Producción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnética
ilustraciones, diagramas, fotografías, tablas
- Autores:
-
Morales Carreño, Angie Nataly
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86623
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Nanopartículas Magnéticas de Óxido de Hierro
Calcifying Nanoparticles
MATERIALES DE NANOESTRUCTURAS
NANOPARTICULAS
Nanostructure materials
Nanoparticles
Hipertermia magnética
Nanopartículas magnéticas
Nanoestructuras
Descomposición térmica
Modificación superficial
Magnetic hyperthermia
Magnetic nanoparticles
Nanostructures
Thermal decomposition
Surface modification
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_37c59aa7d40c5fe5033bbdd59e7830cf |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86623 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Producción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnética |
dc.title.translated.eng.fl_str_mv |
Production of iron oxide-based nanoheterostructures for applications in magnetic hyperthermia therapy |
title |
Producción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnética |
spellingShingle |
Producción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnética 620 - Ingeniería y operaciones afines Nanopartículas Magnéticas de Óxido de Hierro Calcifying Nanoparticles MATERIALES DE NANOESTRUCTURAS NANOPARTICULAS Nanostructure materials Nanoparticles Hipertermia magnética Nanopartículas magnéticas Nanoestructuras Descomposición térmica Modificación superficial Magnetic hyperthermia Magnetic nanoparticles Nanostructures Thermal decomposition Surface modification |
title_short |
Producción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnética |
title_full |
Producción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnética |
title_fullStr |
Producción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnética |
title_full_unstemmed |
Producción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnética |
title_sort |
Producción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnética |
dc.creator.fl_str_mv |
Morales Carreño, Angie Nataly |
dc.contributor.advisor.none.fl_str_mv |
Cadavid Rodríguez, Doris Yaneth García Fernández, Leonardo |
dc.contributor.author.none.fl_str_mv |
Morales Carreño, Angie Nataly |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Física de Nuevos Materiales |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Nanopartículas Magnéticas de Óxido de Hierro Calcifying Nanoparticles MATERIALES DE NANOESTRUCTURAS NANOPARTICULAS Nanostructure materials Nanoparticles Hipertermia magnética Nanopartículas magnéticas Nanoestructuras Descomposición térmica Modificación superficial Magnetic hyperthermia Magnetic nanoparticles Nanostructures Thermal decomposition Surface modification |
dc.subject.decs.spa.fl_str_mv |
Nanopartículas Magnéticas de Óxido de Hierro |
dc.subject.decs.eng.fl_str_mv |
Calcifying Nanoparticles |
dc.subject.lemb.spa.fl_str_mv |
MATERIALES DE NANOESTRUCTURAS NANOPARTICULAS |
dc.subject.lemb.eng.fl_str_mv |
Nanostructure materials Nanoparticles |
dc.subject.proposal.spa.fl_str_mv |
Hipertermia magnética Nanopartículas magnéticas Nanoestructuras Descomposición térmica Modificación superficial |
dc.subject.proposal.eng.fl_str_mv |
Magnetic hyperthermia Magnetic nanoparticles Nanostructures Thermal decomposition Surface modification |
description |
ilustraciones, diagramas, fotografías, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-25T20:02:39Z |
dc.date.available.none.fl_str_mv |
2024-07-25T20:02:39Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86623 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86623 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Mozhdeh Peiravi, Hossein Eslami, Mojtaba Ansari, and Hadi Zare-Zardini. Magnetic hyperthermia: Potentials and limitations, volume 99, page 100269. Elsevier, 2022. Daniel Ortega and Quentin A Pankhurst. Magnetic hyperthermia, pages 60–88. The Royal Society of Chemistry, 2012. Sandeep B Somvanshi, Swapnil A Jadhav, Sudarshan S Gawali, Kranti Zakde, and KM Jadhav. Core-shell structured superparamagnetic zn-mg ferrite nanoparticles for magnetic hyperthermia applications. Journal of Alloys and Compounds, 947:169574, 2023. Imran Ali, Yunxiang Pan, Yasir Jamil, Aqeel Ahmed Shah, Muhammad Amir, Shamoon Al Islam, Yusra Fazal, Jun Chen, and Zhonghua Shen. Comparison of copper-based cu-ni and cu-fe nanoparticles synthesized via laser ablation for magnetic hyperthermia and antibacterial applications. Physica B: Condensed Matter, 650:414503, 2023. Jae-Hyun Lee, Jung-tak Jang, Jin-sil Choi, Seung Ho Moon, Seung-hyun Noh, Ji-wookKim, Jin-Gyu Kim, Il-Sun Kim, Kook In Park, and Jinwoo Cheon. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature nanotechnology, 6(7):418– 422, 2011. Konstantina Kazeli, Aliki Athanasiadou, Antonis Makridis, Lamprini Malletzidou,George Vourlias, Eleana Kontonasaki, Evgenia Lymperaki, and M Angelakeris. Synthesis and characterization of a novel multifunctional magnetic bioceramic nanocomposite. Ceramics International, 2023. Sandeep B Somvanshi, Prashant B Kharat, and KM Jadhav. Surface functionalized superparamagnetic zn-mg ferrite nanoparticles for magnetic hyperthermia application towards noninvasive cancer treatment. In Macromolecular symposia, volume 400, page 2100124. Wiley Online Library, 2021. Xinglong Zhu, Tiantian Ren, Pushan Guo, Lijing Yang, Yixuan Shi, Wensheng Sun, and Zhenlun Song. Strengthening mechanism and biocompatibility of degradable zn-mn alloy with different mn content. Materials Today Communications, 31:103639, 2022. M Deepty, Ch Srinivas, N Krishna Mohan, E Ranjith Kumar, Surendra Singh, Sher Singh Meena, Pramod Bhatt, and DL Sastry. Chemical synthesis of mn–zn magnetic ferrite nanoparticles: Effect of secondary phase on extrinsic magnetic properties of mn–zn ferrite nanoparticles. Ceramics International, 2024. Ravikant Choubey, Dipankar Das, Samrat Mukherjee, et al. Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite. Journal of Alloys and Compounds, 668:33–39, 2016. Hyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjo-mataram, Ahmedin Jemal, and Freddie Bray. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3):209–249, 2021. Frederick L Moffat, Rudolf E Falk, David Laingw, Alfred S Ketcham, and Judith A Falk. Hyperthermia for cancer: a practical perspective. In Seminars in surgical oncology, volume 1, pages 200 219. Wiley Online Library, 1985. Liliane De La Caridad Beola Guibert, Lucía Gutiérrez Marruedo, and Valeria Grazú Bonavia. Hipertermia magnética basada en nanopartículas de óxido de hierro como terapia antitumoral: del cultivo celular tridimensional al modelo in vivo. Swati Kaushik, Jijo Thomas, Vineeta Panwar, Hasan Ali, Vianni Chopra, Anjana Sharma, Ruchi Tomar, and Deepa Ghosh. In situ biosynthesized superparamagnetic iron oxide nanoparticles (spions) induce efficient hyperthermia in cancer cells. ACS Applied Bio Materials, 3(2):779–788, 2020. Ganeshlenin Kandasamy, Atul Sudame, Tania Luthra, Kalawati Saini, and Dipak Maity. Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS omega, 3(4):39914005, 2018. Saeed Shanehsazzadeh, Afsaneh Lahooti, Mohammad Javad Hajipour, Mahdi Ghavami, and Morteza Azhdarzadeh. External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. Colloids and Surfaces B: Biointerfaces,136:1107–1112, 2015. Irene Rubia-Rodríguez, Antonio Santana-Otero, Simo Spassov, Etelka Tombácz, Christer Johansson, Patricia De La Presa, Francisco J Teran, María del Puerto Morales, Sabino Veintemillas-Verdaguer, Nguyen TK Thanh, et al. Whither magnetic hyperthermia? a tentative roadmap. Materials, 14(4):706, 2021. Irene Rubia-Rodríguez, Antonio Santana-Otero, Simo Spassov, Etelka Tombácz, Christer Johansson, Patricia De La Presa, Francisco J Teran, María del Puerto Morales, Sabino Veintemillas-Verdaguer, Nguyen TK Thanh, et al. Whither magnetic hyperthermia? a tentative roadmap. Materials, 14(4):706, 2021. Yijue Wang, Liqing Zou, Zhe Qiang, Jianhai Jiang, Zhengfei Zhu, and Jie Ren. Enhancing targeted cancer treatment by combining hyperthermia and radiotherapy using mn zn ferrite magnetic nanoparticles. ACS Biomaterials Science & Engineering, 6(6):35503562, 2020. Qi Ding, Dongfang Liu, Dawei Guo, Fang Yang, Xingyun Pang, Renchao Che, Naizhen Zhou, Jun Xie, Jianfei Sun, Zhihai Huang, et al. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials, 124:35–46, 2017. Robert Vajtai. Springer handbook of nanomaterials. Springer Science & Business Media, 2013. Muhammad Sajid. Nanomaterials: types, properties, recent advances, and toxicity concerns. Current Opinion in Environmental Science & Health, 25:100319, 2022. Shiza Malik, Khalid Muhammad, and Yasir Waheed. Nanotechnology: A revolution in modern industry. Molecules, 28(2):661, 2023. Shiza Malik, Khalid Muhammad, and Yasir Waheed. Nanotechnology: A revolution in modern industry. Molecules, 28(2):661, 2023. Alexander Hinderhofer and Frank Schreiber. Organic–organic heterostructures: Concepts and applications. ChemPhysChem, 13(3):628–643, 2012. Jin-Ho Choy, Seung-Min Paek, Jae-Min Oh, and Eue-Soon Jang. Intercalative route to heterostructured nanohybrids. Current Applied Physics, 2(6):489–495, 2002. Alessandra Quarta, Clara Piccirillo, Giacomo Mandriota, and Riccardo Di Corato. Nanoheterostructures (nhs) and their applications in nanomedicine: focusing on in vivo studies. Materials, 12(1):139, 2019. Ingrid Hilger and Werner A Kaiser. Iron oxide-based nanostructures for mri and magnetic hyperthermia. Nanomedicine, 7(9):1443–1459, 2012. Agnieszka Włodarczyk, Szymon Gorgoń, Adrian Radoń, and Karolina Bajdak-Rusinek. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: Challenges and perspectives. Nanomaterials, 12(11):1807, 2022. Boris I Kharisov, HV Rasika Dias, and Oxana V Kharissova. Mini-review: Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry, 12(7):1234–1246, 2019. Dina Tobia. Efectos de superficie e interacción de intercambio en nanopartículas magnéticas. PhD thesis, Universidad Nacional de Cuyo, 2011. Daliya S Mathew and Ruey-Shin Juang. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical engineering journal, 129(13):51–65, 2007. Gabriel C Lavorato. Nanopartículas magnéticas multicomponentes: diseño, fabricación y propiedades. PhD thesis, Universidad Nacional de Cuyo, 2016. Adriele A de Almeida. Hipertermia de fluido magnético en nanopartículas de ferritas de zinc y manganeso: el mecanismo de relajación dominante. PhD thesis, Universidad Nacional de Cuyo, 2021. Xiaoguang Pan, Aimin Sun, Yingqiang Han, Wei Zhang, and Xiqian Zhao. Structural and magnetic properties of Bi 3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustion method. Journal of Materials Science: Materials in Electronics, 30:4644–4657, 2019. Ali Dabbagh, Basri Johan Jeet Abdullah, Hadijah Abdullah, Mohd Hamdi, and Noor Hayaty Abu Kasim. Triggering mechanisms of thermosensitive nanoparticles under hyperthermia condition. Journal of Pharmaceutical Sciences, 104(8):2414–2428, 2015. Bernard Dennis Cullity and Chad D Graham. Introduction to magnetic materials. John Wiley & Sons, 2011. Alejandro Otero Vázquez et al. Magnetismo e hipertermia: modelos para nanopartículas magnéticas. 2023. M Knobel, LM Socolovsky, and JM Vargas. Propiedades magnéticas y de transporte de sistemas nanocristalinos: conceptos básicos y aplicaciones a sistemas reales. Revista mexicana de física, 50(En1):8–28, 2004. H Mamiya, M Ohnuma, I Nakatani, and T Furubayashim. Extraction of blocking temperature distribution from zero-field-cooled and field-cooled magnetization curves. IEEE Transactions on Magnetics, 41(10):3394–3396, 2005. Daniela Paola Valdés. Modelando el efecto de las interacciones dipolares en cadenas de nanopartículas para hipertermia magnética. PhD thesis, Universidad Nacional de Cuyo, 2018. Mary L Mojica Pisciotti. Desarrollo de nanopartículas magnéticas para su utilización en el tratamiento médico: Hipertermia. PhD thesis, Universidad Nacional de Cuyo, 2015. German Yovanny Velez Catillo. Estudio teórico y experimental sobre la relajación de Néel en ensambles de partículas magnéticas interactuantes. 2019. Albert P Philipse. Brownian motion. Undergraduate lecture notes in physics, 2018. Peter Josef William Debye. Polar molecules, 1929. Aleksey A Nikitin, Anna V Ivanova, Alevtina S Semkina, Polina A Lazareva, and Maxim A Abakumov. Magneto-mechanical approach in biomedicine: Benefits, challenges, and future perspectives. International Journal of Molecular Sciences, 23(19):11134, 2022. Ronald E Rosensweig. Heating magnetic fluid with alternating magnetic field. Journal of magnetism and magnetic materials, 252:370–374, 2002. Costica Caizer. Optimization study on specific loss power in superparamagnetic hyperthermia with magnetite nanoparticles for high efficiency in alternative cancer therapy. Nanomaterials, 11(1):40, 2020. [60] M Osaci and M Cacciola. Specific loss power in superparamagnetic hyperthermia: nano fluid versus composite. In IOP Conference Series: Materials Science and Engineering, volume 163, page 012008. IOP Publishing, 2017. Frederik Soetaert, Sri Kamal Kandala, Andris Bakuzis, and Robert Ivkov. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Scientific reports, 7(1):6661, 2017. Debora Bonvin, Duncan TL Alexander, Angel Millán, Rafael Piñol, Beatriz Sanz, Gerardo F Goya, Abelardo Martínez, Jessica AM Bastiaansen, Matthias Stuber, Kurt J Schenk, et al. Tuning properties of iron oxide nanoparticles in aqueous synthesis without ligands to improve mri relaxivity and sar. Nanomaterials, 7(8):225, 2017. Jean-Paul Fortin, Claire Wilhelm, Jacques Servais, Christine Ménager, Jean-Claude Bacri, and Florence Gazeau. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the american chemical society, 129(9):2628–2635, 2007. Chetna Dhand, Neeraj Dwivedi, Xian Jun Loh, Alice Ng Jie Ying, Navin Kumar Verma, Roger W Beuerman, Rajamani Lakshminarayanan, and Seeram Ramakrishna. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. Rsc Advances, 5(127):105003–105037, 2015. Young-wook Jun, Jung-wook Seo, and Jinwoo Cheon. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Accounts of chemical research, 41(2):179–189, 2008. Omar Messaoudi and Mourad Bendahou. Biological synthesis of nanoparticles using endophytic microorganisms: Current development. Nanotechnology and the Environment, 2020. Fumie Hirosawa, Tomohiro Iwasaki, and Satoru Watano. Synthesis and magnetic induction heating properties of gd-substituted mg–zn ferrite nanoparticles. Applied Nanoscience, 7:209–214, 2017. Gennaro Sanità, Barbara Carrese, and Annalisa Lamberti. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Frontiers in molecular biosciences, 7:587012, 2020. Reisa A Sperling and Wolfgang J Parak. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1915):1333–1383, 2010. Hendrik Heinz, Chandrani Pramanik, Ozge Heinz, Yifu Ding, Ratan K Mishra, Delphine Marchon, Robert J Flatt, Irina Estrela-Lopis, Jordi Llop, Sergio Moya, et al. Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surface Science Reports, 72(1):1–58, 2017. Liel Sapir, Christopher B Stanley, and Daniel Harries. Properties of polyvinylpyrrolidone in a deep eutectic solvent. The Journal of Physical Chemistry A, 120(19):3253–3259, 2016. Thomas Vangijzegem, Valentin Lecomte, Indiana Ternad, Levy Van Leuven, Robert N Muller, Dimitri Stanicki, and Sophie Laurent. Superparamagnetic iron oxide nanoparticles (spion): from fundamentals to state-of-the-art innovative applications for cancer therapy. Pharmaceutics, 15(1):236, 2023. Roy N Dsouza, Uwe Pischel, and Werner M Nau. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chemical reviews, 111(12):7941–7980, 2011. Alina A Kokorina, Andrei V Sapelkin, Gleb B Sukhorukov, and Irina Yu Goryacheva. Luminescent carbon nanoparticles separation and purification. Advances in colloid and interface science, 274:102043, 2019. Helena Gavilán, Giusy MR Rizzo, Niccolò Silvestri, Binh T Mai, and Teresa Pellegrino. Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications. Nature Protocols, 18(3):783–809, 2023. Doris Cadavid. Towards high performance nanostructured thermoelectric materials. a bottom-up approach. 2014. Pablo Guardia, Riccardo Di Corato, Lenaic Lartigue, Claire Wilhelm, Ana Espinosa, Mar Garcia-Hernandez, Florence Gazeau, Liberato Manna, and Teresa Pellegrino. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS nano, 6(4):3080–3091, 2012. Ritchie Chen, Michael G Christiansen, and Polina Anikeeva. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS nano, 7(10):8990–9000, 2013. Dongguo Li, Chao Wang, Dusan Tripkovic, Shouheng Sun, Nenad M Markovic, and Vojislav R Stamenkovic. Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. Acs Catalysis, 2(7):1358–1362, 2012. Le Thi Tam, Vu Ngoc Phan, Hoang Lan, Nguyen Thanh Thuy, Tran Minh Hien, Tran Quang Huy, Nguyen Van Quy, Huynh Dang Chinh, Le Minh Tung, Pham Anh Tuan, et al. Characterization and antimicrobial activity of silver nanoparticles prepared by a thermal decomposition technique. Applied Physics A, 113:613–621, 2013. Instituto de Tecnología Nuclear Dan Beninson de la Comisión Nacional de Energía Atómica. Dosimetría en la Radioterapia . https://www.famaf.unc.edu.ar/ pperez1/manuales/cdr/tubos-de-rayos-x.html, 2018. Alfredo Sanz Hervás. Desarrollo de un modelo teórico para la interpretación de difractogramas de rayos x de alta resolución. phd, ETSI Telecomunicación (UPM), 1995. Andreas Maier, Stefan Steidl, Vincent Christlein, and Joachim Hornegger. Medical imaging systems: An introductory guide. 2018. Carmelo Giacovazzo. Fundamentals of crystallography, volume 7. Oxford university press, USA, 2002. Mohsin Raza. Oxygen vacancy stabilized zirconia; synthesis and properties. PhD thesis, Ph. D. Thesis, 2017. Michael Dunlap and JE Adaskaveg. Introduction to the scanning electron microscope. Theory, practice, & procedures. Facility for Advance Instrumentation. UC Davis, 52, 1997. Furqan A Shah, Krisztina Ruscsák, and Anders Palmquist. 50 years of scanning electron microscopy of bone—a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone research, 7(1):15, 2019. Mario M Modena, Bastian Rühle, Thomas P Burg, and Stefan Wuttke. Nanoparticle characterization: what to measure? Advanced Materials, 31(32):1901556, 2019. Transmission Electron Microscopy | Nanoscience Instruments. Marc De Graef. Introduction to conventional transmission electron microscopy. Cam-bridge university press, 2003. Ahmed Fadlelmoula, Diana Pinho, Vitor Hugo Carvalho, Susana O Catarino, and Graça Minas. Fourier transform infrared (ftir) spectroscopy to analyse human blood over the last 20 years: a review towards lab-on-a-chip devices. Micromachines, 13(2):187, 2022. Fisher Thermo. Ftir basic organic functional group reference chart, 2015. 15/01/2023. Josep Francesc Ventura Gayete et al. Desarrollo de métodos analíticos medioambientalmente sostenibles por espectrometría ftir. 2007. Clara Téllez Mesa. Aplicaciones de la espectroscopía infrarroja en el análisis de alimentos. 2019. Tony Owen. Fundamentos de la espectroscopía UV-visible moderna: conceptos básicos. Hewlett Packard, 1996. Govinda Verma and Manish Mishra. Development and optimization of uv-vis spectroscopy-a review. World J. Pharm. Res, 7(11):1170–1180, 2018. File:Schematic of UV- visible spectrophotometer.png - Wikimedia Commons, 9 2013. Javier Alonso Cuervo Farfán. Producción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX (R= La, Nd, Sm, Eu; A= Sr, Bi; M= Ti, Mn, Fe). PhD thesis, Universidad Nacional de Colombia. Quantum Design Latin America. PPMS VersaLab. https://www.qd-latam.com/ site/en/products/company/quantum-design/ppms-versalab/. Accessed: 2024-1-24. Vikas Nandwana and Vinayak P Dravid. Multicomponent magnetic spinels: From complexity of crystal chemistry to coupled magnetic resonance imaging (mri). APL Materials, 11(5), 2023. E Hema, A Manikandan, M Gayathri, M Durka, S Arul Antony, and BR Venkatraman. The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles. Journal of nanoscience and nanotechnology, 16(6):5929–5943, 2016. Alexander LeBrun and Liang Zhu*. Magnetic nanoparticle hyperthermia in cancer treatment: History, mechanism, imaging-assisted protocol design, and challenges. Theory and Applications of Heat Transfer in Humans, 2:631–667, 2018. Andrei Stanislavovich Vorokh. Scherrer formula: estimation of error in determining small nanoparticle size. Nanosystems: physics, chemistry, mathematics, 9(3):364–369, 2018. Sergei A Degterov, Arthur D Pelton, Evgueni Jak, and Peter C Hayes. Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system. Metallurgical and Materials Transactions B, 32:643–657, 2001. Marco A Morales Ovalle. Optimización del tamaño de nanopartículas magnéticas de MnFe2O4 para aplicaciones conjuntas de hipertermia y producción de radicales libres en terapias oncológicas. PhD thesis, Universidad Nacional de Cuyo, 2021. Young-Shin Jun, Yaguang Zhu, Ying Wang, Deoukchen Ghim, Xuanhao Wu, Doyoon Kim, and Haesung Jung. Classical and nonclassical nucleation and growth mechanisms for nanoparticle formation. Annual Review of Physical Chemistry, 73:453–477, 2022. Nicola Pinna and Markus Niederberger. Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angewandte Chemie International Edition, 47(29):5292–5304, 2008. AV Nikam, BLV Prasad, and AA Kulkarni. Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm, 20(35):5091–5107, 2018. Samson O Aisida, Paul A Akpa, Ishaq Ahmad, M Maaza, and Fabian I Ezema. Influence of pva, pvp and peg doping on the optical, structural, morphological and magnetic properties of zinc ferrite nanoparticles produced by thermal method. Physica B: Condensed Matter, 571:130–136, 2019. Pablo Guardia, Nicolás Pérez, Amilcar Labarta, and Xavier Batlle. Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir, 26(8):5843–5847, 2010. Sudeep Shukla, Alka Jadaun, Vikas Arora, Raj Kumar Sinha, Neha Biyani, and VK Jain. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicology reports, 2:27–39, 2015. IA Safo, M Werheid, C Dosche, and M Oezaslan. The role of polyvinylpyrrolidone (pvp) as a capping and structure-directing agent in the formation of pt nanocubes. Nanoscale Advances, 1(8):3095–3106, 2019. Mirela Teodorescu, Maria Bercea, and Simona Morariu. Biomaterials of pva and pvp in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology advances, 37(1):109–131, 2019. Enling Hu, Songmin Shang, and Ka-Lok Chiu. Removal of reactive dyes in textile effluents by catalytic ozonation pursuing on-site effluent recycling. Molecules, 24(15):2755, 2019. Xiaoming Zhang, Zewei Quan, Jun Yang, Piaoping Yang, Hongzhou Lian, and Jun Lin. Solvothermal synthesis of well-dispersed mf2 (m= ca, sr, ba) nanocrystals and their optical properties. Nanotechnology, 19(7):075603, 2008. Lyudmila M Bronstein, Xinlei Huang, John Retrum, Abrin Schmucker, Maren Pink, Barry D Stein, and Bogdan Dragnea. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chemistry of materials, 19(15):3624–3632, 2007. VA Niraimathee, V Subha, RS Ernest Ravindran, and S Renganathan. Green synthesis of iron oxide nanoparticles from mimosa pudica root extract. International Journal of Environment and Sustainable Development, 15(3):227–240, 2016. Edwin Shigwenya Madivoli, Patrick Gachoki Kareru, Ernest Gachui Maina, Augustine Otieno Nyabola, Sammy Indire Wanakai, and Jared Onyango Nyang’au. Biosynthesis of iron nanoparticles using ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. SN Applied Sciences, 1:1–11, 2019. Brajesh Kumar, Kumari Smita, Luis Cumbal, and Alexis Debut. Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. Journal of Saudi Chemical Society, 18(4):364–369, 2014. J Tauc, Radu Grigorovici, and Anina Vancu. Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 15(2):627–637, 1966. Pradeep Chavan and LR Naik. Investigation of energy band gap and conduction mechanism of magnesium substituted nickel ferrite nanoparticles. physica status solidi (a), 214(9):1700077, 2017. OG Torres, G Gordillo, MC Plazas, DA Landinez Tellez, and J Roa-Rojas. Optical features of pbbr2 semiconductor thin films for radiation attenuation application. Journal of Materials Science: Materials in Electronics, 32(12):16937–16944, 2021. Donald F Swinehart. The beer-lambert law. Journal of chemical education, 39(7):333, 1962. Sanju Singh, Jaya V Gade, Dakeshwar Kumar Verma, Berdimurodov Elyor, and Bhawana Jain. Exploring zno nanoparticles: Uv–visible analysis and different size estimation methods. Optical Materials, 152:115422, 2024. M Fuentes-Pérez, M Sotelo-Lerma, JL Fuentes-Ríos, Eric G Morales-Espinoza, Manuel Serrano, and ME Nicho. Synthesis and study of physicochemical properties of Fe3O4@znfe2o4 core/shell nanoparticles. Journal of Materials Science: Materials in Electronics, 32(12):16786–16799, 2021. Yuan Zhi-hao, You Wei, Jia Jun-hui, and Zhang Li-de. Optical absorption red shift of capped znfe2o4 nanoparticle. Chinese physics letters, 15(7):535, 1998. Luis I Granone, Anna C Ulpe, Lars Robben, Stephen Klimke, Moritz Jahns, Franz Renz, Thorsten M Gesing, Thomas Bredow, Ralf Dillert, and Detlef W Bahnemann. Effect of the degree of inversion on optical properties of spinel znfe 2 o 4. Physical Chemistry Chemical Physics, 20(44):28267–28278, 2018. P Iranmanesh, S Saeednia, M Mehran, and S Rashidi Dafeh. Modified structural and magnetic properties of nanocrystalline mnfe2o4 by ph in capping agent free co- precipitation method. Journal of Magnetism and Magnetic Materials, 425:31–36, 2017. Somayeh Shams, Zahra Sheibanizadeh, and Zahra Khalaj. Ternary nanocompositeof znfe2o4/α-fe2o3/zno; synthesis via coprecipitation method and physical properties characterization. Applied Physics A, 127(6):459, 2021. Musa Mutlu Can, Yeşim Akbaba, and Satoru Kaneko. Synthesis of iron gallate (fega2o4) nanoparticles by mechanochemical method. Coatings, 12(4):423, 2022. Julian Carrey, Boubker Mehdaoui, and Marc Respaud. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of applied physics, 109(8), 2011. A Manikandan, J Judith Vijaya, M Sundararajan, C Meganathan, L John Kennedy, and M Bououdina. Optical and magnetic properties of mg-doped znfe2o4 nanoparticles prepared by rapid microwave combustion method. Superlattices and Microstructures, 64:118–131, 2013. K Vamvakidis, D Sakellari, M Angelakeris, and C Dendrinou-Samara. Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization. Journal of nanoparticle research, 15:1–11, 2013. Yaser Hadadian, Ana Paula Ramos, and Theo Z Pavan. Role of zinc substitution in magnetic hyperthermia properties of magnetite nanoparticles: Interplay between intrinsic properties and dipolar interactions. Scientific Reports, 9(1):18048, 2019. Sushmitha Lakshminarayanan, M Furhana Shereen, KL Niraimathi, P Brindha, and A Arumugam. One-pot green synthesis of iron oxide nanoparticles from bauhinia to mentosa: Characterization and application towards synthesis of 1, 3 diolein. Scientific Reports, 11(1):8643, 2021. Mary L Mojica Pisciotti. Estudio del proceso de calentamiento de nanopartículas magnéticas con campos magnéticos AC para su utilización en el tratamiento de tumores por hipertermia. PhD thesis, Universidad Nacional de Cuyo, 2009. Mona Ebadi, Saifullah Bullo, Kalaivani Buskara, Mohd Zobir Hussein, Sharida Fakurazi, and Giorgia Pastorin. Release of a liver anticancer drug, sorafenib from its pva/ldh and peg/ldh-coated iron oxide nanoparticles for drug delivery applications. Scientific Reports, 10:21521, 2020. Rusul Al-Obaidy, Adawiya J. Haider, Sharafaldin Al-Musawi, and Norhana Arsad.Targeted delivery of paclitaxel drug using polymer-coated magnetic nanoparticles for fibrosarcoma therapy: in vitro and in vivo studies. Scientific Reports, 13(1):3180, Feb 2023. Mike J Jackson and Bruce Moskowitz. On the distribution of Verwey transition temperatures in natural magnetites. Geophysical Journal International, 224(2):1314–1325, 10 2020. Arijit Mitra, J. Mohapatra, S. S. Meena, C. V. Tomy, and M. Aslam. Verwey transition in ultrasmall-sized octahedral fe3o4 nanoparticles. The Journal of Physical Chemistry C, 118(33):19356–19362, 2014. Sanju Tanwar, VPS Awana, Surinder P Singh, and Renu Pasricha. Magnetic field dependence of blocking temperature in oleic acid functionalized iron oxide nanoparticles. Journal of superconductivity and novel magnetism, 25:2041–2045, 2012. Venkatesha Narayanaswamy, Bilal Rah, Imaddin A Al-Omari, Alexander S Kamzin, Hafsa Khurshid, Jibran Sualeh Muhammad, Ihab M Obaidat, and Bashar Issa. Evaluation of antiproliferative properties of comnzn-fe2o4 ferrite nanoparticles in colorectal cancer cells. Pharmaceuticals, 17(3):327, 2024. C Iacovita, A Florea, L Scorus, E Pall, R Dudric, AI Moldovan, R Stiufiuc, R Tetean, and CM Lucaciu. Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process. nanomaterials 9 (10): 1489, 2019. AS Nikolic, M Boskovic, V Spasojevic, B Jancar, and B Antic. Magnetite/mn-ferrite nanocomposite with improved magnetic properties. Materials Letters, 120:86–89, 2014. Pallab Pradhan, Jyotsnendu Giri, Gopal Samanta, Haladhar Dev Sarma, Kaushala Prasad Mishra, Jayesh Bellare, Rinti Banerjee, and Dhirendra Bahadur. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 81(1):12–22, 2007. Behnam Sabzi Dizajyekan, Arezou Jafari, Mohsen Vafaie-Sefti, Reza Saber, and Zahra Fakhroueian. Preparation of stable colloidal dispersion of surface modified fe3o4 nanoparticles for magnetic heating applications. Scientific Reports, 14(1):1296, 2024. Yohannes Getahun, Ahsan Habib, Valeria Erives-Sedano, Wen-Yee Lee, Wilson Poon, and Ahmed A El-Gendy. Superparamagnetic nanoparticles coated with novel biocompatible materials produced high specific absorption rate in magnetic hyperthermia. Colloids and Surfaces A: Physicochemical and Engineering Aspects, page 134036, 2024. Antonios Makridis, Konstantina Topouridou, Magdalini Tziomaki, Despoina Sakellari, Konstantinos Simeonidis, Mavroeidis Angelakeris, Maria P Yavropoulou, John G Yovos, and Orestis Kalogirou. In vitro application of mn-ferrite nanoparticles as novel magnetic hyperthermia agents. Journal of materials chemistry B, 2(47):8390–8398, 2014. Idoia Castellanos-Rubio, Oihane Arriortua, Lourdes Marcano, Irati Rodrigo, Daniela Iglesias-Rojas, Ander Barón, Ane Olazagoitia-Garmendia, Luca Olivi, Fernando Plazaola, M Luisa Fdez Gubieda, et al. Shaping up zn-doped magnetite nanoparticles from mono-and bimetallic oleates: the impact of zn content, fe vacancies, and morphology on magnetic hyperthermia performance. Chemistry of Materials, 33(9):3139–3154, 2021. Abolfazl Yazdanpanah, Maryam Ghaffari, Zarrin Ahmadi, Amir Babak Abrishamkar, Saem Sattarzadeh, Arash Ramedani, Sahar Arabyazdi, and Fatollah Moztarzadeh. Threatening sarcoma withcombinational therapies: Magnetic hyperthermia using nanoparticles. Nano Select, 2023. Sean Healy, Andris F Bakuzis, Patrick W Goodwill, Anilchandra Attaluri, Jeff WM Bulte, and Robert Ivkov. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechno-logy, 14(3):e1779, 2022. Carlotta Pucci, Andrea Degl’Innocenti, Melike Belenli Gümüş, and Gianni Ciofani. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: Recent advancements, molecular effects, and future directions in the omics era. Biomaterials Science, 10(9):2103–2121, 2022. Muhammad Suleman and Samia Riaz. In silico study of hyperthermia treatment of liver cancer using core-shell cofe2o4@ mnfe2o4 magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 498:166143, 2020. Bo Jia, Hongtao Yang, Yu Han, Zechuan Zhang, Xinhua Qu, Yifu Zhuang, Qiang Wu, Yufeng Zheng, and Kerong Dai. In vitro and in vivo studies of zn-mn biodegradable metals designed orthopedic applications. Acta Biomaterialia, 108:358–372, 2020. Derk Joester, Andrew Hillier, Yi Zhang, and Ty J Prosa. Organic materials and organi-c/inorganic heterostructures in atom probe tomography. Microscopy Today, 20(3):2631, 2012. D Harikishore Kumar Reddy and Yeoung-Sang Yun. Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coordination Chemistry Reviews, 315:90–111, 2016. Charlotte M Beddoes, C Patrick Case, and Wuge H Briscoe. Understanding nanoparticle cellular entry: a physicochemical perspective. Advances in colloid and interface science, 218:48–68, 2015. Lilianne Beola, Laura Asín, Catarina Roma-Rodrigues, Yilian Fernández-Afonso, Raluca M Fratila, David Serantes, Sergiu Ruta, Roy W Chantrell, Alexandra R Fernandes, Pedro V Baptista, et al. The intracellular number of magnetic nanoparticles modulates the apoptotic death pathway after magnetic hyperthermia treatment. ACS Applied Materials & Interfaces, 12(39):43474–43487, 2020. N Guijarro, P Bornoz, M Prévot, X Yu, X Zhu, M Johnson, X Jeanbourquin, F Le Formal, and K Sivula. Evaluating spinel ferrites mfe 2 o 4 (m= cu, mg, zn) as photoanodes for solar water oxidation: prospects and limitations. Sustainable Energy & Fuels, 2(1):103–117, 2018. Daniela Carta, Maria Francesca Casula, Andrea Falqui, Danilo Loche, Gavin Mountjoy, Claudio Sangregorio, and Anna Corrias. A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M= Mn, Co, Ni). The Journal of Physical Chemistry C, 113(20):8606–8615, 2009. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 82 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86623/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86623/2/1233888882.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86623/3/1233888882.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 13cf9fe00337b02f7c8acbf231c17d7a 4895262bd7817af923538b968a3808a2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089396472774656 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cadavid Rodríguez, Doris Yaneth9f5fac4adef68465e4d7407968d8f90bGarcía Fernández, Leonardo4c6d0452daaec29b6c89210537829892Morales Carreño, Angie Nataly09c98fedd40d5b0c02fe58b8696d3fd8Grupo de Física de Nuevos Materiales2024-07-25T20:02:39Z2024-07-25T20:02:39Z2024https://repositorio.unal.edu.co/handle/unal/86623Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, tablasLa hipertermia magnética es una terapia antitumoral basada en el aumento de temperatura local en células cancerígenas, por medio del uso de nanopartículas (NPs) magnéticas bajo la acción de un campo magnético alterno. En los últimos años se ha estudiado la posibilidad de que las NPs utilizadas en esta terapia sean materiales heteroestructurados, es decir, NPs conformadas por múltiples componentes como Ag, Au, Zn, M n y Co entre otros, con la finalidad de optimizar sus propiedades estructurales, morfológicas, ópticas y magnéticas que permitan una mayor eficiencia en el tratamiento. Teniendo en cuenta lo anterior, en el presente trabajo se presenta la síntesis y caracterización de nanoestructuras (NEs) magnéticas de ZnFe2O4 y Zn0.41Mn0.50Fe1.83O4, como también su modificación superficial. La síntesis de las NEs se llevó acabo mediante el método de descomposición térmica y su modificación superficial se realizó mediante el uso de Polivinilpirrolidona (PVP) (Texto tomado de la fuente).Magnetic hyperthermia is an antitumor therapy based on the increase of local temperature in cancer cells through the use of magnetic nanoparticles (NPs) under the action of an alternating magnetic field. In recent years, the possibility has been studied that the NPs used in this therapy are heterostructured materials, that is, NPs made up of multiple components such as Ag, Au, Zn, M n and Co among others, in order to optimize their structural, morphological, optical and magnetic properties that allow greater efficiency in the treatment. Considering the above, the present work presents the synthesis and characterization of magnetic nanostructures (NEs) of ZnFe2O4 and Zn0.41Mn0.50Fe1.83O4, as well as their surface modification. The synthesis of the NEs was carried out by thermal decomposition method and their surface modification was performed by using polyvinylpyrrolidone (PVP).MaestríaMagíster en Ciencias - FísicaNanomateriales Multifuncionalesxix, 82 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesNanopartículas Magnéticas de Óxido de HierroCalcifying NanoparticlesMATERIALES DE NANOESTRUCTURASNANOPARTICULASNanostructure materialsNanoparticlesHipertermia magnéticaNanopartículas magnéticasNanoestructurasDescomposición térmicaModificación superficialMagnetic hyperthermiaMagnetic nanoparticlesNanostructuresThermal decompositionSurface modificationProducción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnéticaProduction of iron oxide-based nanoheterostructures for applications in magnetic hyperthermia therapyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMozhdeh Peiravi, Hossein Eslami, Mojtaba Ansari, and Hadi Zare-Zardini. Magnetic hyperthermia: Potentials and limitations, volume 99, page 100269. Elsevier, 2022.Daniel Ortega and Quentin A Pankhurst. Magnetic hyperthermia, pages 60–88. The Royal Society of Chemistry, 2012.Sandeep B Somvanshi, Swapnil A Jadhav, Sudarshan S Gawali, Kranti Zakde, and KM Jadhav. Core-shell structured superparamagnetic zn-mg ferrite nanoparticles for magnetic hyperthermia applications. Journal of Alloys and Compounds, 947:169574, 2023.Imran Ali, Yunxiang Pan, Yasir Jamil, Aqeel Ahmed Shah, Muhammad Amir, Shamoon Al Islam, Yusra Fazal, Jun Chen, and Zhonghua Shen. Comparison of copper-based cu-ni and cu-fe nanoparticles synthesized via laser ablation for magnetic hyperthermia and antibacterial applications. Physica B: Condensed Matter, 650:414503, 2023.Jae-Hyun Lee, Jung-tak Jang, Jin-sil Choi, Seung Ho Moon, Seung-hyun Noh, Ji-wookKim, Jin-Gyu Kim, Il-Sun Kim, Kook In Park, and Jinwoo Cheon. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature nanotechnology, 6(7):418– 422, 2011.Konstantina Kazeli, Aliki Athanasiadou, Antonis Makridis, Lamprini Malletzidou,George Vourlias, Eleana Kontonasaki, Evgenia Lymperaki, and M Angelakeris. Synthesis and characterization of a novel multifunctional magnetic bioceramic nanocomposite. Ceramics International, 2023.Sandeep B Somvanshi, Prashant B Kharat, and KM Jadhav. Surface functionalized superparamagnetic zn-mg ferrite nanoparticles for magnetic hyperthermia application towards noninvasive cancer treatment. In Macromolecular symposia, volume 400, page 2100124. Wiley Online Library, 2021.Xinglong Zhu, Tiantian Ren, Pushan Guo, Lijing Yang, Yixuan Shi, Wensheng Sun, and Zhenlun Song. Strengthening mechanism and biocompatibility of degradable zn-mn alloy with different mn content. Materials Today Communications, 31:103639, 2022.M Deepty, Ch Srinivas, N Krishna Mohan, E Ranjith Kumar, Surendra Singh, Sher Singh Meena, Pramod Bhatt, and DL Sastry. Chemical synthesis of mn–zn magnetic ferrite nanoparticles: Effect of secondary phase on extrinsic magnetic properties of mn–zn ferrite nanoparticles. Ceramics International, 2024.Ravikant Choubey, Dipankar Das, Samrat Mukherjee, et al. Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite. Journal of Alloys and Compounds, 668:33–39, 2016.Hyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjo-mataram, Ahmedin Jemal, and Freddie Bray. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3):209–249, 2021.Frederick L Moffat, Rudolf E Falk, David Laingw, Alfred S Ketcham, and Judith A Falk. Hyperthermia for cancer: a practical perspective. In Seminars in surgical oncology, volume 1, pages 200 219. Wiley Online Library, 1985.Liliane De La Caridad Beola Guibert, Lucía Gutiérrez Marruedo, and Valeria Grazú Bonavia. Hipertermia magnética basada en nanopartículas de óxido de hierro como terapia antitumoral: del cultivo celular tridimensional al modelo in vivo.Swati Kaushik, Jijo Thomas, Vineeta Panwar, Hasan Ali, Vianni Chopra, Anjana Sharma, Ruchi Tomar, and Deepa Ghosh. In situ biosynthesized superparamagnetic iron oxide nanoparticles (spions) induce efficient hyperthermia in cancer cells. ACS Applied Bio Materials, 3(2):779–788, 2020.Ganeshlenin Kandasamy, Atul Sudame, Tania Luthra, Kalawati Saini, and Dipak Maity. Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS omega, 3(4):39914005, 2018.Saeed Shanehsazzadeh, Afsaneh Lahooti, Mohammad Javad Hajipour, Mahdi Ghavami, and Morteza Azhdarzadeh. External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. Colloids and Surfaces B: Biointerfaces,136:1107–1112, 2015.Irene Rubia-Rodríguez, Antonio Santana-Otero, Simo Spassov, Etelka Tombácz, Christer Johansson, Patricia De La Presa, Francisco J Teran, María del Puerto Morales, Sabino Veintemillas-Verdaguer, Nguyen TK Thanh, et al. Whither magnetic hyperthermia? a tentative roadmap. Materials, 14(4):706, 2021.Irene Rubia-Rodríguez, Antonio Santana-Otero, Simo Spassov, Etelka Tombácz, Christer Johansson, Patricia De La Presa, Francisco J Teran, María del Puerto Morales, Sabino Veintemillas-Verdaguer, Nguyen TK Thanh, et al. Whither magnetic hyperthermia? a tentative roadmap. Materials, 14(4):706, 2021.Yijue Wang, Liqing Zou, Zhe Qiang, Jianhai Jiang, Zhengfei Zhu, and Jie Ren. Enhancing targeted cancer treatment by combining hyperthermia and radiotherapy using mn zn ferrite magnetic nanoparticles. ACS Biomaterials Science & Engineering, 6(6):35503562, 2020.Qi Ding, Dongfang Liu, Dawei Guo, Fang Yang, Xingyun Pang, Renchao Che, Naizhen Zhou, Jun Xie, Jianfei Sun, Zhihai Huang, et al. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials, 124:35–46, 2017.Robert Vajtai. Springer handbook of nanomaterials. Springer Science & Business Media, 2013.Muhammad Sajid. Nanomaterials: types, properties, recent advances, and toxicity concerns. Current Opinion in Environmental Science & Health, 25:100319, 2022.Shiza Malik, Khalid Muhammad, and Yasir Waheed. Nanotechnology: A revolution in modern industry. Molecules, 28(2):661, 2023.Shiza Malik, Khalid Muhammad, and Yasir Waheed. Nanotechnology: A revolution in modern industry. Molecules, 28(2):661, 2023.Alexander Hinderhofer and Frank Schreiber. Organic–organic heterostructures: Concepts and applications. ChemPhysChem, 13(3):628–643, 2012.Jin-Ho Choy, Seung-Min Paek, Jae-Min Oh, and Eue-Soon Jang. Intercalative route to heterostructured nanohybrids. Current Applied Physics, 2(6):489–495, 2002.Alessandra Quarta, Clara Piccirillo, Giacomo Mandriota, and Riccardo Di Corato. Nanoheterostructures (nhs) and their applications in nanomedicine: focusing on in vivo studies. Materials, 12(1):139, 2019.Ingrid Hilger and Werner A Kaiser. Iron oxide-based nanostructures for mri and magnetic hyperthermia. Nanomedicine, 7(9):1443–1459, 2012.Agnieszka Włodarczyk, Szymon Gorgoń, Adrian Radoń, and Karolina Bajdak-Rusinek. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: Challenges and perspectives. Nanomaterials, 12(11):1807, 2022.Boris I Kharisov, HV Rasika Dias, and Oxana V Kharissova. Mini-review: Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry, 12(7):1234–1246, 2019.Dina Tobia. Efectos de superficie e interacción de intercambio en nanopartículas magnéticas. PhD thesis, Universidad Nacional de Cuyo, 2011.Daliya S Mathew and Ruey-Shin Juang. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical engineering journal, 129(13):51–65, 2007.Gabriel C Lavorato. Nanopartículas magnéticas multicomponentes: diseño, fabricación y propiedades. PhD thesis, Universidad Nacional de Cuyo, 2016.Adriele A de Almeida. Hipertermia de fluido magnético en nanopartículas de ferritas de zinc y manganeso: el mecanismo de relajación dominante. PhD thesis, Universidad Nacional de Cuyo, 2021.Xiaoguang Pan, Aimin Sun, Yingqiang Han, Wei Zhang, and Xiqian Zhao. Structural and magnetic properties of Bi 3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustion method. Journal of Materials Science: Materials in Electronics, 30:4644–4657, 2019.Ali Dabbagh, Basri Johan Jeet Abdullah, Hadijah Abdullah, Mohd Hamdi, and Noor Hayaty Abu Kasim. Triggering mechanisms of thermosensitive nanoparticles under hyperthermia condition. Journal of Pharmaceutical Sciences, 104(8):2414–2428, 2015.Bernard Dennis Cullity and Chad D Graham. Introduction to magnetic materials. John Wiley & Sons, 2011.Alejandro Otero Vázquez et al. Magnetismo e hipertermia: modelos para nanopartículas magnéticas. 2023.M Knobel, LM Socolovsky, and JM Vargas. Propiedades magnéticas y de transporte de sistemas nanocristalinos: conceptos básicos y aplicaciones a sistemas reales. Revista mexicana de física, 50(En1):8–28, 2004.H Mamiya, M Ohnuma, I Nakatani, and T Furubayashim. Extraction of blocking temperature distribution from zero-field-cooled and field-cooled magnetization curves. IEEE Transactions on Magnetics, 41(10):3394–3396, 2005.Daniela Paola Valdés. Modelando el efecto de las interacciones dipolares en cadenas de nanopartículas para hipertermia magnética. PhD thesis, Universidad Nacional de Cuyo, 2018.Mary L Mojica Pisciotti. Desarrollo de nanopartículas magnéticas para su utilización en el tratamiento médico: Hipertermia. PhD thesis, Universidad Nacional de Cuyo, 2015.German Yovanny Velez Catillo. Estudio teórico y experimental sobre la relajación de Néel en ensambles de partículas magnéticas interactuantes. 2019.Albert P Philipse. Brownian motion. Undergraduate lecture notes in physics, 2018.Peter Josef William Debye. Polar molecules, 1929.Aleksey A Nikitin, Anna V Ivanova, Alevtina S Semkina, Polina A Lazareva, and Maxim A Abakumov. Magneto-mechanical approach in biomedicine: Benefits, challenges, and future perspectives. International Journal of Molecular Sciences, 23(19):11134, 2022.Ronald E Rosensweig. Heating magnetic fluid with alternating magnetic field. Journal of magnetism and magnetic materials, 252:370–374, 2002.Costica Caizer. Optimization study on specific loss power in superparamagnetic hyperthermia with magnetite nanoparticles for high efficiency in alternative cancer therapy. Nanomaterials, 11(1):40, 2020.[60] M Osaci and M Cacciola. Specific loss power in superparamagnetic hyperthermia: nano fluid versus composite. In IOP Conference Series: Materials Science and Engineering, volume 163, page 012008. IOP Publishing, 2017.Frederik Soetaert, Sri Kamal Kandala, Andris Bakuzis, and Robert Ivkov. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Scientific reports, 7(1):6661, 2017.Debora Bonvin, Duncan TL Alexander, Angel Millán, Rafael Piñol, Beatriz Sanz, Gerardo F Goya, Abelardo Martínez, Jessica AM Bastiaansen, Matthias Stuber, Kurt J Schenk, et al. Tuning properties of iron oxide nanoparticles in aqueous synthesis without ligands to improve mri relaxivity and sar. Nanomaterials, 7(8):225, 2017.Jean-Paul Fortin, Claire Wilhelm, Jacques Servais, Christine Ménager, Jean-Claude Bacri, and Florence Gazeau. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the american chemical society, 129(9):2628–2635, 2007.Chetna Dhand, Neeraj Dwivedi, Xian Jun Loh, Alice Ng Jie Ying, Navin Kumar Verma, Roger W Beuerman, Rajamani Lakshminarayanan, and Seeram Ramakrishna. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. Rsc Advances, 5(127):105003–105037, 2015.Young-wook Jun, Jung-wook Seo, and Jinwoo Cheon. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Accounts of chemical research, 41(2):179–189, 2008.Omar Messaoudi and Mourad Bendahou. Biological synthesis of nanoparticles using endophytic microorganisms: Current development. Nanotechnology and the Environment, 2020.Fumie Hirosawa, Tomohiro Iwasaki, and Satoru Watano. Synthesis and magnetic induction heating properties of gd-substituted mg–zn ferrite nanoparticles. Applied Nanoscience, 7:209–214, 2017.Gennaro Sanità, Barbara Carrese, and Annalisa Lamberti. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Frontiers in molecular biosciences, 7:587012, 2020.Reisa A Sperling and Wolfgang J Parak. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1915):1333–1383, 2010.Hendrik Heinz, Chandrani Pramanik, Ozge Heinz, Yifu Ding, Ratan K Mishra, Delphine Marchon, Robert J Flatt, Irina Estrela-Lopis, Jordi Llop, Sergio Moya, et al. Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surface Science Reports, 72(1):1–58, 2017.Liel Sapir, Christopher B Stanley, and Daniel Harries. Properties of polyvinylpyrrolidone in a deep eutectic solvent. The Journal of Physical Chemistry A, 120(19):3253–3259, 2016.Thomas Vangijzegem, Valentin Lecomte, Indiana Ternad, Levy Van Leuven, Robert N Muller, Dimitri Stanicki, and Sophie Laurent. Superparamagnetic iron oxide nanoparticles (spion): from fundamentals to state-of-the-art innovative applications for cancer therapy. Pharmaceutics, 15(1):236, 2023.Roy N Dsouza, Uwe Pischel, and Werner M Nau. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chemical reviews, 111(12):7941–7980, 2011.Alina A Kokorina, Andrei V Sapelkin, Gleb B Sukhorukov, and Irina Yu Goryacheva. Luminescent carbon nanoparticles separation and purification. Advances in colloid and interface science, 274:102043, 2019.Helena Gavilán, Giusy MR Rizzo, Niccolò Silvestri, Binh T Mai, and Teresa Pellegrino. Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications. Nature Protocols, 18(3):783–809, 2023.Doris Cadavid. Towards high performance nanostructured thermoelectric materials. a bottom-up approach. 2014.Pablo Guardia, Riccardo Di Corato, Lenaic Lartigue, Claire Wilhelm, Ana Espinosa, Mar Garcia-Hernandez, Florence Gazeau, Liberato Manna, and Teresa Pellegrino. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS nano, 6(4):3080–3091, 2012.Ritchie Chen, Michael G Christiansen, and Polina Anikeeva. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS nano, 7(10):8990–9000, 2013.Dongguo Li, Chao Wang, Dusan Tripkovic, Shouheng Sun, Nenad M Markovic, and Vojislav R Stamenkovic. Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. Acs Catalysis, 2(7):1358–1362, 2012.Le Thi Tam, Vu Ngoc Phan, Hoang Lan, Nguyen Thanh Thuy, Tran Minh Hien, Tran Quang Huy, Nguyen Van Quy, Huynh Dang Chinh, Le Minh Tung, Pham Anh Tuan, et al. Characterization and antimicrobial activity of silver nanoparticles prepared by a thermal decomposition technique. Applied Physics A, 113:613–621, 2013.Instituto de Tecnología Nuclear Dan Beninson de la Comisión Nacional de Energía Atómica. Dosimetría en la Radioterapia . https://www.famaf.unc.edu.ar/ pperez1/manuales/cdr/tubos-de-rayos-x.html, 2018.Alfredo Sanz Hervás. Desarrollo de un modelo teórico para la interpretación de difractogramas de rayos x de alta resolución. phd, ETSI Telecomunicación (UPM), 1995.Andreas Maier, Stefan Steidl, Vincent Christlein, and Joachim Hornegger. Medical imaging systems: An introductory guide. 2018.Carmelo Giacovazzo. Fundamentals of crystallography, volume 7. Oxford university press, USA, 2002.Mohsin Raza. Oxygen vacancy stabilized zirconia; synthesis and properties. PhD thesis, Ph. D. Thesis, 2017.Michael Dunlap and JE Adaskaveg. Introduction to the scanning electron microscope. Theory, practice, & procedures. Facility for Advance Instrumentation. UC Davis, 52, 1997.Furqan A Shah, Krisztina Ruscsák, and Anders Palmquist. 50 years of scanning electron microscopy of bone—a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone research, 7(1):15, 2019.Mario M Modena, Bastian Rühle, Thomas P Burg, and Stefan Wuttke. Nanoparticle characterization: what to measure? Advanced Materials, 31(32):1901556, 2019.Transmission Electron Microscopy | Nanoscience Instruments.Marc De Graef. Introduction to conventional transmission electron microscopy. Cam-bridge university press, 2003.Ahmed Fadlelmoula, Diana Pinho, Vitor Hugo Carvalho, Susana O Catarino, and Graça Minas. Fourier transform infrared (ftir) spectroscopy to analyse human blood over the last 20 years: a review towards lab-on-a-chip devices. Micromachines, 13(2):187, 2022.Fisher Thermo. Ftir basic organic functional group reference chart, 2015. 15/01/2023.Josep Francesc Ventura Gayete et al. Desarrollo de métodos analíticos medioambientalmente sostenibles por espectrometría ftir. 2007.Clara Téllez Mesa. Aplicaciones de la espectroscopía infrarroja en el análisis de alimentos. 2019.Tony Owen. Fundamentos de la espectroscopía UV-visible moderna: conceptos básicos. Hewlett Packard, 1996.Govinda Verma and Manish Mishra. Development and optimization of uv-vis spectroscopy-a review. World J. Pharm. Res, 7(11):1170–1180, 2018.File:Schematic of UV- visible spectrophotometer.png - Wikimedia Commons, 9 2013.Javier Alonso Cuervo Farfán. Producción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX (R= La, Nd, Sm, Eu; A= Sr, Bi; M= Ti, Mn, Fe). PhD thesis, Universidad Nacional de Colombia.Quantum Design Latin America. PPMS VersaLab. https://www.qd-latam.com/ site/en/products/company/quantum-design/ppms-versalab/. Accessed: 2024-1-24.Vikas Nandwana and Vinayak P Dravid. Multicomponent magnetic spinels: From complexity of crystal chemistry to coupled magnetic resonance imaging (mri). APL Materials, 11(5), 2023.E Hema, A Manikandan, M Gayathri, M Durka, S Arul Antony, and BR Venkatraman. The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles. Journal of nanoscience and nanotechnology, 16(6):5929–5943, 2016.Alexander LeBrun and Liang Zhu*. Magnetic nanoparticle hyperthermia in cancer treatment: History, mechanism, imaging-assisted protocol design, and challenges. Theory and Applications of Heat Transfer in Humans, 2:631–667, 2018.Andrei Stanislavovich Vorokh. Scherrer formula: estimation of error in determining small nanoparticle size. Nanosystems: physics, chemistry, mathematics, 9(3):364–369, 2018.Sergei A Degterov, Arthur D Pelton, Evgueni Jak, and Peter C Hayes. Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system. Metallurgical and Materials Transactions B, 32:643–657, 2001.Marco A Morales Ovalle. Optimización del tamaño de nanopartículas magnéticas de MnFe2O4 para aplicaciones conjuntas de hipertermia y producción de radicales libres en terapias oncológicas. PhD thesis, Universidad Nacional de Cuyo, 2021.Young-Shin Jun, Yaguang Zhu, Ying Wang, Deoukchen Ghim, Xuanhao Wu, Doyoon Kim, and Haesung Jung. Classical and nonclassical nucleation and growth mechanisms for nanoparticle formation. Annual Review of Physical Chemistry, 73:453–477, 2022.Nicola Pinna and Markus Niederberger. Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angewandte Chemie International Edition, 47(29):5292–5304, 2008.AV Nikam, BLV Prasad, and AA Kulkarni. Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm, 20(35):5091–5107, 2018.Samson O Aisida, Paul A Akpa, Ishaq Ahmad, M Maaza, and Fabian I Ezema. Influence of pva, pvp and peg doping on the optical, structural, morphological and magnetic properties of zinc ferrite nanoparticles produced by thermal method. Physica B: Condensed Matter, 571:130–136, 2019.Pablo Guardia, Nicolás Pérez, Amilcar Labarta, and Xavier Batlle. Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir, 26(8):5843–5847, 2010.Sudeep Shukla, Alka Jadaun, Vikas Arora, Raj Kumar Sinha, Neha Biyani, and VK Jain. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicology reports, 2:27–39, 2015.IA Safo, M Werheid, C Dosche, and M Oezaslan. The role of polyvinylpyrrolidone (pvp) as a capping and structure-directing agent in the formation of pt nanocubes. Nanoscale Advances, 1(8):3095–3106, 2019.Mirela Teodorescu, Maria Bercea, and Simona Morariu. Biomaterials of pva and pvp in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology advances, 37(1):109–131, 2019.Enling Hu, Songmin Shang, and Ka-Lok Chiu. Removal of reactive dyes in textile effluents by catalytic ozonation pursuing on-site effluent recycling. Molecules, 24(15):2755, 2019.Xiaoming Zhang, Zewei Quan, Jun Yang, Piaoping Yang, Hongzhou Lian, and Jun Lin. Solvothermal synthesis of well-dispersed mf2 (m= ca, sr, ba) nanocrystals and their optical properties. Nanotechnology, 19(7):075603, 2008.Lyudmila M Bronstein, Xinlei Huang, John Retrum, Abrin Schmucker, Maren Pink, Barry D Stein, and Bogdan Dragnea. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chemistry of materials, 19(15):3624–3632, 2007.VA Niraimathee, V Subha, RS Ernest Ravindran, and S Renganathan. Green synthesis of iron oxide nanoparticles from mimosa pudica root extract. International Journal of Environment and Sustainable Development, 15(3):227–240, 2016.Edwin Shigwenya Madivoli, Patrick Gachoki Kareru, Ernest Gachui Maina, Augustine Otieno Nyabola, Sammy Indire Wanakai, and Jared Onyango Nyang’au. Biosynthesis of iron nanoparticles using ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. SN Applied Sciences, 1:1–11, 2019.Brajesh Kumar, Kumari Smita, Luis Cumbal, and Alexis Debut. Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. Journal of Saudi Chemical Society, 18(4):364–369, 2014.J Tauc, Radu Grigorovici, and Anina Vancu. Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 15(2):627–637, 1966.Pradeep Chavan and LR Naik. Investigation of energy band gap and conduction mechanism of magnesium substituted nickel ferrite nanoparticles. physica status solidi (a), 214(9):1700077, 2017.OG Torres, G Gordillo, MC Plazas, DA Landinez Tellez, and J Roa-Rojas. Optical features of pbbr2 semiconductor thin films for radiation attenuation application. Journal of Materials Science: Materials in Electronics, 32(12):16937–16944, 2021.Donald F Swinehart. The beer-lambert law. Journal of chemical education, 39(7):333, 1962.Sanju Singh, Jaya V Gade, Dakeshwar Kumar Verma, Berdimurodov Elyor, and Bhawana Jain. Exploring zno nanoparticles: Uv–visible analysis and different size estimation methods. Optical Materials, 152:115422, 2024.M Fuentes-Pérez, M Sotelo-Lerma, JL Fuentes-Ríos, Eric G Morales-Espinoza, Manuel Serrano, and ME Nicho. Synthesis and study of physicochemical properties of Fe3O4@znfe2o4 core/shell nanoparticles. Journal of Materials Science: Materials in Electronics, 32(12):16786–16799, 2021.Yuan Zhi-hao, You Wei, Jia Jun-hui, and Zhang Li-de. Optical absorption red shift of capped znfe2o4 nanoparticle. Chinese physics letters, 15(7):535, 1998.Luis I Granone, Anna C Ulpe, Lars Robben, Stephen Klimke, Moritz Jahns, Franz Renz, Thorsten M Gesing, Thomas Bredow, Ralf Dillert, and Detlef W Bahnemann. Effect of the degree of inversion on optical properties of spinel znfe 2 o 4. Physical Chemistry Chemical Physics, 20(44):28267–28278, 2018.P Iranmanesh, S Saeednia, M Mehran, and S Rashidi Dafeh. Modified structural and magnetic properties of nanocrystalline mnfe2o4 by ph in capping agent free co- precipitation method. Journal of Magnetism and Magnetic Materials, 425:31–36, 2017.Somayeh Shams, Zahra Sheibanizadeh, and Zahra Khalaj. Ternary nanocompositeof znfe2o4/α-fe2o3/zno; synthesis via coprecipitation method and physical properties characterization. Applied Physics A, 127(6):459, 2021.Musa Mutlu Can, Yeşim Akbaba, and Satoru Kaneko. Synthesis of iron gallate (fega2o4) nanoparticles by mechanochemical method. Coatings, 12(4):423, 2022.Julian Carrey, Boubker Mehdaoui, and Marc Respaud. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of applied physics, 109(8), 2011.A Manikandan, J Judith Vijaya, M Sundararajan, C Meganathan, L John Kennedy, and M Bououdina. Optical and magnetic properties of mg-doped znfe2o4 nanoparticles prepared by rapid microwave combustion method. Superlattices and Microstructures, 64:118–131, 2013.K Vamvakidis, D Sakellari, M Angelakeris, and C Dendrinou-Samara. Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization. Journal of nanoparticle research, 15:1–11, 2013.Yaser Hadadian, Ana Paula Ramos, and Theo Z Pavan. Role of zinc substitution in magnetic hyperthermia properties of magnetite nanoparticles: Interplay between intrinsic properties and dipolar interactions. Scientific Reports, 9(1):18048, 2019.Sushmitha Lakshminarayanan, M Furhana Shereen, KL Niraimathi, P Brindha, and A Arumugam. One-pot green synthesis of iron oxide nanoparticles from bauhinia to mentosa: Characterization and application towards synthesis of 1, 3 diolein. Scientific Reports, 11(1):8643, 2021.Mary L Mojica Pisciotti. Estudio del proceso de calentamiento de nanopartículas magnéticas con campos magnéticos AC para su utilización en el tratamiento de tumores por hipertermia. PhD thesis, Universidad Nacional de Cuyo, 2009.Mona Ebadi, Saifullah Bullo, Kalaivani Buskara, Mohd Zobir Hussein, Sharida Fakurazi, and Giorgia Pastorin. Release of a liver anticancer drug, sorafenib from its pva/ldh and peg/ldh-coated iron oxide nanoparticles for drug delivery applications. Scientific Reports, 10:21521, 2020.Rusul Al-Obaidy, Adawiya J. Haider, Sharafaldin Al-Musawi, and Norhana Arsad.Targeted delivery of paclitaxel drug using polymer-coated magnetic nanoparticles for fibrosarcoma therapy: in vitro and in vivo studies. Scientific Reports, 13(1):3180, Feb 2023.Mike J Jackson and Bruce Moskowitz. On the distribution of Verwey transition temperatures in natural magnetites. Geophysical Journal International, 224(2):1314–1325, 10 2020.Arijit Mitra, J. Mohapatra, S. S. Meena, C. V. Tomy, and M. Aslam. Verwey transition in ultrasmall-sized octahedral fe3o4 nanoparticles. The Journal of Physical Chemistry C, 118(33):19356–19362, 2014.Sanju Tanwar, VPS Awana, Surinder P Singh, and Renu Pasricha. Magnetic field dependence of blocking temperature in oleic acid functionalized iron oxide nanoparticles. Journal of superconductivity and novel magnetism, 25:2041–2045, 2012.Venkatesha Narayanaswamy, Bilal Rah, Imaddin A Al-Omari, Alexander S Kamzin, Hafsa Khurshid, Jibran Sualeh Muhammad, Ihab M Obaidat, and Bashar Issa. Evaluation of antiproliferative properties of comnzn-fe2o4 ferrite nanoparticles in colorectal cancer cells. Pharmaceuticals, 17(3):327, 2024.C Iacovita, A Florea, L Scorus, E Pall, R Dudric, AI Moldovan, R Stiufiuc, R Tetean, and CM Lucaciu. Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process. nanomaterials 9 (10): 1489, 2019.AS Nikolic, M Boskovic, V Spasojevic, B Jancar, and B Antic. Magnetite/mn-ferrite nanocomposite with improved magnetic properties. Materials Letters, 120:86–89, 2014.Pallab Pradhan, Jyotsnendu Giri, Gopal Samanta, Haladhar Dev Sarma, Kaushala Prasad Mishra, Jayesh Bellare, Rinti Banerjee, and Dhirendra Bahadur. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 81(1):12–22, 2007.Behnam Sabzi Dizajyekan, Arezou Jafari, Mohsen Vafaie-Sefti, Reza Saber, and Zahra Fakhroueian. Preparation of stable colloidal dispersion of surface modified fe3o4 nanoparticles for magnetic heating applications. Scientific Reports, 14(1):1296, 2024.Yohannes Getahun, Ahsan Habib, Valeria Erives-Sedano, Wen-Yee Lee, Wilson Poon, and Ahmed A El-Gendy. Superparamagnetic nanoparticles coated with novel biocompatible materials produced high specific absorption rate in magnetic hyperthermia. Colloids and Surfaces A: Physicochemical and Engineering Aspects, page 134036, 2024.Antonios Makridis, Konstantina Topouridou, Magdalini Tziomaki, Despoina Sakellari, Konstantinos Simeonidis, Mavroeidis Angelakeris, Maria P Yavropoulou, John G Yovos, and Orestis Kalogirou. In vitro application of mn-ferrite nanoparticles as novel magnetic hyperthermia agents. Journal of materials chemistry B, 2(47):8390–8398, 2014.Idoia Castellanos-Rubio, Oihane Arriortua, Lourdes Marcano, Irati Rodrigo, Daniela Iglesias-Rojas, Ander Barón, Ane Olazagoitia-Garmendia, Luca Olivi, Fernando Plazaola, M Luisa Fdez Gubieda, et al. Shaping up zn-doped magnetite nanoparticles from mono-and bimetallic oleates: the impact of zn content, fe vacancies, and morphology on magnetic hyperthermia performance. Chemistry of Materials, 33(9):3139–3154, 2021.Abolfazl Yazdanpanah, Maryam Ghaffari, Zarrin Ahmadi, Amir Babak Abrishamkar, Saem Sattarzadeh, Arash Ramedani, Sahar Arabyazdi, and Fatollah Moztarzadeh. Threatening sarcoma withcombinational therapies: Magnetic hyperthermia using nanoparticles. Nano Select, 2023.Sean Healy, Andris F Bakuzis, Patrick W Goodwill, Anilchandra Attaluri, Jeff WM Bulte, and Robert Ivkov. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechno-logy, 14(3):e1779, 2022.Carlotta Pucci, Andrea Degl’Innocenti, Melike Belenli Gümüş, and Gianni Ciofani. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: Recent advancements, molecular effects, and future directions in the omics era. Biomaterials Science, 10(9):2103–2121, 2022.Muhammad Suleman and Samia Riaz. In silico study of hyperthermia treatment of liver cancer using core-shell cofe2o4@ mnfe2o4 magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 498:166143, 2020.Bo Jia, Hongtao Yang, Yu Han, Zechuan Zhang, Xinhua Qu, Yifu Zhuang, Qiang Wu, Yufeng Zheng, and Kerong Dai. In vitro and in vivo studies of zn-mn biodegradable metals designed orthopedic applications. Acta Biomaterialia, 108:358–372, 2020.Derk Joester, Andrew Hillier, Yi Zhang, and Ty J Prosa. Organic materials and organi-c/inorganic heterostructures in atom probe tomography. Microscopy Today, 20(3):2631, 2012.D Harikishore Kumar Reddy and Yeoung-Sang Yun. Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coordination Chemistry Reviews, 315:90–111, 2016.Charlotte M Beddoes, C Patrick Case, and Wuge H Briscoe. Understanding nanoparticle cellular entry: a physicochemical perspective. Advances in colloid and interface science, 218:48–68, 2015.Lilianne Beola, Laura Asín, Catarina Roma-Rodrigues, Yilian Fernández-Afonso, Raluca M Fratila, David Serantes, Sergiu Ruta, Roy W Chantrell, Alexandra R Fernandes, Pedro V Baptista, et al. The intracellular number of magnetic nanoparticles modulates the apoptotic death pathway after magnetic hyperthermia treatment. ACS Applied Materials & Interfaces, 12(39):43474–43487, 2020.N Guijarro, P Bornoz, M Prévot, X Yu, X Zhu, M Johnson, X Jeanbourquin, F Le Formal, and K Sivula. Evaluating spinel ferrites mfe 2 o 4 (m= cu, mg, zn) as photoanodes for solar water oxidation: prospects and limitations. Sustainable Energy & Fuels, 2(1):103–117, 2018.Daniela Carta, Maria Francesca Casula, Andrea Falqui, Danilo Loche, Gavin Mountjoy, Claudio Sangregorio, and Anna Corrias. A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M= Mn, Co, Ni). The Journal of Physical Chemistry C, 113(20):8606–8615, 2009.EstudiantesMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86623/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1233888882.2024.pdf1233888882.2024.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf12849391https://repositorio.unal.edu.co/bitstream/unal/86623/2/1233888882.2024.pdf13cf9fe00337b02f7c8acbf231c17d7aMD52THUMBNAIL1233888882.2024.pdf.jpg1233888882.2024.pdf.jpgGenerated Thumbnailimage/jpeg4795https://repositorio.unal.edu.co/bitstream/unal/86623/3/1233888882.2024.pdf.jpg4895262bd7817af923538b968a3808a2MD53unal/86623oai:repositorio.unal.edu.co:unal/866232024-07-25 23:07:02.46Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |