Estudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonatación
ilustraciones, diagramas, tablas
- Autores:
-
Romero López, José Miguel
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79238
- Palabra clave:
- 690 - Construcción de edificios::691 - Materiales de construcción
Concreto
Morteros
Áridos reciclados
Carbonatación
Materiales de construcción
Construcción
Concrete
Mortars
Recycled aggregates
Carbonation
Construction materials
Construction
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_36c512e7b789bb9cb11a46066dea898d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79238 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonatación |
dc.title.translated.eng.fl_str_mv |
Study of the durability of mortars made with recycled aggregates exposed to the environmental conditions of the city of Medellín against the phenomenon of carbonation |
title |
Estudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonatación |
spellingShingle |
Estudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonatación 690 - Construcción de edificios::691 - Materiales de construcción Concreto Morteros Áridos reciclados Carbonatación Materiales de construcción Construcción Concrete Mortars Recycled aggregates Carbonation Construction materials Construction |
title_short |
Estudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonatación |
title_full |
Estudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonatación |
title_fullStr |
Estudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonatación |
title_full_unstemmed |
Estudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonatación |
title_sort |
Estudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonatación |
dc.creator.fl_str_mv |
Romero López, José Miguel |
dc.contributor.advisor.spa.fl_str_mv |
Arias Jaramillo, Yhan Paul |
dc.contributor.author.spa.fl_str_mv |
Romero López, José Miguel |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Construcción |
dc.subject.ddc.spa.fl_str_mv |
690 - Construcción de edificios::691 - Materiales de construcción |
topic |
690 - Construcción de edificios::691 - Materiales de construcción Concreto Morteros Áridos reciclados Carbonatación Materiales de construcción Construcción Concrete Mortars Recycled aggregates Carbonation Construction materials Construction |
dc.subject.proposal.spa.fl_str_mv |
Concreto Morteros Áridos reciclados Carbonatación Materiales de construcción Construcción |
dc.subject.proposal.eng.fl_str_mv |
Concrete Mortars Recycled aggregates Carbonation Construction materials Construction |
description |
ilustraciones, diagramas, tablas |
publishDate |
2020 |
dc.date.issued.spa.fl_str_mv |
2020-09-25 |
dc.date.accessioned.spa.fl_str_mv |
2021-02-15T14:30:41Z |
dc.date.available.spa.fl_str_mv |
2021-02-15T14:30:41Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79238 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79238 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alaejos Gutiérrez, P., Sánchez de Juan, M., Domingo Cabo, A., Lázaro, C., Monleón, S., & Palacios, F. J. (2011). Puente sobre el río Turia entre Manises y Paterna (Valencia). Primera experiencia internacional de empleo de hormigón reciclado estructural en un puente atirantado (Parte II). Cemento Hormigón, 946, 70–87. Amables, O. C. (2019). Construir ciudades amables. 247–262. AMVA. (n.d.). Área Metropolitana del Valle de Aburrá. Retrieved May 21, 2020, from https://www.metropol.gov.co/ Ann, K. Y., Moon, H. Y., Kim, Y. B., & Ryou, J. (2008). Durability of recycled aggregate concrete using pozzolanic materials. Waste Management, 28(6), 993–999. https://doi.org/10.1016/j.wasman.2007.03.003 Arandigoyen, M., & Álvarez, J. . (2006). Proceso de carbonatación en pastas de cal con distinta relación agua/conglomerante. Materiales de Construcción, 56(281), 5–18. Barrera Valdes, H. (2007). Carbonatación en edificios de concreto: dióxido de carbono, el enemigo silencioso. Noticreto, 84, 56–65. Basheer, L., Kropp, J., & Cleland, D. J. (2001). Assessment of the durability of concrete from its permeation properties: A review. Construction and Building Materials, 15(2–3), 93–103. https://doi.org/10.1016/S0950-0618(00)00058-1 Bedoya, C, & Dzul, L. (2015). Concrete with recycled aggregates as urban sustainability project. Revista Ingenieria de Construccion, 30(2), 99–108. https://doi.org/10.4067/S0718-50732015000200002 Bedoya, Carlos. (2015). Del residuo al material. Minería a la inversa. 160. Bedoya Montoya, C. M. (2011). Construcción sostenible para volver al camino. Blengini, G. A. (2009). Life cycle of buildings, demolition and recycling potential: A case study in Turin, Italy. Building and Environment, 44(2), 319–330. https://doi.org/10.1016/j.buildenv.2008.03.007 Bunge, M. A. (2004). Emergencia y convergencia. 400. Cartuxo, F., De Brito, J., Evangelista, L., Jiménez, J. R., & Ledesma, E. F. (2016). Increased durability of concrete made with fine recycled concrete aggregates using superplasticizers. Materials, 9(2). https://doi.org/10.3390/ma9020098 Castaño, J. O., Robayo, E., & Sánchez, É. H. (2013). Materiales de construcción sostenibles: comportamiento mecánico y durabilidad de morteros con cenizas volantes activadas alcalinamente. Tecnura, 17(2), 79–89. https://doi.org/10.14483/22487638.7225 Ceramitec, leading trade fair for the ceramics industry. (n.d.). Retrieved May 19, 2020, from https://www.ceramitec.com/en/ DANE. (2018). Déficit habitacional. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/deficit-habitacional De Melo, A. B., Gonalves, A. F., & Martins, I. M. (2011). Construction and demolition waste generation and management in Lisbon (Portugal). Resources, Conservation and Recycling, 55(12), 1252–1264. https://doi.org/10.1016/j.resconrec.2011.06.010 Ding, T., Xiao, J., Qin, F., & Duan, Z. (2020). Mechanical behavior of 3D printed mortar with recycled sand at early ages. Construction and Building Materials, 248. https://doi.org/10.1016/j.conbuildmat.2020.118654 Domingo-Cabo, A., Lázaro, C., López-Gayarre, F., Serrano-López, M. A., Serna, P., & Castaño-Tabares, J. O. (2009). Creep and shrinkage of recycled aggregate concrete. Construction and Building Materials, 23(7), 2545–2553. https://doi.org/10.1016/j.conbuildmat.2009.02.018 Emvarias E.S.P. (2018). INDICADORES AMBIENTALES MEDELLÍN 2018. Estanqueiro, B., Dinis Silvestre, J., de Brito, J., & Duarte Pinheiro, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161 Evangelista, L., & de Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 32(1), 9–14. https://doi.org/10.1016/j.cemconcomp.2009.09.005 Evangelista, L., & De Brito, J. (2014). Concrete with fine recycled aggregates: A review. European Journal of Environmental and Civil Engineering, 18(2), 129–172. https://doi.org/10.1080/19648189.2013.851038 Flower, D. J. M., & Sanjayan, J. G. (2007). Green house gas emissions due to concrete manufacture. International Journal of Life Cycle Assessment, 12(5), 282–288. https://doi.org/10.1065/lca2007.05.327 Galán García, I., Andrade Perdrix, C., Prieto Rábade, M., Mora Peris, P., López Aguí, J. C., & Sanjuán Barbudo, M. Á. (2010). Estudio del efecto sumidero de CO2 de los materiales de base cemento. Cemento Homigón, 939, 70–83. Garciandía, J. A. (2011). Pensar sistémico. Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021 Ge, X. J., Livesey, P., Wang, J., Huang, S., He, X., & Zhang, C. (2017). Deconstruction waste management through 3d reconstruction and bim: a case study. Visualization in Engineering, 5(1). https://doi.org/10.1186/s40327-017-0050-5 Global Aggregates Information Network. (2016). GLOBAL DEVELOPMENTS IN THE AGGREGATES INDUSTRY Global Aggregates Information Network. 12. Global Aggregates Information Network. (2018). UEPG - GAIN – Global Aggregates Information Network. http://www.uepg.eu/media-room/links/gain-global-aggregates-information-network González-Taboada, I., González-Fonteboa, B., Martínez-Abella, F., & Carro-López, D. (2016). Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Materiales de Construcción, 66(323), e089. https://doi.org/10.3989/mc.2016.06415 Heidegger, M. (1995). Construir, habitar, pensar. Hendriks, C. A., Worrell, E., Jager, D. De, Blok, K., & Riemer, P. (2003). Emission Reduction of Greenhouse Gases from the Cement Industry. Greenhouse Gas Control Technologies Conference, 1–11. Higuchi, T., Morioka, M., Yoshioka, I., & Yokozeki, K. (2014). Development of a new ecological concrete with CO2 emissions below zero. Construction and Building Materials, 67(PART C), 338–343. https://doi.org/10.1016/j.conbuildmat.2014.01.029 Honic, M., Kovacic, I., & Rechberger, H. (2019). Improving the recycling potential of buildings through Material Passports (MP): An Austrian case study. Journal of Cleaner Production, 217, 787–797. https://doi.org/10.1016/j.jclepro.2019.01.212 Icontec. (2009). NTC 77. 571, 85. ICONTEC. (2006). Sello Ambiental Colombiano. Ministerio de Ambiente y Desarrollo Sostenible, 8, 16. https://www.minambiente.gov.co/index.php/component/content/article?id=366:plantilla-asuntos-ambientales-y-sectorial-y-urbana-19#ntc IEA. (2017). Energy Technology Perspectives 2017 Catalysing Energy Technology Transformations Together Secure Sustainable. www.iea.org/etp2017. IEA. (2020). Global Energy Review 2020. Iea. https://www.iea.org/reports/global-energy-review-2020 Instituto Nacional de Ecología. (n.d.). Retrieved May 19, 2020, from http://www2.inecc.gob.mx/publicaciones2/libros/265/referencias.html Ismail, S., & Ramli, M. (2013). Engineering properties of treated recycled concrete aggregate (RCA) for structural applications. Construction and Building Materials, 44, 464–476. https://doi.org/10.1016/j.conbuildmat.2013.03.014 J., Salazar, A. (2002). Síntesis de la tecnología del concreto. Una manera de entender a los materiales compuestos. Corporación Construir, 3 edición, 1–9. Jiménez Herrero, L. (1999). Cambio global, desarrollo sostenible y coevolución. In Sostenible ? (Issue 1, pp. 37–63). https://doi.org/10.5821/sostenible.v0i1.1091 Kou, S C, & Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032 Kou, Shi Cong, & Poon, C. S. (2009). Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Construction and Building Materials, 23(8), 2877–2886. https://doi.org/10.1016/j.conbuildmat.2009.02.009 Kou, Shi Cong, Poon, C. S., & Dixon, C. (2007). Influence of fly ash as cement replacement on the properties of recycled aggregate concrete. Journal of Materials in Civil Engineering, 19(9), 709–717. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(709) Kou, Shi Cong, Poon, C. S., & Etxeberria, M. (2014). Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cement and Concrete Composites, 53, 73–82. https://doi.org/10.1016/j.cemconcomp.2014.06.001 Langer, W., Drew, L., & Sachs, J. (2004). Aggregate and the Environment. http://agris.fao.org/agris-search/search.do?recordID=US201300100395 Lehne, J., & Preston, F. (2018). Chatham House Report Making Concrete Change Innovation in Low-carbon Cement and Concrete The Royal Institute of International Affairs, Chatham House Report Series, www.chathamhouse.org/sites/default/files/publications/research/2018‐06‐13‐makingconcrete‐ c. www.chathamhouse.org Leng, F., Feng, N., & Lu, X. (2000). Experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cement and Concrete Research, 30(6), 989–992. https://doi.org/10.1016/S0008-8846(00)00250-7 Liu, C., Zhu, C., Bai, G., Quan, Z., & Wu, J. (2019). Experimental investigation on compressive properties and carbon emission assessment of concrete hollow block masonry incorporating recycled concrete aggregates. Applied Sciences (Switzerland), 9(22). https://doi.org/10.3390/app9224870 Lyu, W.-Q., & Han, L.-H. (2019). Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes. Journal of Constructional Steel Research, 155, 438–459. https://doi.org/10.1016/j.jcsr.2018.12.028 Maduabuchukwu Nwakaire, C., Poh Yap, S., Chuen Onn, C., Wah Yuen, C., & Adebayo Ibrahim, H. (2020). Utilisation of recycled concrete aggregates for sustainable highway pavement applications; a review. Construction and Building Materials, 235, 117444. https://doi.org/10.1016/j.conbuildmat.2019.117444 Marzouk, M., & Azab, S. (2014). Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics Environmental and economic impact assessment Pollutant emissions Waste recycling Global warming potential (GWP) System dynamics modeling. 82, 41–49. https://doi.org/10.1016/j.resconrec.2013.10.015 Mefteh, H., Kebaïli, O., Oucief, H., Berredjem, L., & Arabi, N. (2013). Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. Journal of Cleaner Production, 54, 282–288. https://doi.org/10.1016/j.jclepro.2013.05.009 Ministerio de ambiente y desarrollo. (2012). Criterios ambientales para el diseño y construcción de vivienda urbana. In Articulo. https://www.minambiente.gov.co/index.php/component/content/article/2054-plantilla-asuntos-ambientales-y-sectorial-y-urbana-sin-galeria-88 Morin, E. (2008). Introducción al pensamiento complejo. Otsuki, N., Miyazato, S. I., & Yodsudjai, W. (2003). Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. Journal of Materials in Civil Engineering, 15(5), 443–451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443) Palacios, M., Bowen, P., Kappl, M., Butt, H. J., Stuer, M., Pecharromán, C., Aschauer, U., & Puertas, F. (2012). Fuerzas de repulsión de aditivos superplastificantes en sistemas de escoria granulada de horno alto en medios alcalinos, desde medidas de AFM a propiedades reológicas. Materiales de Construccion, 62(308), 489–513. https://doi.org/10.3989/mc.2012.01612 Pantini, S., & Rigamonti, L. (2020). Is selective demolition always a sustainable choice? Waste Management, 103, 169–176. https://doi.org/10.1016/j.wasman.2019.12.033 Para la Naturaleza | Los depósitos submarinos de arena en Puerto Rico. (2020). https://www.paralanaturaleza.org/los-depositos-submarinos-de-arena-en-puerto-rico/ Pedro, D., De Brito, J., & Evangelista, L. (2014). Influence of the use of recycled concrete aggregates from different sources on structural concrete. Construction and Building Materials, 71(2014), 141–151. https://doi.org/10.1016/j.conbuildmat.2014.08.030 Pereira, P., Evangelista, L., & De Brito, J. (2012). The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 34(9), 1044–1052. https://doi.org/10.1016/j.cemconcomp.2012.06.009 Poon, C. S., Shui, Z. H., Lam, L., Fok, H., & Kou, S. C. (2004). Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and Concrete Research, 34(1), 31–36. https://doi.org/10.1016/S0008-8846(03)00186-8 Prensa, C. De, & Colsubsidio, E. C. De. (2020). En CONSTRUVERDE Colombia 2016 se formalizará la Alianza “ Agenda 2030 de Construcción Sostenible ” para combatir el cambio climático y mejorar la calidad de vida. 1–4. Putzmeister. (2016). Plastificantes y superplastificantes: aditivos para la trabajabilidad del hormigón. http://bestsupportunderground.com/plastificantes-hormigon/ Rakhshan, K., Morel, J. C., Alaka, H., & Charef, R. (2020). Components reuse in the building sector – A systematic review. In Waste Management and Research (Vol. 38, Issue 4, pp. 347–370). SAGE Publications Ltd. https://doi.org/10.1177/0734242X20910463 Ramirez, C., & Pineda, M. (Ministerio D. A. Y. D. S. (2017). Resolución No. 0472. In Resolución No. 0472 (p. 11). http://www.minambiente.gov.co/images/normativa/app/resoluciones/3a-RESOLUCION-472-DE-2017.pdf Shima, H., Tateyashiki, H., Matsuhashi, R., & Yoshida, Y. (2005). An advanced concrete recycling technology and its applicability assessment through input-output analysis. Journal of Advanced Concrete Technology, 3(1), 53–67. https://doi.org/10.3151/jact.3.53 Siddique, R. (2003). Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete. Cement and Concrete Research, 33(4), 539–547. https://doi.org/10.1016/S0008-8846(02)01000-1 Situación, L. A., Mundo, D. E. L., Gardner, G., Prugh, T., Exner-pirot, H., Hagens, N. J., Loh, E. H., Machalaba, C. C., & Victor, P. A. (2015). Hacer Frente a Las Amenazas a La Sostenibilidad. Sostenible, G. D. de C. y C. A. M. de A. y D., & Gobierno. (2019). Cierre de ciclos de materiales, innovación tecnológica, colaboración y nuevos modelos de negocio Estrategia Nacional de Economía Circular Contenido. http://www.andi.com.co/Uploads/Estrategia Nacional de EconÃ3mia Circular-2019 Final.pdf_637176135049017259.pdf Tam, V. W. Y., Gao, X. F., Tam, C. M., & Chan, C. H. (2008). New approach in measuring water absorption of recycled aggregates. Construction and Building Materials, 22(3), 364–369. https://doi.org/10.1016/j.conbuildmat.2006.08.009 Tam, V. W. Y., Soomro, M., & Evangelista, A. C. J. (2018). A review of recycled aggregate in concrete applications (2000–2017). Construction and Building Materials, 172, 272–292. https://doi.org/10.1016/j.conbuildmat.2018.03.240 Tam, V. W. Y., & Tam, C. M. (2007). Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach. Journal of Materials Science, 42(10), 3592–3602. https://doi.org/10.1007/s10853-006-0379-y TERRITORIO, M. D. V. C. Y. (n.d.). Resolución 0549 de 2015.Pdf. Tertre, J., Moreno, A., & 3 Recycling. (2010). Hormigón con árido reciclado. http://www.hormigonespecial.com/~pdfs/MONOGRAFIA_RECICLADO.pdf UN periódico digital. (2020). Una tecnología equivocada, el problema del Relleno Sanitario Doña Juana. https://unperiodico.unal.edu.co/pages/detail/una-tecnologia-equivocada-el-problema-del-relleno-sanitario-dona-juana/ UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA - UPME. (2018). Resolución 463 de 2018 (p. 58). http://www1.upme.gov.co/Normatividad/463-2018.pdf US Energy Information Administration. (2016). International Energy Outlook 2016: Chapter 4 - Coal. 2016, 61–79. https://www.eia.gov/outlooks/ieo/pdf/coal.pdf Vallejo Clavijo, A. C. (2012). Pensar el construir, el habitar y la técnica: una reflexión sobre la Cuaternidad: la tierra, el cielo, los divinos y los mortales desde Heidegger. Hallazgos, 9(18), 53–65. https://doi.org/10.15332/s1794-3841.2012.0018.03 Vieira, C. S. (2020). Valorization of Fine-Grain Construction and Demolition (C&D) Waste in Geosynthetic Reinforced Structures. Waste and Biomass Valorization, 11(4), 1615–1626. https://doi.org/10.1007/s12649-018-0480-x Vurlod, C. (2014). Recyclage du béton pour des gabions structurels. Wang, C., Xiao, J., Zhang, C., & Xiao, X. (2020). Structural health monitoring and performance analysis of a 12-story recycled aggregate concrete structure. Engineering Structures, 205. https://doi.org/10.1016/j.engstruct.2019.110102 Wang, L., Wang, J., Xu, Y., Cui, L., Qian, X., Chen, P., & Fang, Y. (2019). Consolidating recycled concrete aggregates using phosphate solution. Construction and Building Materials, 200, 703–712. https://doi.org/10.1016/j.conbuildmat.2018.12.129 Xiao, J., Li, J., & Zhang, C. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 35(6), 1187–1194. https://doi.org/10.1016/j.cemconres.2004.09.020 Xiao, J., Li, W., Corr, D. J., & Shah, S. P. (2013). Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete. Cement and Concrete Research, 52, 82–99. https://doi.org/10.1016/j.cemconres.2013.05.004 Xiao, J., Li, W., Fan, Y., & Huang, X. (2012). An overview of study on recycled aggregate concrete in China (1996-2011). Construction and Building Materials, 31, 364–383. https://doi.org/10.1016/j.conbuildmat.2011.12.074 Xiao, J., Li, W., Sun, Z., Lange, D. A., & Shah, S. P. (2013). Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cement and Concrete Composites, 37(1), 276–292. https://doi.org/10.1016/j.cemconcomp.2013.01.006 Yang, H., Xia, J., Thompson, J. R., & Flower, R. J. (2017). Urban construction and demolition waste and landfill failure in Shenzhen, China. Waste Management, 63, 393–396. https://doi.org/10.1016/j.wasman.2017.01.026 Zega, C. J., & Di Maio, Á. A. (2011). Use of recycled fine aggregate in concretes with durable requirements. Waste Management, 31(11), 2336–2340. https://doi.org/10.1016/j.wasman.2011.06.011 Zolotukhin, S. N., Byndyukova, E. A., & Chigarev, A. G. (2020). Experience of Development and Implementation of a House Project by an Architect. IOP Conference Series: Materials Science and Engineering, 753(4). https://doi.org/10.1088/1757-899X/753/4/042031 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
107 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.city.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Arquitectura - Maestría en Construcción |
dc.publisher.department.spa.fl_str_mv |
Escuela de construcción |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79238/4/1032459979.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/79238/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/79238/6/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79238/7/1032459979.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
e9de1640967ef8918d8083914e7a4738 cccfe52f796b7c63423298c2d3365fc6 217700a34da79ed616c2feb68d4c5e06 2907b3c8fb8c6a019439a60d835e319b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089419329634304 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arias Jaramillo, Yhan Paul7a790156-f2cc-4d0f-80e1-93ad67474bb9Romero López, José Miguelad0fdfca-c577-4672-9392-fbe6aaf79ed4Grupo de Investigación en Construcción2021-02-15T14:30:41Z2021-02-15T14:30:41Z2020-09-25https://repositorio.unal.edu.co/handle/unal/79238Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl crecimiento poblacional y la urbanización de las ciudades demanda una gran cantidad de recursos naturales no renovables que ejerce una presión considerable sobre el medio ambiente, asimismo, las actividades de la construcción generan una enorme cantidad de residuos de construcción y demolición (RCD) que en países como Colombia son escasamente aprovechados por lo que terminan dispuestos en rellenos sanitarios. A través de diferentes investigaciones se ha podido conocer el desempeño mecánico y la durabilidad de materiales fabricados a partir de estos residuos, por lo que se ha planteado la posibilidad de incorporar una fracción de material reciclado proveniente de residuos de concreto como reemplazo del árido grueso en la fabricación de nuevos elementos de concreto. Sin embargo, los áridos finos de concretos reciclados (FRCA) no son utilizados en grandes proporciones debido a las características propias de un material poroso y con una alta absorción, de manera que el grado de aprovechamiento es muy reducido. Mediante un estudio de las variables que afectan la durabilidad de los áridos reciclados, junto con un análisis estadístico ligado al desarrollo de la fase experimental de este trabajo de profundización, se obtuvieron datos acerca del desempeño por durabilidad de morteros fabricados a partir de residuos de concreto frente al fenómeno de la carbonatación en muestras expuestas a las condiciones ambientales de la ciudad de Medellín. Como resultado, la resistencia a la carbonatación para estos morteros siguiendo los modelos propuestos por los autores, fue de 41.6 años. Lo que deja abierta la posibilidad de utilizar los FRCA en la fabricación de nuevos morteros con aplicaciones en la construcción (Texto tomado de la fuente)Population growth and urbanization of cities demand a large amount of non-renewable natural resources, which put considerable pressure on the sources of resources, and construction activities generate a huge amount of construction and demolition waste (RCD), which in countries like Colombia are hardly used, so they end up disposed of in landfills. Through different investigations, it has been possible to know the mechanical performance and durability of materials manufactured from this waste, therefore, the possibility of incorporating a fraction of recycled material from concrete waste as a replacement for coarse aggregate has been raised, in the manufacture of new concrete elements. However, the recycled fine concrete aggregates (FRCA) are not used in large proportions due to their characteristics, typical of a porous material and with a high absorption, so the degree of use is very low. Through a study of the variables that affect the durability of recycled aggregates, together with a statistical analysis linked to the development of the experimental phase of this research work, data were obtained about the durability performance of mortars made from concrete waste against the carbonation phenomenon. The carbonation resistance for these mortars, following the models proposed by the authors, was 41.6 years. This leaves open the possibility of using FRCAs in the manufacture of new mortars with applications in constructionMaestríaMagíster en ConstrucciónÁrea Curricular de Construcción y Hábitat107 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Arquitectura - Maestría en ConstrucciónEscuela de construcciónFacultad de ArquitecturaMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín690 - Construcción de edificios::691 - Materiales de construcciónConcretoMorterosÁridos recicladosCarbonataciónMateriales de construcciónConstrucciónConcreteMortarsRecycled aggregatesCarbonationConstruction materialsConstructionEstudio de la durabilidad de morteros fabricados con áridos reciclados expuestos a las condiciones ambientales de la ciudad de Medellín frente al fenómeno de la carbonataciónStudy of the durability of mortars made with recycled aggregates exposed to the environmental conditions of the city of Medellín against the phenomenon of carbonationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMedellín, ColombiaAlaejos Gutiérrez, P., Sánchez de Juan, M., Domingo Cabo, A., Lázaro, C., Monleón, S., & Palacios, F. J. (2011). Puente sobre el río Turia entre Manises y Paterna (Valencia). Primera experiencia internacional de empleo de hormigón reciclado estructural en un puente atirantado (Parte II). Cemento Hormigón, 946, 70–87.Amables, O. C. (2019). Construir ciudades amables. 247–262.AMVA. (n.d.). Área Metropolitana del Valle de Aburrá. Retrieved May 21, 2020, from https://www.metropol.gov.co/Ann, K. Y., Moon, H. Y., Kim, Y. B., & Ryou, J. (2008). Durability of recycled aggregate concrete using pozzolanic materials. Waste Management, 28(6), 993–999. https://doi.org/10.1016/j.wasman.2007.03.003Arandigoyen, M., & Álvarez, J. . (2006). Proceso de carbonatación en pastas de cal con distinta relación agua/conglomerante. Materiales de Construcción, 56(281), 5–18.Barrera Valdes, H. (2007). Carbonatación en edificios de concreto: dióxido de carbono, el enemigo silencioso. Noticreto, 84, 56–65.Basheer, L., Kropp, J., & Cleland, D. J. (2001). Assessment of the durability of concrete from its permeation properties: A review. Construction and Building Materials, 15(2–3), 93–103. https://doi.org/10.1016/S0950-0618(00)00058-1Bedoya, C, & Dzul, L. (2015). Concrete with recycled aggregates as urban sustainability project. Revista Ingenieria de Construccion, 30(2), 99–108. https://doi.org/10.4067/S0718-50732015000200002Bedoya, Carlos. (2015). Del residuo al material. Minería a la inversa. 160.Bedoya Montoya, C. M. (2011). Construcción sostenible para volver al camino.Blengini, G. A. (2009). Life cycle of buildings, demolition and recycling potential: A case study in Turin, Italy. Building and Environment, 44(2), 319–330. https://doi.org/10.1016/j.buildenv.2008.03.007Bunge, M. A. (2004). Emergencia y convergencia. 400.Cartuxo, F., De Brito, J., Evangelista, L., Jiménez, J. R., & Ledesma, E. F. (2016). Increased durability of concrete made with fine recycled concrete aggregates using superplasticizers. Materials, 9(2). https://doi.org/10.3390/ma9020098Castaño, J. O., Robayo, E., & Sánchez, É. H. (2013). Materiales de construcción sostenibles: comportamiento mecánico y durabilidad de morteros con cenizas volantes activadas alcalinamente. Tecnura, 17(2), 79–89. https://doi.org/10.14483/22487638.7225Ceramitec, leading trade fair for the ceramics industry. (n.d.). Retrieved May 19, 2020, from https://www.ceramitec.com/en/DANE. (2018). Déficit habitacional. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/deficit-habitacionalDe Melo, A. B., Gonalves, A. F., & Martins, I. M. (2011). Construction and demolition waste generation and management in Lisbon (Portugal). Resources, Conservation and Recycling, 55(12), 1252–1264. https://doi.org/10.1016/j.resconrec.2011.06.010Ding, T., Xiao, J., Qin, F., & Duan, Z. (2020). Mechanical behavior of 3D printed mortar with recycled sand at early ages. Construction and Building Materials, 248. https://doi.org/10.1016/j.conbuildmat.2020.118654Domingo-Cabo, A., Lázaro, C., López-Gayarre, F., Serrano-López, M. A., Serna, P., & Castaño-Tabares, J. O. (2009). Creep and shrinkage of recycled aggregate concrete. Construction and Building Materials, 23(7), 2545–2553. https://doi.org/10.1016/j.conbuildmat.2009.02.018Emvarias E.S.P. (2018). INDICADORES AMBIENTALES MEDELLÍN 2018.Estanqueiro, B., Dinis Silvestre, J., de Brito, J., & Duarte Pinheiro, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161Evangelista, L., & de Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 32(1), 9–14. https://doi.org/10.1016/j.cemconcomp.2009.09.005Evangelista, L., & De Brito, J. (2014). Concrete with fine recycled aggregates: A review. European Journal of Environmental and Civil Engineering, 18(2), 129–172. https://doi.org/10.1080/19648189.2013.851038Flower, D. J. M., & Sanjayan, J. G. (2007). Green house gas emissions due to concrete manufacture. International Journal of Life Cycle Assessment, 12(5), 282–288. https://doi.org/10.1065/lca2007.05.327Galán García, I., Andrade Perdrix, C., Prieto Rábade, M., Mora Peris, P., López Aguí, J. C., & Sanjuán Barbudo, M. Á. (2010). Estudio del efecto sumidero de CO2 de los materiales de base cemento. Cemento Homigón, 939, 70–83.Garciandía, J. A. (2011). Pensar sistémico.Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021Ge, X. J., Livesey, P., Wang, J., Huang, S., He, X., & Zhang, C. (2017). Deconstruction waste management through 3d reconstruction and bim: a case study. Visualization in Engineering, 5(1). https://doi.org/10.1186/s40327-017-0050-5Global Aggregates Information Network. (2016). GLOBAL DEVELOPMENTS IN THE AGGREGATES INDUSTRY Global Aggregates Information Network. 12.Global Aggregates Information Network. (2018). UEPG - GAIN – Global Aggregates Information Network. http://www.uepg.eu/media-room/links/gain-global-aggregates-information-networkGonzález-Taboada, I., González-Fonteboa, B., Martínez-Abella, F., & Carro-López, D. (2016). Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Materiales de Construcción, 66(323), e089. https://doi.org/10.3989/mc.2016.06415Heidegger, M. (1995). Construir, habitar, pensar.Hendriks, C. A., Worrell, E., Jager, D. De, Blok, K., & Riemer, P. (2003). Emission Reduction of Greenhouse Gases from the Cement Industry. Greenhouse Gas Control Technologies Conference, 1–11.Higuchi, T., Morioka, M., Yoshioka, I., & Yokozeki, K. (2014). Development of a new ecological concrete with CO2 emissions below zero. Construction and Building Materials, 67(PART C), 338–343. https://doi.org/10.1016/j.conbuildmat.2014.01.029Honic, M., Kovacic, I., & Rechberger, H. (2019). Improving the recycling potential of buildings through Material Passports (MP): An Austrian case study. Journal of Cleaner Production, 217, 787–797. https://doi.org/10.1016/j.jclepro.2019.01.212Icontec. (2009). NTC 77. 571, 85.ICONTEC. (2006). Sello Ambiental Colombiano. Ministerio de Ambiente y Desarrollo Sostenible, 8, 16. https://www.minambiente.gov.co/index.php/component/content/article?id=366:plantilla-asuntos-ambientales-y-sectorial-y-urbana-19#ntcIEA. (2017). Energy Technology Perspectives 2017 Catalysing Energy Technology Transformations Together Secure Sustainable. www.iea.org/etp2017.IEA. (2020). Global Energy Review 2020. Iea. https://www.iea.org/reports/global-energy-review-2020Instituto Nacional de Ecología. (n.d.). Retrieved May 19, 2020, from http://www2.inecc.gob.mx/publicaciones2/libros/265/referencias.htmlIsmail, S., & Ramli, M. (2013). Engineering properties of treated recycled concrete aggregate (RCA) for structural applications. Construction and Building Materials, 44, 464–476. https://doi.org/10.1016/j.conbuildmat.2013.03.014J., Salazar, A. (2002). Síntesis de la tecnología del concreto. Una manera de entender a los materiales compuestos. Corporación Construir, 3 edición, 1–9.Jiménez Herrero, L. (1999). Cambio global, desarrollo sostenible y coevolución. In Sostenible ? (Issue 1, pp. 37–63). https://doi.org/10.5821/sostenible.v0i1.1091Kou, S C, & Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032Kou, Shi Cong, & Poon, C. S. (2009). Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Construction and Building Materials, 23(8), 2877–2886. https://doi.org/10.1016/j.conbuildmat.2009.02.009Kou, Shi Cong, Poon, C. S., & Dixon, C. (2007). Influence of fly ash as cement replacement on the properties of recycled aggregate concrete. Journal of Materials in Civil Engineering, 19(9), 709–717. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(709)Kou, Shi Cong, Poon, C. S., & Etxeberria, M. (2014). Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cement and Concrete Composites, 53, 73–82. https://doi.org/10.1016/j.cemconcomp.2014.06.001Langer, W., Drew, L., & Sachs, J. (2004). Aggregate and the Environment. http://agris.fao.org/agris-search/search.do?recordID=US201300100395Lehne, J., & Preston, F. (2018). Chatham House Report Making Concrete Change Innovation in Low-carbon Cement and Concrete The Royal Institute of International Affairs, Chatham House Report Series, www.chathamhouse.org/sites/default/files/publications/research/2018‐06‐13‐makingconcrete‐ c. www.chathamhouse.orgLeng, F., Feng, N., & Lu, X. (2000). Experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cement and Concrete Research, 30(6), 989–992. https://doi.org/10.1016/S0008-8846(00)00250-7Liu, C., Zhu, C., Bai, G., Quan, Z., & Wu, J. (2019). Experimental investigation on compressive properties and carbon emission assessment of concrete hollow block masonry incorporating recycled concrete aggregates. Applied Sciences (Switzerland), 9(22). https://doi.org/10.3390/app9224870Lyu, W.-Q., & Han, L.-H. (2019). Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes. Journal of Constructional Steel Research, 155, 438–459. https://doi.org/10.1016/j.jcsr.2018.12.028Maduabuchukwu Nwakaire, C., Poh Yap, S., Chuen Onn, C., Wah Yuen, C., & Adebayo Ibrahim, H. (2020). Utilisation of recycled concrete aggregates for sustainable highway pavement applications; a review. Construction and Building Materials, 235, 117444. https://doi.org/10.1016/j.conbuildmat.2019.117444Marzouk, M., & Azab, S. (2014). Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics Environmental and economic impact assessment Pollutant emissions Waste recycling Global warming potential (GWP) System dynamics modeling. 82, 41–49. https://doi.org/10.1016/j.resconrec.2013.10.015Mefteh, H., Kebaïli, O., Oucief, H., Berredjem, L., & Arabi, N. (2013). Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. Journal of Cleaner Production, 54, 282–288. https://doi.org/10.1016/j.jclepro.2013.05.009Ministerio de ambiente y desarrollo. (2012). Criterios ambientales para el diseño y construcción de vivienda urbana. In Articulo. https://www.minambiente.gov.co/index.php/component/content/article/2054-plantilla-asuntos-ambientales-y-sectorial-y-urbana-sin-galeria-88Morin, E. (2008). Introducción al pensamiento complejo.Otsuki, N., Miyazato, S. I., & Yodsudjai, W. (2003). Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. Journal of Materials in Civil Engineering, 15(5), 443–451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)Palacios, M., Bowen, P., Kappl, M., Butt, H. J., Stuer, M., Pecharromán, C., Aschauer, U., & Puertas, F. (2012). Fuerzas de repulsión de aditivos superplastificantes en sistemas de escoria granulada de horno alto en medios alcalinos, desde medidas de AFM a propiedades reológicas. Materiales de Construccion, 62(308), 489–513. https://doi.org/10.3989/mc.2012.01612Pantini, S., & Rigamonti, L. (2020). Is selective demolition always a sustainable choice? Waste Management, 103, 169–176. https://doi.org/10.1016/j.wasman.2019.12.033Para la Naturaleza | Los depósitos submarinos de arena en Puerto Rico. (2020). https://www.paralanaturaleza.org/los-depositos-submarinos-de-arena-en-puerto-rico/Pedro, D., De Brito, J., & Evangelista, L. (2014). Influence of the use of recycled concrete aggregates from different sources on structural concrete. Construction and Building Materials, 71(2014), 141–151. https://doi.org/10.1016/j.conbuildmat.2014.08.030Pereira, P., Evangelista, L., & De Brito, J. (2012). The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 34(9), 1044–1052. https://doi.org/10.1016/j.cemconcomp.2012.06.009Poon, C. S., Shui, Z. H., Lam, L., Fok, H., & Kou, S. C. (2004). Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and Concrete Research, 34(1), 31–36. https://doi.org/10.1016/S0008-8846(03)00186-8Prensa, C. De, & Colsubsidio, E. C. De. (2020). En CONSTRUVERDE Colombia 2016 se formalizará la Alianza “ Agenda 2030 de Construcción Sostenible ” para combatir el cambio climático y mejorar la calidad de vida. 1–4.Putzmeister. (2016). Plastificantes y superplastificantes: aditivos para la trabajabilidad del hormigón. http://bestsupportunderground.com/plastificantes-hormigon/Rakhshan, K., Morel, J. C., Alaka, H., & Charef, R. (2020). Components reuse in the building sector – A systematic review. In Waste Management and Research (Vol. 38, Issue 4, pp. 347–370). SAGE Publications Ltd. https://doi.org/10.1177/0734242X20910463Ramirez, C., & Pineda, M. (Ministerio D. A. Y. D. S. (2017). Resolución No. 0472. In Resolución No. 0472 (p. 11). http://www.minambiente.gov.co/images/normativa/app/resoluciones/3a-RESOLUCION-472-DE-2017.pdfShima, H., Tateyashiki, H., Matsuhashi, R., & Yoshida, Y. (2005). An advanced concrete recycling technology and its applicability assessment through input-output analysis. Journal of Advanced Concrete Technology, 3(1), 53–67. https://doi.org/10.3151/jact.3.53Siddique, R. (2003). Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete. Cement and Concrete Research, 33(4), 539–547. https://doi.org/10.1016/S0008-8846(02)01000-1Situación, L. A., Mundo, D. E. L., Gardner, G., Prugh, T., Exner-pirot, H., Hagens, N. J., Loh, E. H., Machalaba, C. C., & Victor, P. A. (2015). Hacer Frente a Las Amenazas a La Sostenibilidad.Sostenible, G. D. de C. y C. A. M. de A. y D., & Gobierno. (2019). Cierre de ciclos de materiales, innovación tecnológica, colaboración y nuevos modelos de negocio Estrategia Nacional de Economía Circular Contenido. http://www.andi.com.co/Uploads/Estrategia Nacional de EconÃ3mia Circular-2019 Final.pdf_637176135049017259.pdfTam, V. W. Y., Gao, X. F., Tam, C. M., & Chan, C. H. (2008). New approach in measuring water absorption of recycled aggregates. Construction and Building Materials, 22(3), 364–369. https://doi.org/10.1016/j.conbuildmat.2006.08.009Tam, V. W. Y., Soomro, M., & Evangelista, A. C. J. (2018). A review of recycled aggregate in concrete applications (2000–2017). Construction and Building Materials, 172, 272–292. https://doi.org/10.1016/j.conbuildmat.2018.03.240Tam, V. W. Y., & Tam, C. M. (2007). Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach. Journal of Materials Science, 42(10), 3592–3602. https://doi.org/10.1007/s10853-006-0379-yTERRITORIO, M. D. V. C. Y. (n.d.). Resolución 0549 de 2015.Pdf.Tertre, J., Moreno, A., & 3 Recycling. (2010). Hormigón con árido reciclado. http://www.hormigonespecial.com/~pdfs/MONOGRAFIA_RECICLADO.pdfUN periódico digital. (2020). Una tecnología equivocada, el problema del Relleno Sanitario Doña Juana. https://unperiodico.unal.edu.co/pages/detail/una-tecnologia-equivocada-el-problema-del-relleno-sanitario-dona-juana/UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA - UPME. (2018). Resolución 463 de 2018 (p. 58). http://www1.upme.gov.co/Normatividad/463-2018.pdfUS Energy Information Administration. (2016). International Energy Outlook 2016: Chapter 4 - Coal. 2016, 61–79. https://www.eia.gov/outlooks/ieo/pdf/coal.pdfVallejo Clavijo, A. C. (2012). Pensar el construir, el habitar y la técnica: una reflexión sobre la Cuaternidad: la tierra, el cielo, los divinos y los mortales desde Heidegger. Hallazgos, 9(18), 53–65. https://doi.org/10.15332/s1794-3841.2012.0018.03Vieira, C. S. (2020). Valorization of Fine-Grain Construction and Demolition (C&D) Waste in Geosynthetic Reinforced Structures. Waste and Biomass Valorization, 11(4), 1615–1626. https://doi.org/10.1007/s12649-018-0480-xVurlod, C. (2014). Recyclage du béton pour des gabions structurels.Wang, C., Xiao, J., Zhang, C., & Xiao, X. (2020). Structural health monitoring and performance analysis of a 12-story recycled aggregate concrete structure. Engineering Structures, 205. https://doi.org/10.1016/j.engstruct.2019.110102Wang, L., Wang, J., Xu, Y., Cui, L., Qian, X., Chen, P., & Fang, Y. (2019). Consolidating recycled concrete aggregates using phosphate solution. Construction and Building Materials, 200, 703–712. https://doi.org/10.1016/j.conbuildmat.2018.12.129Xiao, J., Li, J., & Zhang, C. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 35(6), 1187–1194. https://doi.org/10.1016/j.cemconres.2004.09.020Xiao, J., Li, W., Corr, D. J., & Shah, S. P. (2013). Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete. Cement and Concrete Research, 52, 82–99. https://doi.org/10.1016/j.cemconres.2013.05.004Xiao, J., Li, W., Fan, Y., & Huang, X. (2012). An overview of study on recycled aggregate concrete in China (1996-2011). Construction and Building Materials, 31, 364–383. https://doi.org/10.1016/j.conbuildmat.2011.12.074Xiao, J., Li, W., Sun, Z., Lange, D. A., & Shah, S. P. (2013). Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cement and Concrete Composites, 37(1), 276–292. https://doi.org/10.1016/j.cemconcomp.2013.01.006Yang, H., Xia, J., Thompson, J. R., & Flower, R. J. (2017). Urban construction and demolition waste and landfill failure in Shenzhen, China. Waste Management, 63, 393–396. https://doi.org/10.1016/j.wasman.2017.01.026Zega, C. J., & Di Maio, Á. A. (2011). Use of recycled fine aggregate in concretes with durable requirements. Waste Management, 31(11), 2336–2340. https://doi.org/10.1016/j.wasman.2011.06.011Zolotukhin, S. N., Byndyukova, E. A., & Chigarev, A. G. (2020). Experience of Development and Implementation of a House Project by an Architect. IOP Conference Series: Materials Science and Engineering, 753(4). https://doi.org/10.1088/1757-899X/753/4/042031InvestigadoresORIGINAL1032459979.2020.pdf1032459979.2020.pdfTesis de Maestría en Construcciónapplication/pdf2161002https://repositorio.unal.edu.co/bitstream/unal/79238/4/1032459979.2020.pdfe9de1640967ef8918d8083914e7a4738MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79238/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/79238/6/license_rdf217700a34da79ed616c2feb68d4c5e06MD56THUMBNAIL1032459979.2020.pdf.jpg1032459979.2020.pdf.jpgGenerated Thumbnailimage/jpeg5596https://repositorio.unal.edu.co/bitstream/unal/79238/7/1032459979.2020.pdf.jpg2907b3c8fb8c6a019439a60d835e319bMD57unal/79238oai:repositorio.unal.edu.co:unal/792382024-07-08 23:39:33.118Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |