Evaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotos
ilustraciones, diagramas
- Autores:
-
Cortés Ramos, Diego Alberto
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86208
- Palabra clave:
- 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Recarga
Agua subterránea
Modelación hidrológica
Sensores remotos
Calibración multiobjetivo
Ostrich
GRACE
Groundwater recharge
Hidrologic modeling
Remote sensing
Multiobjective calibration
Hidrogeología
Modelo de simulación
Instrumento de medida
Hydrogeology
Simulation models
Measuring instruments
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_3779c90143e2f4d20c94bf00d2e7d1fd |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86208 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotos |
dc.title.translated.eng.fl_str_mv |
Evaluation of the spatiotemporal estimation of recharge by a hydrological model using a multi-objective calibration incorporating remote sensing information |
title |
Evaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotos |
spellingShingle |
Evaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotos 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 620 - Ingeniería y operaciones afines::624 - Ingeniería civil Recarga Agua subterránea Modelación hidrológica Sensores remotos Calibración multiobjetivo Ostrich GRACE Groundwater recharge Hidrologic modeling Remote sensing Multiobjective calibration Hidrogeología Modelo de simulación Instrumento de medida Hydrogeology Simulation models Measuring instruments |
title_short |
Evaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotos |
title_full |
Evaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotos |
title_fullStr |
Evaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotos |
title_full_unstemmed |
Evaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotos |
title_sort |
Evaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotos |
dc.creator.fl_str_mv |
Cortés Ramos, Diego Alberto |
dc.contributor.advisor.spa.fl_str_mv |
Piña Fulano, Adriana Patricia Donado Garzón, Leonardo David |
dc.contributor.author.spa.fl_str_mv |
Cortés Ramos, Diego Alberto |
dc.contributor.financer.spa.fl_str_mv |
Proyecto MEGIA |
dc.contributor.researchgroup.spa.fl_str_mv |
Hyds Hidrodinámica del Medio Natural |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0002-7218-6970 |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 620 - Ingeniería y operaciones afines::624 - Ingeniería civil |
topic |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 620 - Ingeniería y operaciones afines::624 - Ingeniería civil Recarga Agua subterránea Modelación hidrológica Sensores remotos Calibración multiobjetivo Ostrich GRACE Groundwater recharge Hidrologic modeling Remote sensing Multiobjective calibration Hidrogeología Modelo de simulación Instrumento de medida Hydrogeology Simulation models Measuring instruments |
dc.subject.proposal.spa.fl_str_mv |
Recarga Agua subterránea Modelación hidrológica Sensores remotos Calibración multiobjetivo |
dc.subject.proposal.eng.fl_str_mv |
Ostrich GRACE Groundwater recharge Hidrologic modeling Remote sensing Multiobjective calibration |
dc.subject.unesco.spa.fl_str_mv |
Hidrogeología Modelo de simulación Instrumento de medida |
dc.subject.unesco.eng.fl_str_mv |
Hydrogeology Simulation models Measuring instruments |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-06-05T20:24:09Z |
dc.date.available.none.fl_str_mv |
2024-06-05T20:24:09Z |
dc.date.issued.none.fl_str_mv |
2024-05 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86208 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86208 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aquanty Inc. (2013). HydroGeoSphere user manual. 1.0. Arenas-Bautista, M. C., Duque-Gardeazabal, N., Arboleda-Obando, P., Guadagnini, A., Riva, M., & Donado, L. (2017). Hydrological Modelling the Middle Magdalena Valley (Colombia). Arenas-Bautista, M. C. (2020). Integration of Hydrological and Economical Aspects for Water Management in Tropical Regions . Case Study : Middle Magdalena Valley , Colombia . [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77944 Asadzadeh, M., & Tolson, B. (2013). Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization. Engineering Optimization, 45(12), 1489–1509. https://doi.org/10.1080/0305215X.2012.748046 Asadzadeh, M., & Tolson, B. A. (2009). A new multi-objective algorithm, pareto archived DDS. January, 1963. https://doi.org/10.1145/1570256.1570259 Beven, K. (2012). Rainfall-Runoff Modelling (Second Edi). John Wiley & Sons, Ltd. Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279–298. https://doi.org/10.1002/hyp.3360060305 Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834 Bomba Estéreo. (2015). Soy Yo. Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., & Bittelli, M. (2011). Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sensing of Environment, 115(12), 3390–3408. https://doi.org/10.1016/j.rse.2011.08.003 Budyko, M. I. (1961). The Heat Balance of the Earth’s Surface. Soviet Geography, 2(4), 3–13. https://doi.org/10.1080/00385417.1961.10770761 California Institute of Technology. (2014). SMAP Handbook. In Mapping Soil Moisture and Freezs/Thaw from Space (p. 192). California Institute of Technology. (2015). SMAP. https://smap.jpl.nasa.gov/ California Institute of Technology. (2019). Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document L2 & L3 Radar/Radiometer Soil Moisture (Active/Passive) Data Products. Jpl, 1–89. California Institute of Technology. (2021). GRACE Tellus. https://grace.jpl.nasa.gov/ CAS. (2018). Plan de Ordenación y Manejo de la Cuenca Hidrográfica Afluentes Directos del Río Lebrija Medio (mi) - NSS (2319-04). CDMB. (2019). Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Cáchira Sur (2319-02). Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga. CDMB. (2020). Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Alto Lebrija (2319-01). Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga. CDMB, CORPONOR, CAS, & CORPOCESAR. (2014). Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Lebrija Medio-NSS (2319-03). Chaturvedi, R. S. (1973). A Note on the Investigation of Groundwater Resources in Western Districts of Uttar Pradesh. Annual Report. Irrigation Research Institute, 86–122. Cheo, A. E., Voigt, H. J., & Wendland, F. (2017). Modeling groundwater recharge through rainfall in the Far-North region of Cameroon. Groundwater for Sustainable Development, 5(June), 118–130. https://doi.org/10.1016/j.gsd.2017.06.001 Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285–304. https://doi.org/10.1016/j.rse.2006.07.007 Collischonn, W., Allasia, D., da Silva, B. C., & Tucci, C. E. M. (2007). The MGB-IPH model for large-scale rainfall-runoff modelling. Hydrological Sciences Journal, 52(5), 878–895. https://doi.org/10.1623/hysj.52.5.878 Cordano, E. (2017). RGENERATE: Tools To Generate Vector Time Series. https://cran.r-project.org/package=RGENERATE Cordano, E., & Eccel, E. (2017). RMAWGEN: Multi-Site Auto-Regressive Weather GENerator. https://cran.r-project.org/package=RMAWGEN Custodio, E. (2002). Aquifer overexploitation: What does it mean? Hydrogeology Journal, 10(2), 254–277. https://doi.org/10.1007/s10040-002-0188-6 de Silva, C. S., & Rushton, K. R. (2007). Groundwater recharge estimation using improved soil moisture balance methodology for a tropical climate with distinct dry seasons. Hydrological Sciences Journal, 52(5), 1051–1067. https://doi.org/10.1623/hysj.52.5.1051 Dell’Oca, A., Riva, M., & Guadagnini, A. (2017). Moment-based metrics for global sensitivity analysis of hydrological systems. Hydrology and Earth System Sciences, 21(12), 6219–6234. https://doi.org/10.5194/hess-21-6219-2017 Dembélé, M., Ceperley, N., Zwart, S. J., Salvadore, E., Mariethoz, G., & Schaefli, B. (2020). Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies. Advances in Water Resources, 143(March). https://doi.org/10.1016/j.advwatres.2020.103667 Dembélé, M., Hrachowitz, M., Savenije, H. H. G., Mariéthoz, G., & Schaefli, B. (2020). Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets. Water Resources Research, 56(1), 0–3. https://doi.org/10.1029/2019WR026085 Du, H., Fok, H. S., Chen, Y., & Ma, Z. (2020). Characterization of the recharge-storage-runoff process of the Yangtze river source region under climate change. Water (Switzerland), 12(7). https://doi.org/10.3390/w12071940 Flint, A. L., Flint, L. E., Hevesi, J. A., D’agnese, F., & Faunt, C. (2000). Estimation of regional recharge and travel time through the unsaturated zone in arid climates. Geophysical Monograph Series, 122, 115–128. https://doi.org/10.1029/GM122p0115 Flint, A. L., Flint, L. E., Kwicklis, E. M., Fabryka-Martin, J. T., & Bodvarsson, G. S. (2002). Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods. Hydrogeology Journal, 10(1), 180–204. https://doi.org/10.1007/s10040-001-0169-1 García-Echeverri, C. (2022). Evaluación del Modelo Hidrológico Dynamic Water Balance a Escala Diaria en Cuencas Tropicales. GDAL/OGR contributors (2023). GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. GIMHA. (2021). Descripción del Modelo Conceptual Distribuido de Simulación Hidrológica TETIS v.9 (9.1). Instituto Universitario de Investigación de Ingeniería del Agua y Medio Ambiente - Universitat Politècnica de València. http://lluvia.dihma.upv.es/ GIMHA. (2021). Manual de Usuario Programa TETIS v.9. Instituto Universitario de Investigación de Ingeniería del Agua y Medio Ambiente - Universitat Politècnica de València. http://www.etitudela.com/entrenadorcomunicaciones/downloads/gsmmanualsmsconfiguratorl.pdf Gogolev, M. I. (2002). Assessing groundwater recharge with two unsaturated zone modeling technologies. Environmental Geology, 42(2–3), 248–258. https://doi.org/10.1007/s00254-001-0494-7 Gómez-Blanco, J. A., & Cadena, M. C. (2018). Validación de las Fórmulas de Evapotranspiración de Referencia (ETo) para Colombia. In IDEAM. Gómez-Medina, D. (2023). Assessment of methodologies to estimate aquifer recharge in a Tropical Climate Zone. Universidad Nacional de Colombia. GRASS Development Team (2023). Geographic Resources Analysis Support System (GRASS GIS) Software, Version 8.3. Open Source Geospatial Foundation, USA. Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. Journal of the Irrigation & Drainage Division, 108(IR3), 225–230. Henry, C. M., Allen, D. M., & Huang, J. (2011). Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeology Journal, 19(4), 741–755. https://doi.org/10.1007/s10040-011-0724-3 IDEAM. (2013). Aguas Subterráneas en Colombia Una Visión General. IDEAM. (2018). Metodología de la operación estadística variables meteorológicas. Instituto de Hidrología Meteorología y Estudios Ambientales, 113. https://www.gob.pe/institucion/midagri/informes-publicaciones/558835-boletin-estadistico-mensual-el-agro-en-cifras-2020 IDEAM. (2018). Protocolo De Modelación Hidrológica e Hidráulica. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023833/Protocolo_Modelacion_HH.pdf IDEAM. (2019). Estudio Nacional del Agua 2018. IDEAM. (2021). Mapa de Coberturas de la Tierra. Metodología Corine Land Cover. Escala 1:100.000. Periodo 2018. Instituto de Hidrología Meteorología y Estudios Ambientales. IDEAM. (2023). Estudio Nacional del Agua. In Ministerio de Medio Ambiente. Instituto de Hidrología Meteorología y Estudios Ambientales. IGAC. (2017). Mapa Digital de Suelos del Departamento de Santander, República de Colombia. Escala 1:100.000. Año 2002. Instituto Geográfico Agustín Codazzi. IGAC. (2017). Mapa Digital de Suelos del Departamento de Norte de Santander, República de Colombia. Escala 1:100.000. Año 2006. Instituto Geográfico Agustín Codazzi. Immerzeel, W. W., & Droogers, P. (2008). Calibration of a distributed hydrological model based on satellite evapotranspiration. Journal of Hydrology, 349(3–4), 411–424. https://doi.org/10.1016/j.jhydrol.2007.11.017 JAXA EORC. (2013). GCOM-W1. https://suzaku.eorc.jaxa.jp/GCOM_W/w_amsr2/whats_amsr2.html Jiang, L., Wu, H., Tao, J., Kimball, J. S., Alfieri, L., & Chen, X. (2020). Satellite-based evapotranspiration in hydrological model calibration. Remote Sensing, 12(3). https://doi.org/10.3390/rs12030428 Jimenez, M., Velásquez, N., Jimenez, J. E., Barco, J., Blessent, D., López-Sánchez, J., Castrillón, S. C., Valenzuela, C., Therrien, R., Boico, V. F., & Múnera, J. C. (2022). Sequential surface and subsurface flow modeling in a tropical aquifer under different rainfall scenarios. Environmental Modelling and Software, 149(January). https://doi.org/10.1016/j.envsoft.2022.105328 Kunnath-Poovakka, A., Ryu, D., Renzullo, L. J., & George, B. (2016). The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction. Journal of Hydrology, 535, 509–524. https://doi.org/10.1016/j.jhydrol.2016.02.018 Li, Y., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2018). Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged and ungauged locations. Journal of Hydrology, 557, 897–909. https://doi.org/10.1016/j.jhydrol.2018.01.013 Li, Z., Liu, P., Feng, M., Cui, X., He, P., Wang, C., & Zhang, J. (2020). Evaluating the Effect of Transpiration in Hydrologic Model Simulation through Parameter Calibration. Journal of Hydrologic Engineering, 25(5), 04020007. https://doi.org/10.1061/(asce)he.1943-5584.0001895 Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation model. JOURNAL OF GEOPHYSICAL RESEARC, 99(D7), 14415–14428. https://doi.org/10.1029/94JD00483 Milzow, C., Krogh, P. E., & Bauer-Gottwein, P. (2011). Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment. Hydrology and Earth System Sciences, 15(6), 1729–1743. https://doi.org/10.5194/hess-15-1729-2011 Monteith, J. (1965). Evaporation and environment. The State and Movement of Water in Living Organisms. XIXth Symposium, 19. Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785. https://doi.org/10.13031/trans.58.10715 PALSAR, J. A. (2006). ALOS Phased Array type L-band Synthetic Aperture Radar. https://asf.alaska.edu/datasets/daac/alos-palsar/ Pettitt, A. N. (1979). A Non-Parametric Approach to the Change-Point Problem. Applied Statistics, 28(2), 126. https://doi.org/10.2307/2346729 Pohlert, T. (2023). Non-Parametric Trend Tests and Change-Point Detection. CRAN. Pushpalatha, R., Perrin, C., Moine, N. Le, & Andréassian, V. (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420–421, 171–182. https://doi.org/10.1016/j.jhydrol.2011.11.055 Rajib, A., Merwade, V., & Yu, Z. (2018). Rationale and Efficacy of Assimilating Remotely Sensed Potential Evapotranspiration for Reduced Uncertainty of Hydrologic Models. Water Resources Research, 54(7), 4615–4637. https://doi.org/10.1029/2017WR021147 Riano Neira, M. F., Beltran Huertas, D. C., & Mancipe Munoz, N. A. (2022). Challenges of Using Remote Sensor Products in Colombian Regional Hydrological Models. Proceedings of the 39th IAHR World Congress, 5340–5350. https://doi.org/10.3850/IAHR-39WC252171192022956 Richey, A. S., Thomas, B. F., Lo, M. H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5237. https://doi.org/10.1002/2015WR017349 Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381 Rodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A., Werner, M., García, C., & Burke, S. (2020). Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin – Colombia. Water Resources Management, 34(7), 2179–2199. https://doi.org/10.1007/s11269-019-02236-5 Romero-León, P. (2023). Assemblage of satellite information to produce insights into groundwater storage in Colombia’s five major basins. Universidad Nacional de Colombia. Ruggieri, G., Allocca, V., Borfecchia, F., Cusano, D., Marsiglia, P., & De Vita, P. (2021). Testing evapotranspiration estimates based on MODIS satellite data in the assessment of the groundwater recharge of karst aquifers in southern Italy. Water (Switzerland), 13(2). https://doi.org/10.3390/w13020118 Running, S. W., Mu, Q., Zhao, M., & Moreno, A. (2019). MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 [Data set]. https://doi.org/https://doi.org/10.5067/MODIS/MOD16A2.006 Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(1), 18–39. https://doi.org/10.1007/s10040-001-0176-2 Schosinsky N., G. (2006). Cálculo de la recarga potencial de acuíferos mediante un balance hídrico de suelos. Revista Geológica de América Central, 34–35, 13–30. https://doi.org/10.15517/rgac.v0i34-35.4223 Schosinsky N., G., & Losilla, M. (2000). Modelo Analítico para Determinar la Infiltración con Base en la Lluvia Mensual. Revista Geológica de América Central, 23, 43–55. Sendiña Nadal, I., & Pérez Muñuzuri, V. (2006). Fundamentos de meteorología. SGC. (2019). Modelo Hidrogeológico Conceptual del Valle Medio Del Magdalena. Planchas 108 Y 119 Puerto Wilches, Barrancabermeja, Sabana de Torres y San Vicente de Chucurí. Shawn Matott, L.-. (2017). OSTRICH – An Optimization Software Toolkit for Research Involving Computational Heuristics Documentation and User ’ s Guide by L . Shawn Matott , Ph . D . State University of New York at Buffalo Center for Computational Research (p. 79). www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html. Singh, A., Panda, S. N., Uzokwe, V. N. E., & Krause, P. (2019). An assessment of groundwater recharge estimation techniques for sustainable resource management. Groundwater for Sustainable Development, 9(April), 100218. https://doi.org/10.1016/j.gsd.2019.100218 Singhal, B. B. S., & Gupta, R. P. (2010). Applied Hydrogeology of Fractured Rocks (Springer (ed.); Second Edi). Sobol, I. M. (1990). On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie, 2(1). The European Space Agency. (2009). SMOS. https://earth.esa.int/eogateway/missions/smos Thirel, G., Andréassian, V., Perrin, C., Audouy, J. N., Berthet, L., Edwards, P., Folton, N., Furusho, C., Kuentz, A., Lerat, J., Lindström, G., Martin, E., Mathevet, T., Merz, R., Parajka, J., Ruelland, D., & Vaze, J. (2015). Hydrologie sous changement: un protocole d’évaluation pour examiner comment les modèles hydrologiques s’accommodent des bassins changeants. Hydrological Sciences Journal, 60(7–8), 1184–1199. https://doi.org/10.1080/02626667.2014.967248 Thornthwaite, C. W., & Mather, J. R. (1957). Instructions and tables for computing potential evapotranspiration and the water balance. Laboratory of Climatology. Tolson, B. A., & Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1), 1–16. https://doi.org/10.1029/2005WR004723 Turc, L. (1961). évolution des besoins en eau d’irrigation. évapotranspiration potentielle. Formule climatique simplifiée et mise à jour. Annuaire Agronomie, 12, 13–49. Turc, L. (1954). Le bilan d’eau des sols: Relations entre les precipitations, l’evaporation et l’ecoulement. Annales Agronomiques. Universidad Nacional de Colombia. (2018). Contrato Interadministrativo No. 01226 de 2017 Diseñar e implementar un programa de modelación matemática que permita consolidar y analizar la información obtenida de los monitoreos a las estaciones hidrometeorológicas según requerimientos de los autos (U. USDA-ARS, & Texas A&M. (n.d.). SWAT+ Documentation. Retrieved October 3, 2023, from https://swatplus.gitbook.io/io-docs/ Wang, F., Wang, Z., Yang, H., Di, D., Zhao, Y., & Liang, Q. (2020). Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain. Journal of Hydrology, 585(November 2019), 124849. https://doi.org/10.1016/j.jhydrol.2020.124849 Westenbroek, J. A., Stephen, M., Engott, V. A., Kelson, & Hunt, R. J. (2018). Water Availability and Use Science Program National Water Quality Program SWB Version 2.0-A Soil-Water-Balance Code for Estimating Net Infiltration and Other Water-Budget Components Book 6, Modeling Techniques. https://pubs.usgs.gov/tm/06/a59/tm6a59.pdf Yin, L., Hu, G., Huang, J., Wen, D., Dong, J., Wang, X., & Li, H. (2011). Groundwater-recharge estimation in the Ordos Plateau, China: comparison of methods. Hydrogeology Journal, 19(8), 1563–1575. https://doi.org/10.1007/s10040-011-0777-3 Zhang, G., Su, X., Ayantobo, O. O., Feng, K., & Guo, J. (2020). Remote-sensing precipitation and temperature evaluation using soil and water assessment tool with multiobjective calibration in the Shiyang River Basin, Northwest China. Journal of Hydrology, 590(July), 125416. https://doi.org/10.1016/j.jhydrol.2020.125416 Zhang, L., Potter, N., Hickel, K., Zhang, Y., & Shao, Q. (2008). Water balance modeling over variable time scales based on the Budyko framework - Model development and testing. Journal of Hydrology, 360(1–4), 117–131. https://doi.org/10.1016/j.jhydrol.2008.07.021 Zhang, Y., Chiew, F. H. S., Liu, C., Tang, Q., Xia, J., Tian, J., Kong, D., & Li, C. (2020). Can Remotely Sensed Actual Evapotranspiration Facilitate Hydrological Prediction in Ungauged Regions Without Runoff Calibration? Water Resources Research, 56(1). https://doi.org/10.1029/2019WR026236 Zhao, Y., & Wang, L. (2021). Determination of groundwater recharge processes and evaluation of the ‘two water worlds’ hypothesis at a check dam on the Loess Plateau. Journal of Hydrology, 595(July 2020), 125989. https://doi.org/10.1016/j.jhydrol.2021.125989 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 93 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Recursos Hidráulicos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86208/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86208/4/1022407177.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86208/3/ANEXOS.zip https://repositorio.unal.edu.co/bitstream/unal/86208/5/1022407177.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a feef7d200ff7fa1f98b967299243b8f0 570e2b2b1d37b7554d7d49a233f0ea26 5ebb323b57dbe7ee8c9980d7ffa014aa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089488895311872 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Piña Fulano, Adriana Patricia09ed204af45547e2eacbbbd4e4b23333600Donado Garzón, Leonardo Davidb6774b9bc0083853c2f42c1c2bee51fe600Cortés Ramos, Diego Alberto47675bce65fa1cd76de8f0ff6aaa3651600Proyecto MEGIAHyds Hidrodinámica del Medio Naturalhttps://orcid.org/0000-0002-7218-69702024-06-05T20:24:09Z2024-06-05T20:24:09Z2024-05https://repositorio.unal.edu.co/handle/unal/86208Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa recarga es la cantidad de agua que alimenta los sistemas de aguas subterráneas, sistemas que abastecen aproximadamente a dos mil millones de personas. Para su estimación existen variedad de técnicas entre las cuales está la modelación hidrológica. En la presente investigación se realizó la implementación del modelo hidrológico TETIS para estimar la recarga de aguas subterráneas en la cuenca del río Lebrija ubicada en la Cordillera Oriental de Los Andes colombianos. Esta es una cuenca tropical con un promedio anual de precipitación de 1675 mm, que se presenta en un régimen mixto, con picos a mediados de cada semestre. La cuenca tiene un fuerte cambio de elevaciones desde 4200 hasta 28 msnm en el punto de delimitación. En la implementación se utilizó información de superficie registrada por estaciones del IDEAM. Para mejorar las estimaciones se utilizó una calibración multiobjetivo que involucró información de evapotranspiración y humedad del suelo registrada por sensores remotos. Para la validación de la recarga se utilizó información de GRACE y GLDAS para tener una aproximación a valores medidos de recarga. Se evaluó el desempeño espacial con la métrica de eficiencia de patrones espaciales; para lo cual se realizó un acople del modelo con un código de R que permitiera la inclusión de nuevas funciones objetivo. Como algoritmo de calibración multiobjetivo se utilizó Pareto Archived Dynamically Dimensioned Search mediante el programa Ostrich. Con la metodología propuesta se mejoró el desempeño espacial del modelo hasta en 47.9 % y en la simulación de caudales se alcanzaron mejoras de 20.8 %. La recarga estimada mejoró en 31.9 %, pasando de 218 a 695 mm anuales en promedio. (Texto tomado de la fuente).Groundwater recharge is the amount of water that feeds groundwater systems, which supply water to two billion people globally. Various techniques exist for estimating groundwater recharge, including hydrological modeling. In this research, the TETIS hydrological model was implemented to estimate groundwater recharge in the Lebrija river basin, located in the Colombian eastern mountain range. This tropical basin experiences an average annual rainfall of 1675 mm, with a mixed regime peaking in the middle of each semester. The Lebrija basin features significant elevation variations, ranging from over 4200 meters above sea level (masl) to 28 masl at the delimitation point. Surface information from IDEAM stations was used during the implementation phase. To enhance estimations, a multi-objective calibration was performed, incorporating evapotranspiration (ET) and soil moisture (SM) data obtained through remote sensing. Additionally, GRACE and GLDAS data were used to approximate measured recharge values for groundwater recharge validation. Spatial performance was assessed using the spatial pattern efficiency metric, which required coupling the model with an R script to incorporate new objective functions. The Pareto Archived Dynamically Dimensioned Search algorithm was implemented via Ostrich software. The proposed methodology demonstrated an enhancement in spatial performance by up to 47.9 %, leading to a 20.8 % improvement in flow simulation. Furthermore, recharge estimation showed a significant improvement of 31.9 %, increasing from 218 to 695 mm of annual average.MODELO MULTIESCALA DE GESTIÓN INTEGRAL DEL AGUA CON ANÁLISIS DE INCERTIDUMBRE DE LA INFORMACIÓN PARA LA REALIZACIÓN DE LA EVALUACIÓN AMBIENTAL ESTRATÉGICA (EAE) DEL SUBSECTOR DE HIDROCARBUROS EN EL VALLE MEDIO DEL MAGDALENAMaestríaMagíster en Ingeniería - Recursos HidráulicosHidrología y meteorologíaxxi, 93 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Recursos HidráulicosFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología620 - Ingeniería y operaciones afines::624 - Ingeniería civilRecargaAgua subterráneaModelación hidrológicaSensores remotosCalibración multiobjetivoOstrichGRACEGroundwater rechargeHidrologic modelingRemote sensingMultiobjective calibrationHidrogeologíaModelo de simulaciónInstrumento de medidaHydrogeologySimulation modelsMeasuring instrumentsEvaluación de la estimación espaciotemporal de la recarga mediante un modelo hidrológico utilizando una calibración multiobjetivo que incorpore información de sensores remotosEvaluation of the spatiotemporal estimation of recharge by a hydrological model using a multi-objective calibration incorporating remote sensing informationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAquanty Inc. (2013). HydroGeoSphere user manual. 1.0.Arenas-Bautista, M. C., Duque-Gardeazabal, N., Arboleda-Obando, P., Guadagnini, A., Riva, M., & Donado, L. (2017). Hydrological Modelling the Middle Magdalena Valley (Colombia).Arenas-Bautista, M. C. (2020). Integration of Hydrological and Economical Aspects for Water Management in Tropical Regions . Case Study : Middle Magdalena Valley , Colombia . [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77944Asadzadeh, M., & Tolson, B. (2013). Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization. Engineering Optimization, 45(12), 1489–1509. https://doi.org/10.1080/0305215X.2012.748046Asadzadeh, M., & Tolson, B. A. (2009). A new multi-objective algorithm, pareto archived DDS. January, 1963. https://doi.org/10.1145/1570256.1570259Beven, K. (2012). Rainfall-Runoff Modelling (Second Edi). John Wiley & Sons, Ltd.Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279–298. https://doi.org/10.1002/hyp.3360060305Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834Bomba Estéreo. (2015). Soy Yo.Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., & Bittelli, M. (2011). Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sensing of Environment, 115(12), 3390–3408. https://doi.org/10.1016/j.rse.2011.08.003Budyko, M. I. (1961). The Heat Balance of the Earth’s Surface. Soviet Geography, 2(4), 3–13. https://doi.org/10.1080/00385417.1961.10770761California Institute of Technology. (2014). SMAP Handbook. In Mapping Soil Moisture and Freezs/Thaw from Space (p. 192).California Institute of Technology. (2015). SMAP. https://smap.jpl.nasa.gov/California Institute of Technology. (2019). Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document L2 & L3 Radar/Radiometer Soil Moisture (Active/Passive) Data Products. Jpl, 1–89.California Institute of Technology. (2021). GRACE Tellus. https://grace.jpl.nasa.gov/CAS. (2018). Plan de Ordenación y Manejo de la Cuenca Hidrográfica Afluentes Directos del Río Lebrija Medio (mi) - NSS (2319-04).CDMB. (2019). Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Cáchira Sur (2319-02). Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga.CDMB. (2020). Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Alto Lebrija (2319-01). Corporación Autónoma Regional para la Defensa de la Meseta de Bucaramanga.CDMB, CORPONOR, CAS, & CORPOCESAR. (2014). Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Lebrija Medio-NSS (2319-03).Chaturvedi, R. S. (1973). A Note on the Investigation of Groundwater Resources in Western Districts of Uttar Pradesh. Annual Report. Irrigation Research Institute, 86–122.Cheo, A. E., Voigt, H. J., & Wendland, F. (2017). Modeling groundwater recharge through rainfall in the Far-North region of Cameroon. Groundwater for Sustainable Development, 5(June), 118–130. https://doi.org/10.1016/j.gsd.2017.06.001Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285–304. https://doi.org/10.1016/j.rse.2006.07.007Collischonn, W., Allasia, D., da Silva, B. C., & Tucci, C. E. M. (2007). The MGB-IPH model for large-scale rainfall-runoff modelling. Hydrological Sciences Journal, 52(5), 878–895. https://doi.org/10.1623/hysj.52.5.878Cordano, E. (2017). RGENERATE: Tools To Generate Vector Time Series. https://cran.r-project.org/package=RGENERATECordano, E., & Eccel, E. (2017). RMAWGEN: Multi-Site Auto-Regressive Weather GENerator. https://cran.r-project.org/package=RMAWGENCustodio, E. (2002). Aquifer overexploitation: What does it mean? Hydrogeology Journal, 10(2), 254–277. https://doi.org/10.1007/s10040-002-0188-6de Silva, C. S., & Rushton, K. R. (2007). Groundwater recharge estimation using improved soil moisture balance methodology for a tropical climate with distinct dry seasons. Hydrological Sciences Journal, 52(5), 1051–1067. https://doi.org/10.1623/hysj.52.5.1051Dell’Oca, A., Riva, M., & Guadagnini, A. (2017). Moment-based metrics for global sensitivity analysis of hydrological systems. Hydrology and Earth System Sciences, 21(12), 6219–6234. https://doi.org/10.5194/hess-21-6219-2017Dembélé, M., Ceperley, N., Zwart, S. J., Salvadore, E., Mariethoz, G., & Schaefli, B. (2020). Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies. Advances in Water Resources, 143(March). https://doi.org/10.1016/j.advwatres.2020.103667Dembélé, M., Hrachowitz, M., Savenije, H. H. G., Mariéthoz, G., & Schaefli, B. (2020). Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets. Water Resources Research, 56(1), 0–3. https://doi.org/10.1029/2019WR026085Du, H., Fok, H. S., Chen, Y., & Ma, Z. (2020). Characterization of the recharge-storage-runoff process of the Yangtze river source region under climate change. Water (Switzerland), 12(7). https://doi.org/10.3390/w12071940Flint, A. L., Flint, L. E., Hevesi, J. A., D’agnese, F., & Faunt, C. (2000). Estimation of regional recharge and travel time through the unsaturated zone in arid climates. Geophysical Monograph Series, 122, 115–128. https://doi.org/10.1029/GM122p0115Flint, A. L., Flint, L. E., Kwicklis, E. M., Fabryka-Martin, J. T., & Bodvarsson, G. S. (2002). Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods. Hydrogeology Journal, 10(1), 180–204. https://doi.org/10.1007/s10040-001-0169-1García-Echeverri, C. (2022). Evaluación del Modelo Hidrológico Dynamic Water Balance a Escala Diaria en Cuencas Tropicales.GDAL/OGR contributors (2023). GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation.GIMHA. (2021). Descripción del Modelo Conceptual Distribuido de Simulación Hidrológica TETIS v.9 (9.1). Instituto Universitario de Investigación de Ingeniería del Agua y Medio Ambiente - Universitat Politècnica de València. http://lluvia.dihma.upv.es/GIMHA. (2021). Manual de Usuario Programa TETIS v.9. Instituto Universitario de Investigación de Ingeniería del Agua y Medio Ambiente - Universitat Politècnica de València. http://www.etitudela.com/entrenadorcomunicaciones/downloads/gsmmanualsmsconfiguratorl.pdfGogolev, M. I. (2002). Assessing groundwater recharge with two unsaturated zone modeling technologies. Environmental Geology, 42(2–3), 248–258. https://doi.org/10.1007/s00254-001-0494-7Gómez-Blanco, J. A., & Cadena, M. C. (2018). Validación de las Fórmulas de Evapotranspiración de Referencia (ETo) para Colombia. In IDEAM.Gómez-Medina, D. (2023). Assessment of methodologies to estimate aquifer recharge in a Tropical Climate Zone. Universidad Nacional de Colombia.GRASS Development Team (2023). Geographic Resources Analysis Support System (GRASS GIS) Software, Version 8.3. Open Source Geospatial Foundation, USA.Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. Journal of the Irrigation & Drainage Division, 108(IR3), 225–230.Henry, C. M., Allen, D. M., & Huang, J. (2011). Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeology Journal, 19(4), 741–755. https://doi.org/10.1007/s10040-011-0724-3IDEAM. (2013). Aguas Subterráneas en Colombia Una Visión General.IDEAM. (2018). Metodología de la operación estadística variables meteorológicas. Instituto de Hidrología Meteorología y Estudios Ambientales, 113. https://www.gob.pe/institucion/midagri/informes-publicaciones/558835-boletin-estadistico-mensual-el-agro-en-cifras-2020IDEAM. (2018). Protocolo De Modelación Hidrológica e Hidráulica. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023833/Protocolo_Modelacion_HH.pdfIDEAM. (2019). Estudio Nacional del Agua 2018.IDEAM. (2021). Mapa de Coberturas de la Tierra. Metodología Corine Land Cover. Escala 1:100.000. Periodo 2018. Instituto de Hidrología Meteorología y Estudios Ambientales.IDEAM. (2023). Estudio Nacional del Agua. In Ministerio de Medio Ambiente. Instituto de Hidrología Meteorología y Estudios Ambientales.IGAC. (2017). Mapa Digital de Suelos del Departamento de Santander, República de Colombia. Escala 1:100.000. Año 2002. Instituto Geográfico Agustín Codazzi.IGAC. (2017). Mapa Digital de Suelos del Departamento de Norte de Santander, República de Colombia. Escala 1:100.000. Año 2006. Instituto Geográfico Agustín Codazzi.Immerzeel, W. W., & Droogers, P. (2008). Calibration of a distributed hydrological model based on satellite evapotranspiration. Journal of Hydrology, 349(3–4), 411–424. https://doi.org/10.1016/j.jhydrol.2007.11.017JAXA EORC. (2013). GCOM-W1. https://suzaku.eorc.jaxa.jp/GCOM_W/w_amsr2/whats_amsr2.htmlJiang, L., Wu, H., Tao, J., Kimball, J. S., Alfieri, L., & Chen, X. (2020). Satellite-based evapotranspiration in hydrological model calibration. Remote Sensing, 12(3). https://doi.org/10.3390/rs12030428Jimenez, M., Velásquez, N., Jimenez, J. E., Barco, J., Blessent, D., López-Sánchez, J., Castrillón, S. C., Valenzuela, C., Therrien, R., Boico, V. F., & Múnera, J. C. (2022). Sequential surface and subsurface flow modeling in a tropical aquifer under different rainfall scenarios. Environmental Modelling and Software, 149(January). https://doi.org/10.1016/j.envsoft.2022.105328Kunnath-Poovakka, A., Ryu, D., Renzullo, L. J., & George, B. (2016). The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction. Journal of Hydrology, 535, 509–524. https://doi.org/10.1016/j.jhydrol.2016.02.018Li, Y., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2018). Hydrologic model calibration using remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged and ungauged locations. Journal of Hydrology, 557, 897–909. https://doi.org/10.1016/j.jhydrol.2018.01.013Li, Z., Liu, P., Feng, M., Cui, X., He, P., Wang, C., & Zhang, J. (2020). Evaluating the Effect of Transpiration in Hydrologic Model Simulation through Parameter Calibration. Journal of Hydrologic Engineering, 25(5), 04020007. https://doi.org/10.1061/(asce)he.1943-5584.0001895Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation model. JOURNAL OF GEOPHYSICAL RESEARC, 99(D7), 14415–14428. https://doi.org/10.1029/94JD00483Milzow, C., Krogh, P. E., & Bauer-Gottwein, P. (2011). Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment. Hydrology and Earth System Sciences, 15(6), 1729–1743. https://doi.org/10.5194/hess-15-1729-2011Monteith, J. (1965). Evaporation and environment. The State and Movement of Water in Living Organisms. XIXth Symposium, 19.Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785. https://doi.org/10.13031/trans.58.10715PALSAR, J. A. (2006). ALOS Phased Array type L-band Synthetic Aperture Radar. https://asf.alaska.edu/datasets/daac/alos-palsar/Pettitt, A. N. (1979). A Non-Parametric Approach to the Change-Point Problem. Applied Statistics, 28(2), 126. https://doi.org/10.2307/2346729Pohlert, T. (2023). Non-Parametric Trend Tests and Change-Point Detection. CRAN.Pushpalatha, R., Perrin, C., Moine, N. Le, & Andréassian, V. (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420–421, 171–182. https://doi.org/10.1016/j.jhydrol.2011.11.055Rajib, A., Merwade, V., & Yu, Z. (2018). Rationale and Efficacy of Assimilating Remotely Sensed Potential Evapotranspiration for Reduced Uncertainty of Hydrologic Models. Water Resources Research, 54(7), 4615–4637. https://doi.org/10.1029/2017WR021147Riano Neira, M. F., Beltran Huertas, D. C., & Mancipe Munoz, N. A. (2022). Challenges of Using Remote Sensor Products in Colombian Regional Hydrological Models. Proceedings of the 39th IAHR World Congress, 5340–5350. https://doi.org/10.3850/IAHR-39WC252171192022956Richey, A. S., Thomas, B. F., Lo, M. H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5237. https://doi.org/10.1002/2015WR017349Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381Rodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A., Werner, M., García, C., & Burke, S. (2020). Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin – Colombia. Water Resources Management, 34(7), 2179–2199. https://doi.org/10.1007/s11269-019-02236-5Romero-León, P. (2023). Assemblage of satellite information to produce insights into groundwater storage in Colombia’s five major basins. Universidad Nacional de Colombia.Ruggieri, G., Allocca, V., Borfecchia, F., Cusano, D., Marsiglia, P., & De Vita, P. (2021). Testing evapotranspiration estimates based on MODIS satellite data in the assessment of the groundwater recharge of karst aquifers in southern Italy. Water (Switzerland), 13(2). https://doi.org/10.3390/w13020118Running, S. W., Mu, Q., Zhao, M., & Moreno, A. (2019). MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 [Data set]. https://doi.org/https://doi.org/10.5067/MODIS/MOD16A2.006Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(1), 18–39. https://doi.org/10.1007/s10040-001-0176-2Schosinsky N., G. (2006). Cálculo de la recarga potencial de acuíferos mediante un balance hídrico de suelos. Revista Geológica de América Central, 34–35, 13–30. https://doi.org/10.15517/rgac.v0i34-35.4223Schosinsky N., G., & Losilla, M. (2000). Modelo Analítico para Determinar la Infiltración con Base en la Lluvia Mensual. Revista Geológica de América Central, 23, 43–55.Sendiña Nadal, I., & Pérez Muñuzuri, V. (2006). Fundamentos de meteorología.SGC. (2019). Modelo Hidrogeológico Conceptual del Valle Medio Del Magdalena. Planchas 108 Y 119 Puerto Wilches, Barrancabermeja, Sabana de Torres y San Vicente de Chucurí.Shawn Matott, L.-. (2017). OSTRICH – An Optimization Software Toolkit for Research Involving Computational Heuristics Documentation and User ’ s Guide by L . Shawn Matott , Ph . D . State University of New York at Buffalo Center for Computational Research (p. 79). www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html.Singh, A., Panda, S. N., Uzokwe, V. N. E., & Krause, P. (2019). An assessment of groundwater recharge estimation techniques for sustainable resource management. Groundwater for Sustainable Development, 9(April), 100218. https://doi.org/10.1016/j.gsd.2019.100218Singhal, B. B. S., & Gupta, R. P. (2010). Applied Hydrogeology of Fractured Rocks (Springer (ed.); Second Edi).Sobol, I. M. (1990). On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie, 2(1).The European Space Agency. (2009). SMOS. https://earth.esa.int/eogateway/missions/smosThirel, G., Andréassian, V., Perrin, C., Audouy, J. N., Berthet, L., Edwards, P., Folton, N., Furusho, C., Kuentz, A., Lerat, J., Lindström, G., Martin, E., Mathevet, T., Merz, R., Parajka, J., Ruelland, D., & Vaze, J. (2015). Hydrologie sous changement: un protocole d’évaluation pour examiner comment les modèles hydrologiques s’accommodent des bassins changeants. Hydrological Sciences Journal, 60(7–8), 1184–1199. https://doi.org/10.1080/02626667.2014.967248Thornthwaite, C. W., & Mather, J. R. (1957). Instructions and tables for computing potential evapotranspiration and the water balance. Laboratory of Climatology.Tolson, B. A., & Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1), 1–16. https://doi.org/10.1029/2005WR004723Turc, L. (1961). évolution des besoins en eau d’irrigation. évapotranspiration potentielle. Formule climatique simplifiée et mise à jour. Annuaire Agronomie, 12, 13–49.Turc, L. (1954). Le bilan d’eau des sols: Relations entre les precipitations, l’evaporation et l’ecoulement. Annales Agronomiques.Universidad Nacional de Colombia. (2018). Contrato Interadministrativo No. 01226 de 2017 Diseñar e implementar un programa de modelación matemática que permita consolidar y analizar la información obtenida de los monitoreos a las estaciones hidrometeorológicas según requerimientos de los autos (U.USDA-ARS, & Texas A&M. (n.d.). SWAT+ Documentation. Retrieved October 3, 2023, from https://swatplus.gitbook.io/io-docs/Wang, F., Wang, Z., Yang, H., Di, D., Zhao, Y., & Liang, Q. (2020). Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain. Journal of Hydrology, 585(November 2019), 124849. https://doi.org/10.1016/j.jhydrol.2020.124849Westenbroek, J. A., Stephen, M., Engott, V. A., Kelson, & Hunt, R. J. (2018). Water Availability and Use Science Program National Water Quality Program SWB Version 2.0-A Soil-Water-Balance Code for Estimating Net Infiltration and Other Water-Budget Components Book 6, Modeling Techniques. https://pubs.usgs.gov/tm/06/a59/tm6a59.pdfYin, L., Hu, G., Huang, J., Wen, D., Dong, J., Wang, X., & Li, H. (2011). Groundwater-recharge estimation in the Ordos Plateau, China: comparison of methods. Hydrogeology Journal, 19(8), 1563–1575. https://doi.org/10.1007/s10040-011-0777-3Zhang, G., Su, X., Ayantobo, O. O., Feng, K., & Guo, J. (2020). Remote-sensing precipitation and temperature evaluation using soil and water assessment tool with multiobjective calibration in the Shiyang River Basin, Northwest China. Journal of Hydrology, 590(July), 125416. https://doi.org/10.1016/j.jhydrol.2020.125416Zhang, L., Potter, N., Hickel, K., Zhang, Y., & Shao, Q. (2008). Water balance modeling over variable time scales based on the Budyko framework - Model development and testing. Journal of Hydrology, 360(1–4), 117–131. https://doi.org/10.1016/j.jhydrol.2008.07.021Zhang, Y., Chiew, F. H. S., Liu, C., Tang, Q., Xia, J., Tian, J., Kong, D., & Li, C. (2020). Can Remotely Sensed Actual Evapotranspiration Facilitate Hydrological Prediction in Ungauged Regions Without Runoff Calibration? Water Resources Research, 56(1). https://doi.org/10.1029/2019WR026236Zhao, Y., & Wang, L. (2021). Determination of groundwater recharge processes and evaluation of the ‘two water worlds’ hypothesis at a check dam on the Loess Plateau. Journal of Hydrology, 595(July 2020), 125989. https://doi.org/10.1016/j.jhydrol.2021.125989Proyecto MEGIAEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86208/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1022407177.2024.pdf1022407177.2024.pdfTesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf14156962https://repositorio.unal.edu.co/bitstream/unal/86208/4/1022407177.2024.pdffeef7d200ff7fa1f98b967299243b8f0MD54ANEXOS.zipANEXOS.zipAnexosapplication/zip58628046https://repositorio.unal.edu.co/bitstream/unal/86208/3/ANEXOS.zip570e2b2b1d37b7554d7d49a233f0ea26MD53THUMBNAIL1022407177.2024.pdf.jpg1022407177.2024.pdf.jpgGenerated Thumbnailimage/jpeg5219https://repositorio.unal.edu.co/bitstream/unal/86208/5/1022407177.2024.pdf.jpg5ebb323b57dbe7ee8c9980d7ffa014aaMD55unal/86208oai:repositorio.unal.edu.co:unal/862082024-08-25 23:11:15.37Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |