Characterization and modelling of complex motion patterns
Movement analysis is the principle of any interaction with the world and the survival of living beings completely depends on the effciency of such analysis. Visual systems have remarkably developed eficient mechanisms that analyze motion at different levels, allowing to recognize objects in dynamica...
- Autores:
-
Martínez Carrillo, Fabio
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2014
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/52030
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/52030
http://bdigital.unal.edu.co/46280/
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
62 Ingeniería y operaciones afines / Engineering
Motion analysis
Dense Optical Flow
Background substraction
Action recognition
Tracking, gait analysis
Polyp detection
Hummingbird ight patterns
Cardiac MRI analysis
Video-surveillance
Análisis de movimiento
Flujo optico denso
Extracción de fondo
Reconocimiento de acciones
Seguimiento
Análisis de marcha
Detección de polipos
Patrones de vuelo del colibrí
Análisis de sequencias cardiacas MRI
Video-vigilancia
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_36cbbf357b80295c4f27d5164155ee16 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/52030 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Characterization and modelling of complex motion patterns |
title |
Characterization and modelling of complex motion patterns |
spellingShingle |
Characterization and modelling of complex motion patterns 0 Generalidades / Computer science, information and general works 62 Ingeniería y operaciones afines / Engineering Motion analysis Dense Optical Flow Background substraction Action recognition Tracking, gait analysis Polyp detection Hummingbird ight patterns Cardiac MRI analysis Video-surveillance Análisis de movimiento Flujo optico denso Extracción de fondo Reconocimiento de acciones Seguimiento Análisis de marcha Detección de polipos Patrones de vuelo del colibrí Análisis de sequencias cardiacas MRI Video-vigilancia |
title_short |
Characterization and modelling of complex motion patterns |
title_full |
Characterization and modelling of complex motion patterns |
title_fullStr |
Characterization and modelling of complex motion patterns |
title_full_unstemmed |
Characterization and modelling of complex motion patterns |
title_sort |
Characterization and modelling of complex motion patterns |
dc.creator.fl_str_mv |
Martínez Carrillo, Fabio |
dc.contributor.advisor.spa.fl_str_mv |
Manzanera, Antoine (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Martínez Carrillo, Fabio |
dc.contributor.spa.fl_str_mv |
Romero Castro, Eduardo |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works 62 Ingeniería y operaciones afines / Engineering |
topic |
0 Generalidades / Computer science, information and general works 62 Ingeniería y operaciones afines / Engineering Motion analysis Dense Optical Flow Background substraction Action recognition Tracking, gait analysis Polyp detection Hummingbird ight patterns Cardiac MRI analysis Video-surveillance Análisis de movimiento Flujo optico denso Extracción de fondo Reconocimiento de acciones Seguimiento Análisis de marcha Detección de polipos Patrones de vuelo del colibrí Análisis de sequencias cardiacas MRI Video-vigilancia |
dc.subject.proposal.spa.fl_str_mv |
Motion analysis Dense Optical Flow Background substraction Action recognition Tracking, gait analysis Polyp detection Hummingbird ight patterns Cardiac MRI analysis Video-surveillance Análisis de movimiento Flujo optico denso Extracción de fondo Reconocimiento de acciones Seguimiento Análisis de marcha Detección de polipos Patrones de vuelo del colibrí Análisis de sequencias cardiacas MRI Video-vigilancia |
description |
Movement analysis is the principle of any interaction with the world and the survival of living beings completely depends on the effciency of such analysis. Visual systems have remarkably developed eficient mechanisms that analyze motion at different levels, allowing to recognize objects in dynamical and cluttered environments. In artificial vision, there exist a wide spectrum of applications for which the study of complex movements is crucial to recover salient information. Yet each domain may be different in terms of scenarios, complexity and relationships, a common denominator is that all of them require a dynamic understanding that captures the relevant information. Overall, current strategies are highly dependent on the appearance characterization and usually they are restricted to controlled scenarios. This thesis proposes a computational framework that is inspired in known motion perception mechanisms and structured as a set of modules. Each module is in due turn composed of a set of computational strategies that provide qualitative and quantitative descriptions of the dynamic associated to a particular movement. Diverse applications were herein considered and an extensive validation was performed for each of them. Each of the proposed strategies has shown to be reliable at capturing the dynamic patterns of different tasks, identifying, recognizing, tracking and even segmenting objects in sequences of video. |
publishDate |
2014 |
dc.date.issued.spa.fl_str_mv |
2014 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-29T13:22:43Z |
dc.date.available.spa.fl_str_mv |
2019-06-29T13:22:43Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/52030 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/46280/ |
url |
https://repositorio.unal.edu.co/handle/unal/52030 http://bdigital.unal.edu.co/46280/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Departamento de Ingeniería de Sistemas e Industrial |
dc.relation.references.spa.fl_str_mv |
Martínez Carrillo, Fabio (2014) Characterization and modelling of complex motion patterns. Doctorado thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/52030/1/02300486.2014.pdf https://repositorio.unal.edu.co/bitstream/unal/52030/2/02300486.2014.pdf.jpg |
bitstream.checksum.fl_str_mv |
a6315cead74924eb47e79784a08808e4 75f81d6a8bab556a171afc0890c557e4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089442637381632 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Castro, EduardoManzanera, Antoine (Thesis advisor)c8dba60a-659a-4f2c-9aef-81e675a5f35f-1Martínez Carrillo, Fabio68b21a92-2d1c-4aa3-af77-3999f96d65963002019-06-29T13:22:43Z2019-06-29T13:22:43Z2014https://repositorio.unal.edu.co/handle/unal/52030http://bdigital.unal.edu.co/46280/Movement analysis is the principle of any interaction with the world and the survival of living beings completely depends on the effciency of such analysis. Visual systems have remarkably developed eficient mechanisms that analyze motion at different levels, allowing to recognize objects in dynamical and cluttered environments. In artificial vision, there exist a wide spectrum of applications for which the study of complex movements is crucial to recover salient information. Yet each domain may be different in terms of scenarios, complexity and relationships, a common denominator is that all of them require a dynamic understanding that captures the relevant information. Overall, current strategies are highly dependent on the appearance characterization and usually they are restricted to controlled scenarios. This thesis proposes a computational framework that is inspired in known motion perception mechanisms and structured as a set of modules. Each module is in due turn composed of a set of computational strategies that provide qualitative and quantitative descriptions of the dynamic associated to a particular movement. Diverse applications were herein considered and an extensive validation was performed for each of them. Each of the proposed strategies has shown to be reliable at capturing the dynamic patterns of different tasks, identifying, recognizing, tracking and even segmenting objects in sequences of video.Resumen. El análisis del movimiento es el principio de cualquier interacción con el mundo y la supervivencia de los seres vivos depende completamente de la eficiencia de este tipo de análisis. Los sistemas visuales notablemente han desarrollado mecanismos eficientes que analizan el movimiento en diferentes niveles, lo cual permite reconocer objetos en entornos dinámicos y saturados. En visión artificial existe un amplio espectro de aplicaciones para las cuales el estudio de los movimientos complejos es crucial para recuperar información saliente. A pesar de que cada dominio puede ser diferente en términos de los escenarios, la complejidad y las relaciones de los objetos en movimiento, un común denominador es que todos ellos requieren una comprensión dinámica para capturar información relevante. En general, las estrategias actuales son altamente dependientes de la caracterización de la apariencia y por lo general están restringidos a escenarios controlados. Esta tesis propone un marco computacional que se inspira en los mecanismos de percepción de movimiento conocidas y esta estructurado como un conjunto de módulos. Cada módulo esta a su vez compuesto por un conjunto de estrategias computacionales que proporcionan descripciones cualitativas y cuantitativas de la dinámica asociada a un movimiento particular. Diversas aplicaciones fueron consideradas en este trabajo y una extensa validación se llevó a cabo para cada uno de ellas. Cada una de las estrategias propuestas ha demostrado ser fiable en la captura de los patrones dinámicos de diferentes tareas identificando, reconociendo, siguiendo e incluso segmentando objetos en secuencias de video.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e IndustrialDepartamento de Ingeniería de Sistemas e IndustrialMartínez Carrillo, Fabio (2014) Characterization and modelling of complex motion patterns. Doctorado thesis, Universidad Nacional de Colombia.0 Generalidades / Computer science, information and general works62 Ingeniería y operaciones afines / EngineeringMotion analysisDense Optical FlowBackground substractionAction recognitionTracking, gait analysisPolyp detectionHummingbird ight patternsCardiac MRI analysisVideo-surveillanceAnálisis de movimientoFlujo optico densoExtracción de fondoReconocimiento de accionesSeguimientoAnálisis de marchaDetección de poliposPatrones de vuelo del colibríAnálisis de sequencias cardiacas MRIVideo-vigilanciaCharacterization and modelling of complex motion patternsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL02300486.2014.pdfapplication/pdf2710955https://repositorio.unal.edu.co/bitstream/unal/52030/1/02300486.2014.pdfa6315cead74924eb47e79784a08808e4MD51THUMBNAIL02300486.2014.pdf.jpg02300486.2014.pdf.jpgGenerated Thumbnailimage/jpeg3731https://repositorio.unal.edu.co/bitstream/unal/52030/2/02300486.2014.pdf.jpg75f81d6a8bab556a171afc0890c557e4MD52unal/52030oai:repositorio.unal.edu.co:unal/520302024-02-29 23:08:38.158Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |