Matrix methods for projective modules over \sigma-PBW extensions

In this monograph, we study finitely generated projective modules defined on a certain type of noncommutative rings, called σ−P BW extensions, also known as skew P BW extensions. This class of noncommutative rings of polynomial type include many important examples of algebras and rings of recent int...

Full description

Autores:
Gallego Joya, Claudia Milena
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/76476
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/76476
http://bdigital.unal.edu.co/72898/
Palabra clave:
Skew PBW extensions
Projective stably free
Hermite rings
PF rings
PSF rings
Stable range
Noncommutative Gröbner bases
Projective free modules
Extensiones P BW torcidas
Módulos proyectivos
Anillos de Hermite
Anillos PF
Rango estable
Bases de Gröbner no conmutativas
Rights
License
http://purl.org/coar/access_right/c_abf2
id UNACIONAL2_36b81c577d9b9796dea13746817706ed
oai_identifier_str oai:repositorio.unal.edu.co:unal/76476
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Matrix methods for projective modules over \sigma-PBW extensions
title Matrix methods for projective modules over \sigma-PBW extensions
spellingShingle Matrix methods for projective modules over \sigma-PBW extensions
Skew PBW extensions
Projective stably free
Hermite rings
PF rings
PSF rings
Stable range
Noncommutative Gröbner bases
Projective free modules
Extensiones P BW torcidas
Módulos proyectivos
Anillos de Hermite
Anillos PF
Rango estable
Bases de Gröbner no conmutativas
title_short Matrix methods for projective modules over \sigma-PBW extensions
title_full Matrix methods for projective modules over \sigma-PBW extensions
title_fullStr Matrix methods for projective modules over \sigma-PBW extensions
title_full_unstemmed Matrix methods for projective modules over \sigma-PBW extensions
title_sort Matrix methods for projective modules over \sigma-PBW extensions
dc.creator.fl_str_mv Gallego Joya, Claudia Milena
dc.contributor.author.spa.fl_str_mv Gallego Joya, Claudia Milena
dc.contributor.spa.fl_str_mv Lezama Serrano, José Oswaldo
dc.subject.proposal.spa.fl_str_mv Skew PBW extensions
Projective stably free
Hermite rings
PF rings
PSF rings
Stable range
Noncommutative Gröbner bases
Projective free modules
Extensiones P BW torcidas
Módulos proyectivos
Anillos de Hermite
Anillos PF
Rango estable
Bases de Gröbner no conmutativas
topic Skew PBW extensions
Projective stably free
Hermite rings
PF rings
PSF rings
Stable range
Noncommutative Gröbner bases
Projective free modules
Extensiones P BW torcidas
Módulos proyectivos
Anillos de Hermite
Anillos PF
Rango estable
Bases de Gröbner no conmutativas
description In this monograph, we study finitely generated projective modules defined on a certain type of noncommutative rings, called σ−P BW extensions, also known as skew P BW extensions. This class of noncommutative rings of polynomial type include many important examples of algebras and rings of recent interest as Weyl algebras, enveloping algebras of Lie algebras of finite dimension, diffusion algebras, quantum algebras, quadratic algebras in three variables, among many others. The study of projective modules was developed from a constructive matrix approach that will allow us to make effective calculations using a powerful computational tool: noncommutative Gröbner bases. Specifically, we establish an equivalent constructive matrix interpretation for the notions of being a projective, stably free or free module. Because of the close relationship between these three kinds of modules, we investigate when a given finitely generated module belongs to one of these classes. In this regard, Stafford showed that any stably free module on the Weyl algebra D = An(k) or Bn(k), with rank ≥ 2, turns out to be free; in this direction, we present a constructive proof of such important theorem for arbitrary rings which satisfy the condition range. On the other hand, we present several matrix descriptions of Hermite rings, various - characterizations of PF rings, and some subclasses of Hermite rings. However, since there is a variety of noncommutative rings that have nontrivial stably free modules, we use the Stafford’s theorem, the stable range of a ring, and existing bounds for Krull dimension of a skew P BW extension, in order to set a value from which all stably free module are free. In the second part of this thesis, we develop the theory of Gröbner bases for arbitrary bijective skew P BW extensions. Specifically, we extend Gröbner theory of quasi-commutative bijective skew extensions to arbitrary bijective skew P BW extensions. We construct Buchberger’s algorithm for left (right) ideals and modules over these noncommutative rings, and we present elementary applications of this theory as the membership problem, calculation of the syzygy module, intersection of ideals and modules, the quotient ideal, presentation of a module, calculation of free resolutions and the kernel and image of a homomorphism. Finally, we use the constructive proofs established in the early chapters, in order to develop effective algorithms to compute the projective dimension of a given module, algorithms for testing stably-freeness, procedures for computing minimal presentations and bases for free modules.
publishDate 2015
dc.date.issued.spa.fl_str_mv 2015-06
dc.date.accessioned.spa.fl_str_mv 2020-03-30T06:20:40Z
dc.date.available.spa.fl_str_mv 2020-03-30T06:20:40Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/76476
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/72898/
url https://repositorio.unal.edu.co/handle/unal/76476
http://bdigital.unal.edu.co/72898/
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas Matemáticas
Matemáticas
dc.relation.haspart.spa.fl_str_mv 51 Matemáticas / Mathematics
dc.relation.references.spa.fl_str_mv Gallego Joya, Claudia Milena (2015) Matrix methods for projective modules over \sigma-PBW extensions. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/76476/1/ClaudiaMilenaGallegoJoya2015.pdf
https://repositorio.unal.edu.co/bitstream/unal/76476/2/ClaudiaMilenaGallegoJoya2015.pdf.jpg
bitstream.checksum.fl_str_mv 6fb78dedcfc6dd4d06b78105d19d145d
d1021546e862914365c9f76340ac7a21
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089313923629056
spelling Lezama Serrano, José OswaldoGallego Joya, Claudia Milenaa622d64c-107f-4bb9-a7eb-bf8f501b46b53002020-03-30T06:20:40Z2020-03-30T06:20:40Z2015-06https://repositorio.unal.edu.co/handle/unal/76476http://bdigital.unal.edu.co/72898/In this monograph, we study finitely generated projective modules defined on a certain type of noncommutative rings, called σ−P BW extensions, also known as skew P BW extensions. This class of noncommutative rings of polynomial type include many important examples of algebras and rings of recent interest as Weyl algebras, enveloping algebras of Lie algebras of finite dimension, diffusion algebras, quantum algebras, quadratic algebras in three variables, among many others. The study of projective modules was developed from a constructive matrix approach that will allow us to make effective calculations using a powerful computational tool: noncommutative Gröbner bases. Specifically, we establish an equivalent constructive matrix interpretation for the notions of being a projective, stably free or free module. Because of the close relationship between these three kinds of modules, we investigate when a given finitely generated module belongs to one of these classes. In this regard, Stafford showed that any stably free module on the Weyl algebra D = An(k) or Bn(k), with rank ≥ 2, turns out to be free; in this direction, we present a constructive proof of such important theorem for arbitrary rings which satisfy the condition range. On the other hand, we present several matrix descriptions of Hermite rings, various - characterizations of PF rings, and some subclasses of Hermite rings. However, since there is a variety of noncommutative rings that have nontrivial stably free modules, we use the Stafford’s theorem, the stable range of a ring, and existing bounds for Krull dimension of a skew P BW extension, in order to set a value from which all stably free module are free. In the second part of this thesis, we develop the theory of Gröbner bases for arbitrary bijective skew P BW extensions. Specifically, we extend Gröbner theory of quasi-commutative bijective skew extensions to arbitrary bijective skew P BW extensions. We construct Buchberger’s algorithm for left (right) ideals and modules over these noncommutative rings, and we present elementary applications of this theory as the membership problem, calculation of the syzygy module, intersection of ideals and modules, the quotient ideal, presentation of a module, calculation of free resolutions and the kernel and image of a homomorphism. Finally, we use the constructive proofs established in the early chapters, in order to develop effective algorithms to compute the projective dimension of a given module, algorithms for testing stably-freeness, procedures for computing minimal presentations and bases for free modules.Resumen: En esta monografía estudiamos los módulos proyectivos definidos sobre un cierto tipo de anillos no conmutativos, denominados extensiones \sigma-PBW, también conocidos como extensiones PBW torcidas. Esta clase de anillos no conmutativos de tipo polinomial incluye importantes ejemplos de álgebras y anillos de interés reciente tales como álgebras de Weyl, álgebras envolventes de álgebras de Lie de dimensión finita, álgebras cuánticas, álgebras cuadráticas en tres variables, entre muchos otros. El estudio de los módulos proyectivos lo desarrollamos desde una perspectiva constructiva-matricial, enfoque que nos permitirá hacer cálculos efectivos mediante el uso de una importante herramienta computacional: las bases de Gröbner no conmutativas. Específicamente, establecemos interpretaciones matriciales constructivas para la noción de módulo proyectivo, módulo establemente libre y módulo libre. Debido a la estrecha relación existente entre estas tres clases de módulos, investigamos cuándo un módulo finitamente generado dado pertenece a una de tales clases. En este sentido, Stafford demostró que cualquier módulo establemente libre de rango mayor o igual que 2 sobre el álgebra de Weyl resulta ser libre; a este respecto, presentamos una prueba constructiva de este importante teorema para anillos arbitrarios que satisfagan la condición de rango. Por otra parte, presentamos descripciones matriciales de los anillos de Hermite, caracterizaciones de anillos PF, y algunas subclases de anillos de Hermite. Ahora bien, puesto que existe una gran variedad de anillos no conmutativos que poseen módulos establemente libres no triviales, nosotros usamos el teorema de Stafford, el rango estable de un anillo, y las cotas existentes para la dimensión de Krull de una extensión PBW torcida, con el fin de establecer un valor a partir del cual todo módulo establemente libre resulta libre. En la segunda parte de esta tesis desarrollamos la teoría de bases de Gröbner para extensiones PBW torcidas biyectivas arbitrarias. Concretamente, extendemos la teoría de Gröbner de las extensiones cuasi-conmutativas biyectivas al caso general biyectivo. Construimos el algoritmo de Buchberger para ideales izquierdos (derechos) y para módulos sobre estos anillos, presentamos aplicaciones elementales de esta teoría como el problema de membresía, el calculo del módulo de sicigias, la intersección de ideales y módulos, el ideal cociente, la presentación de un módulo, el cálculo de resoluciones libres y el núcleo e imagen de un homomorfismo. Finalmente, usamos las demostraciones constructivas establecidas en los primeros capítulos, con la finalidad de elaborar algoritmos que permiten efectivamente calcular la dimensión proyectiva de un módulo dado, verificar si un módulo es establemente libre, calcular presentaciones minimales y bases para módulos libres.Doctoradoapplication/pdfUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas MatemáticasMatemáticas51 Matemáticas / MathematicsGallego Joya, Claudia Milena (2015) Matrix methods for projective modules over \sigma-PBW extensions. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.Matrix methods for projective modules over \sigma-PBW extensionsTrabajo de grado - Pregradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_db06Skew PBW extensionsProjective stably freeHermite ringsPF ringsPSF ringsStable rangeNoncommutative Gröbner basesProjective free modulesExtensiones P BW torcidasMódulos proyectivosAnillos de HermiteAnillos PFRango estableBases de Gröbner no conmutativashttp://purl.org/coar/access_right/c_abf2ORIGINALClaudiaMilenaGallegoJoya2015.pdfapplication/pdf1127586https://repositorio.unal.edu.co/bitstream/unal/76476/1/ClaudiaMilenaGallegoJoya2015.pdf6fb78dedcfc6dd4d06b78105d19d145dMD51THUMBNAILClaudiaMilenaGallegoJoya2015.pdf.jpgClaudiaMilenaGallegoJoya2015.pdf.jpgGenerated Thumbnailimage/jpeg3342https://repositorio.unal.edu.co/bitstream/unal/76476/2/ClaudiaMilenaGallegoJoya2015.pdf.jpgd1021546e862914365c9f76340ac7a21MD52unal/76476oai:repositorio.unal.edu.co:unal/764762023-07-14 23:03:34.59Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co