 2015, doi: 10.1016/j.jallcom.2015.01.117.[102] Y. Caglar, M. Caglar, S. Ilican, and F. Yakuphanoglu, “Thermally stimulated current and space charge limited current mechanism in film of the gold/zinc oxide/gold type,” Phys. B Condens. Matter, vol. 392, no. 1–2, pp. 99–103, 2007, doi: 10.1016/j.physb.2006.11.014.[103] H. P. Quiroz, J. A. Calderón, and A. Dussan, “Magnetic switching control in Co/TiO2 bilayer and TiO2:Co thin films for Magnetic-Resistive Random Access Memories (M-RRAM),” J. Alloys Compd., vol. 840, pp. 2–7, 2020, doi: 10.1016/j.jallcom.2020.155674.[104] R. L. Sime and F. Ajzenberg‐Selove, “ Lise Meitner: A Life in Physics ,” Phys. Today, vol. 49, no. 6, pp. 55–58, 1996, doi: 10.1063/1.2807657.[105] O. H. Duparc, L. Meitner, and C. D. Ellis, “Pierre Auger – Lise Meitner :,” vol. 100, 2009.[106] D. Matsakis, A. Coster, B. Laster, and R. Sime, “A renaming proposal: ‘The Auger–Meitner effect,’” Phys. Today, vol. 72, no. 9, pp. 10–11, 2019, doi: 10.1063/pt.3.4281.Universidad Nacional de Colombia - MinCienciasEstudiantesInvestigadoresMaestrosORIGINAL1023863546.2021.pdf1023863546.2021.pdfTesis de Doctorado en Ciencias - Físicaapplication/pdf11029283https://repositorio.unal.edu.co/bitstream/unal/81348/1/1023863546.2021.pdf8fb38548706bdafb27106227c4a3e58fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81348/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1023863546.2021.pdf.jpg1023863546.2021.pdf.jpgGenerated Thumbnailimage/jpeg5132https://repositorio.unal.edu.co/bitstream/unal/81348/3/1023863546.2021.pdf.jpg266beda30e9e11cec0720168fc184cabMD53unal/81348oai:repositorio.unal.edu.co:unal/813482024-08-05 23:10:13.651Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK