Diseño in silico, síntesis y efecto en la actividad Ca2+ -ATPasa de CtpF de los compuestos derivados del núcleo pirrolo[1,2- a]quinoxalinas con potencial antimicobacteriano

ilustraciones, graficas, tablas

Autores:
Rodriguez Afanador, Michael Daniela
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81534
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81534
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
Mycobacterium tuberculosis
Pyrrolo[1,2-a]quinoxalines
Deep Eutectic Solvents
Mycobacterium tuberculosis
P-type ATPase
Docking
Pirrolo[1,2-a]quinoxalinas
CtpF
Solventes Eutécticos Profundos
Mycobacterium tuberculosis
ATPasa tipo P
Acoplamiento molecular
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_36a007dcc7fa67ccd5011cac6fcf5eed
oai_identifier_str oai:repositorio.unal.edu.co:unal/81534
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Diseño in silico, síntesis y efecto en la actividad Ca2+ -ATPasa de CtpF de los compuestos derivados del núcleo pirrolo[1,2- a]quinoxalinas con potencial antimicobacteriano
dc.title.translated.eng.fl_str_mv In silico design, synthesis and effect on Ca2+ -ATPase activity of CtpF of pyrrolo[1,2- a]quinoxaline core-derived compounds with antimycobacterial potential
title Diseño in silico, síntesis y efecto en la actividad Ca2+ -ATPasa de CtpF de los compuestos derivados del núcleo pirrolo[1,2- a]quinoxalinas con potencial antimicobacteriano
spellingShingle Diseño in silico, síntesis y efecto en la actividad Ca2+ -ATPasa de CtpF de los compuestos derivados del núcleo pirrolo[1,2- a]quinoxalinas con potencial antimicobacteriano
570 - Biología::572 - Bioquímica
Mycobacterium tuberculosis
Pyrrolo[1,2-a]quinoxalines
Deep Eutectic Solvents
Mycobacterium tuberculosis
P-type ATPase
Docking
Pirrolo[1,2-a]quinoxalinas
CtpF
Solventes Eutécticos Profundos
Mycobacterium tuberculosis
ATPasa tipo P
Acoplamiento molecular
title_short Diseño in silico, síntesis y efecto en la actividad Ca2+ -ATPasa de CtpF de los compuestos derivados del núcleo pirrolo[1,2- a]quinoxalinas con potencial antimicobacteriano
title_full Diseño in silico, síntesis y efecto en la actividad Ca2+ -ATPasa de CtpF de los compuestos derivados del núcleo pirrolo[1,2- a]quinoxalinas con potencial antimicobacteriano
title_fullStr Diseño in silico, síntesis y efecto en la actividad Ca2+ -ATPasa de CtpF de los compuestos derivados del núcleo pirrolo[1,2- a]quinoxalinas con potencial antimicobacteriano
title_full_unstemmed Diseño in silico, síntesis y efecto en la actividad Ca2+ -ATPasa de CtpF de los compuestos derivados del núcleo pirrolo[1,2- a]quinoxalinas con potencial antimicobacteriano
title_sort Diseño in silico, síntesis y efecto en la actividad Ca2+ -ATPasa de CtpF de los compuestos derivados del núcleo pirrolo[1,2- a]quinoxalinas con potencial antimicobacteriano
dc.creator.fl_str_mv Rodriguez Afanador, Michael Daniela
dc.contributor.advisor.none.fl_str_mv Salazar Pulido, Luz Mary
Ochoa Puentes, Cristian
dc.contributor.author.none.fl_str_mv Rodriguez Afanador, Michael Daniela
dc.contributor.researchgroup.spa.fl_str_mv Bioquímica y Biología Molecular de las Micobacterias
Síntesis Orgánica Sostenible
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
topic 570 - Biología::572 - Bioquímica
Mycobacterium tuberculosis
Pyrrolo[1,2-a]quinoxalines
Deep Eutectic Solvents
Mycobacterium tuberculosis
P-type ATPase
Docking
Pirrolo[1,2-a]quinoxalinas
CtpF
Solventes Eutécticos Profundos
Mycobacterium tuberculosis
ATPasa tipo P
Acoplamiento molecular
dc.subject.other.none.fl_str_mv Mycobacterium tuberculosis
dc.subject.proposal.eng.fl_str_mv Pyrrolo[1,2-a]quinoxalines
Deep Eutectic Solvents
Mycobacterium tuberculosis
P-type ATPase
Docking
Pirrolo[1,2-a]quinoxalinas
dc.subject.proposal.none.fl_str_mv CtpF
dc.subject.proposal.spa.fl_str_mv Solventes Eutécticos Profundos
Mycobacterium tuberculosis
ATPasa tipo P
Acoplamiento molecular
description ilustraciones, graficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-06-08T17:11:08Z
dc.date.available.none.fl_str_mv 2022-06-08T17:11:08Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81534
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81534
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbott, A. P., Boothby, D., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126(29), 9142– 9147. https://doi.org/10.1021/ja048266j
Ahmad, S., & Mokaddas, E. (2009). Recent advances in the diagnosis and treatment of multidrug-resistant tuberculosis. Respiratory medicine, 103(12), 1777– 90
Alós, J.-I. (2015). Resistencia bacteriana a los antibióticos: una crisis global. Enfermedades Infecciosas y Microbiología Clínica, 33(10), 692–699. https://doi.org/10.1016/j.eimc.2014.10.004
Caminero, J. A. (2006). Treatment of multidrug-resistant tuberculosis: evidence and controversies. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union against Tuberculosis and Lung Disease, 10(8), 829–837.
Campillo, N. E., Naranjo, P. G., & Paez, J. A. (2011). Presente y Futuro en el Descubrimiento de Fármacos para la Enfermedad de Chagas. Instituto de Química Médica. CSIC. http://www.anales.ranf.com/ojs/2012/01/08.htm
Chaudhary, K. kumar, & Mishra, N. (2016). A Review on Molecular Docking: Novel Tool for Drug Discovery Design of Novel small molecule mimics binding to quorum sensors in Ralstonia Solanacearum View project synthesis of nanocomposites for drug delivery View project Central Bringing Excellence in O. A Review on Molecular Docking: Novel Tool for Drug Discovery. JSM Chem, 4(3), 1029.
Chingaté L, S. M. (2012). Análogos de péptidos antimicrobianos con potencial actividad como compuestos antituberculosos. Universidad Nacional de Colombia.
Cires Pujol, M. (2002). La resistencia a los antimicrobianos, un problema mundial. Revista Cubana de Medicina General Integral, 18(2), 165–168. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21252002000200012&lng=es&nrm=iso&tlng=en
Coll, P. (2003). Fármacos con actividad frente a Mycobacterium tuberculosis. Tuberculosis, 299–307.
Curvo, L., Teixeira, L., & Caseiro, F. (2005). Tuberculosis of the chest. European Journal of Radiology, 55(2), 158–172. https://doi.org/10.1016/j.ejrad.2005.04.014
De La Fuente-Salcido, N. M., Villarreal-Prieto, M., Ángel, M., León, D., Patricia, A., Pérez, G., Norma, D., & De La Fuente-Salcido, M. (2015). Evaluation of the activity of antimicrobial agents against the challenge of bacterial resistance. Revista Mexicana de Ciencias Farmacéuticas, 2(46), 1–16. http://www.scielo.org.mx/pdf/rmcf/v46n2/1870-0195-rmcf-46-02-00007.pdf
Desplat, V., Moreau, S., Gay, A., Fabre, S. B., Thiolat, D., Massip, S., Macky, G., Godde, F., Mossalayi, D., Jarry, C., & Guillon, J. (2010). Synthesis and evaluation of the antiproliferative activity of novel pyrrolo[1,2-a]quinoxaline derivatives, potential inhibitors of Akt kinase. Part II. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(2), 204–215. https://doi.org/10.3109/14756360903169881
Dover, L. G., Bhatt, A., Bhowruth, V., Willcox, B. E., & Besra, G. S. (2008). New drugs and vaccines for drug-resistant Mycobacterium tuberculosis infections. Expert Review of Vaccines, 7(4), 481–497. https://doi.org/10.1586/14760584.7.4.481
Dupont, C., Viljoen, A., Thomas, S., & Roquet-banères, F. (2017). Bedaquiline inhibits the ATP synthase in Mycobacterium abscessus and is effective in infected zebrafish Downloaded from http://aac.asm.org/ on August 17 , 2017 by FUDAN UNIVERSITY Downloaded from http://aac.asm.org/ on August 17 , 2017 by FUDAN UNIVERSITY. American Society for Microbiology, August. https://doi.org/10.1128/AAC.01225-17
El-Elimat, T., Raja, H. A., Figueroa, M., Swanson, S. M., Falkinham, J. O., Lucas, D. M., Grever, M. R., Wani, M. C., Pearce, C. J., & Oberlies, N. H. (2015). Sorbicillinoid analogs with cytotoxic and selective anti-Aspergillus activities from Scytalidium album. Journal of Antibiotics, 68(3), 191–196. https://doi.org/10.1038/ja.2014.125
Fabian, L. E. (2015). Diseño y síntesis de análogos quinoxalínicos con potencial actividad quimioterápica [Universidad de Buenos Aires]. http://repositoriouba.sisbi.uba.ar/gsdl/collect/posgrauba/index/assoc/HWA_1139.dir/1139.PDF
Filimonov, D., Lagunin, A., Gloriozova, A., Rudik, D., Druzhilovskii, P., Pogodin, V., & Poroikov, V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource (No. 50; p. way2drug.com). Chemistry of Heterocyclic Compound. http://www.way2drug.com/passonline/definition.php
Gorocica, P., Jimenez, M. del C., Garfias, Y., Sada, I., & Lascurian, R. (2005). Componentes glicosilados de la envoltura de Mycobacterium tuberculosis que intervienen en la patogénes de la tuberculosis. Revista Del Instituto Nacional de Enfermedades Respiratorias, 18(2), 142–153
Guillom, J., Dallemagnea, P., Pfeifferb, B., Renard, P., Manechez, D., Kervrand, A., & Raulv, S. (1998). Synthesis of new pyrrolo[1,2-a]quinoxalines: potential non-peptide glucagon receptor antagonists Jean Guillom, Patrick Dallemagnea, Bruno Pfeifferb, Pierre Renard b, Dominique Manechez~, Alain Kervrand, Sylvain Raulv,*. 33, 293–308.
Guillon, J., Cohen, A., Gueddouda, N. M., Das, R. N., Moreau, S., Ronga, L., Savrimoutou, S., Basmaciyan, L., Monnier, A., Monget, M., Rubio, S., Garnerin, T., Azas, N., Mergny, J. L., Mullié, C., & Sonnet, P. (2017). Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 547–563. https://doi.org/10.1080/14756366.2016.1268608
Guillon, J., Forfar, I., Mamani-Matsuda, M., Desplat, V., Saliège, M., Thiolat, D., Massip, S., Tabourier, A., Léger, J. M., Dufaure, B., Haumont, G., Jarry, C., & Mossalayi, D. (2007). Synthesis, analytical behaviour and biological evaluation of new 4-substituted pyrrolo[1,2-a]quinoxalines as antileishmanial agents. Bioorganic and Medicinal Chemistry, 15(1), 194–210. https://doi.org/10.1016/j.bmc.2006.09.068
Guillon, J., Le Borgne, M., Rimbault, C., Moreau, S., Savrimoutou, S., Pinaud, N., Baratin, S., Marchivie, M., Roche, S., Bollacke, A., Pecci, A., Alvarez, L., Desplat, V., & Jose, J. (2013). Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a] quinoxaline derivatives as inhibitors of the human protein kinase CK2. European Journal of Medicinal Chemistry, 65, 205–222. https://doi.org/10.1016/j.ejmech.2013.04.051
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: un editor químico semantico avanzado, plataforma de visualización y analisis (1.2.0). Journal of Cheminformatics. http://avogadro.cc/
Hern, C. R. (2019). Determinación de características funcionales de CtpF, una Ca 2+ - ATPasa tipo P de Mycobacterium tuberculosis [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/72633/1/1026577431.2019.pdf
Horsburgh, R., Barry, C., & Lange, C. (2015). Treatment of tuberculosis. The New Engl and Journal of Medicine, 373(11), 2149–2160. https://doi.org/10.1056/NEJMra1413919
Jager, V., Dawson, R., Niekerk, C., Vanker, N., Merwe, L., Choi, J., & Diacon, A. (2020). Telacebec (Q203), a New Antituberculosis Agent To. New England Journal of Medicine, 382(13), 1278–1280. https://doi.org/10.1056/nejmc2001899
Jiménez, M. A., García, R. S., Sarmiento, A. M., Guidet, L. G., Gálvez, J., & García-Domenech, R.(2016). Application of molecular topology for predicting the leishmanicidal activity of a group of compounds derived from pyrrolo [1,2-α] quinoxaline. Anales de La Real Academia Nacional de Farmacia, 82(3), 317–323.
Kandasamy, S., Hassan, S., Gopalaswamy, R., & Narayanan, S. (2014). Homology modelling, docking, pharmacophore and site directed mutagenesis analysis to identify the critical amino acid residue of PknI from Mycobacterium tuberculosis. Journal of Molecular Graphics and Modelling, 52, 11–19. https://doi.org/10.1016/j.jmgm.2014.05.011
Kant S, Maurya AK, Kushwaha RA, Nag VL, Prasad R. Multi-drug resistant tuberculosis: an iatrogenic problem. Biosci Trends. 2010 Apr;4(2):48-55. PMID: 20448341.
Kapetanovic, I. M. (2008). Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chemico-Biological Interactions, 171, 165–176. https://doi.org/10.1016/j.cbi.2006.12.006
Khalifa, R. A., Nasser, M. S., Gomaa, A. A., Osman, N. M., & Salem, H. M. (2013). Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egyptian Journal of Chest Diseases and Tuberculosis, 62(2), 241–247. https://doi.org/10.1016/j.ejcdt.2013.05.008
Klenc, J., Raux, E., Barnes, S., Sullivan, S., Duszynska, B., Bojarski, A. J., & Strekowski, L. (2009). Synthesis of 4-Substituted 2- ( 4-Methylpiperazino ) pyrimidines and Quinazoline Analogs as Serotonin 5-HT 2A Receptor Ligands. Journal of Heterocyclic Chemistry, 46(November), 1259–1265. https://doi.org/10.1002/jhet
Knechel, N. A. (2009). Tuberculosis: Pathophysiology, clinical features, and diagnosis. Critical Care Nurse, 29(2), 34–43. https://doi.org/10.4037/ccn2009968
Kontogiorgis, C. A., & Hadjipavlou, D. (2004). Current trends in quantitative structure activity relationships on fxa inhibitors: Evaluation and comparative analysis. In Medicinal Research Reviews (Vol. 24, pp. 687–747). https://doi.org/10.1002/med.20006
Kumar, A., Chaturvedi, V., Bhatnagar, S., Sinha, S., & Siddiqi, M. I. (2009). Knowledge based identification of potent antitubercular compounds using structure based virtual screening and structure interaction fingerprints. Journal of Chemical Information and Modeling, 49(1), 35–42. https://doi.org/Doi 10.1021/Ci8003607
Jossefa, C. (2019). Infecciones. MSD Salud. https://www.msdsalud.es/cuidar-en/infecciones/infecciones-bacterianas/se-transmiten-infecciones-bacterianas.html
Lombardino, J. G., & Lowe, J. (2004). The role of the medicinal chemist drug discovery - then and now. 3(October). https://doi.org/10.1038/nrd1523
López, F., Medina, J. L., & Castillo, R. (2018). Diseño de fármacos asistido por computadora. Educación Química, 17(4), 452. https://doi.org/10.22201/fq.18708404e.2006.4.66027
Mateo, A. J., García, R. S., Sarmiento, A. M., Guidet, L. G., Gálvez, J., & García-Domenech, R. (2016). Application of molecular topology for predicting the leishmanicidal activity of a group of compounds derived from pyrrolo [1,2-α] quinoxaline. Anales de La Real Academia Nacional de Farmacia, 82(3), 317–323.
Mdluli, K., Kaneko, T., & Upton, A. (2015). The Tuberculosis Drug Discovery and Development Pipeline and Emerging Drug Targets. Cold Spring Harb Perspect Med, 5(6), 1–24. https://doi.org/10.1007/978-3-642-27769-6_4970-1
Medina, J. L. (2007). Aplicaciones exitosas de diseño de fármacos utilizando métodos computacionales. In Comunicaciones libres (pp. 1–8). Ciencia.
Mondal, S., Upamanyu, N., & Sen, D. (2013). Hybrid Computational Simulation and Modeling Assisted Structural Analysis of Anti-tubercular Molecules. Procedia Technology, 10, 53–61. https://doi.org/10.1016/j.protcy.2013.12.336
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. P., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
Murcia, G. D. (2009). Microbiologia para enfermeros (U. N. de Colombia (ed.); primera).
Murima, P., de Sessions, P. F., Lim, V., Naim, A. N. M., Bifani, P., Boshoff, H. I. M., Sambandamurthy, V. K., Dick, T., Hibberd, M. L., Schreiber, M., & Rao, S. P. S. (2013). Exploring the Mode of Action of Bioactive Compounds by Microfluidic Transcriptional Profiling in Mycobacteria. PLoS ONE, 8(7), 1–11. https://doi.org/10.1371/journal.pone.0069191
Narwal, S., Kumar, S., & Verma, P. K. (2016). Synthesis and therapeutic potential of quinoline derivatives. Res Chem Intermed, 43, 1–34.
Navarro, C. A. (2015). Estudio de disolventes ambientalmente amigables para la síntesis de 1,8-dioxo-octahidroxantenos y decahidroacridin-1,8-dionas [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/52085/
NCBI. (2019). National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/mesh/68007239
Niu, M.-M., Qin, J.-Y., Tian, C.-P., Yan, X.-F., Dong, F.-G., Cheng, Z.-Q., Fida, G., Yang, M., Chen, H., & Gu, Y.-Q. (2014). Tubulin inhibitors: pharmacophore modeling, virtual screening and molecular docking. Acta Pharmacologica Sinica, 967–979. https://doi.org/10.1038/aps.2014.34
Novoa, L., & Soto, C. Y. (2014). Mycobacterium tuberculosis p-type atpases: Possible targets for drug or vaccine development. BioMed Research International, 2014(January 2015). https://doi.org/10.1155/2014/296986
Novoa, L., León, A., Patiño, M., Cuesta, J., Salazar, L. mary, Landsman, D., Mariño, L., & Soto, C. (2012). In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. https://doi.org/10.1186/1472-6807-12-25
Nunes, C., Booty, M. G., Carpenter, S. M., Jayaraman, P., Rothchild, A. C., & Behar, S. M. (2014). In search of a new paradigm for protective immunity to TB. Nature Reviews Microbiology, 12(4), 289–299. https://doi.org/10.1038/nrmicro3230
Osborne, R. (2013). First novel anti-tuberculosis drug in 40 years. Nature Biotechnology, 31(2), 89–91. https://doi.org/10.1038/nbt0213-89
Paz, R. (2010). Utilización de solventes eutécticos como medio de miscibilidad de compuestos bioactivos y polisacáridos. 65. https://ciad.repositorioinstitucional.mx/jspui/handle/1006/376
Pérez, R. M. (1998). Resistencia bacteriana a antimicrobianos: su importancia en la toma de decisiones en la práctica diaria. Información Terapéutica Del Sistema Nacional de Salud, 57–67. http://www.mscbs.gob.es/gl/biblioPublic/publicaciones/docs/bacterias.pdf
PerkinElmer. (2011). ChemDraw Professional. https://perkinelmerinformatics.com/products/research/chemdraw/
Perri, M., Aiello, F., Cione, E., Carullo, G., Amendola, L., Mazzotta, S., & Caroleo, M. C. (2019). Investigation of TNBC in vitro Antiproliferative Effects of Versatile Pirrolo[1,2-a]quinoxaline Compounds. Frontiers in Molecular Biosciences, 6(March), 1–5. https://doi.org/10.3389/fmolb.2019.00012
Prasad, B., Kumar, K. S., Babu, P. V., Anusha, K., Rambabu, D., Kandale, A., Vanaja, G. R., Kalle, A. M., & Pal, M. (2012). AlCl 3 induced C – N bond formation followed by Pd / C – Cu mediated coupling – cyclization strategy : synthesis of pyrrolo [ 2 , 3- b ] quinoxalines as anticancer agents. Tetrahedron Letters, 53(45), 6059–6066. https://doi.org/10.1016/j.tetlet.2012.08.119
Quiñones D., (2017). Resistencia antimicrobiana: evolución y perspectivas actuales ante el enfoque "Una salud" Revista Cubana de Medicina Tropical, 69(3), 1–17. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602017000300009&lng=es&nrm=iso&tlng=es
Ramos, P. M., & Gil, J. (2017). Biorrefinerías basadas en explotaciones agropecuarias y forestales.Universidad de Zaragoza, November, 191.
Rub, C., & Konig, B. (2012). Low melting mixtures in organic synthesis – an alternative to ionic liquids? Green Chemistry, 207890, 14. https://doi.org/10.1039/b000000x
Saffioti, N. A., de Sautu, M., Ferreira-Gomes, M. S., Rossi, R. C., Berlin, J., Rossi, J. P. F. C., & Mangialavori, I. C. (2019). E2P-like states of plasma membrane Ca2+‑ATPase characterization of vanadate and fluoride-stabilized phosphoenzyme analogues. Biochimica et Biophysica Acta - Biomembranes, 1861(2), 366–379. https://doi.org/10.1016/j.bbamem.2018.11.001
Sánchez, L., & González, D. (2017). Topología y función de las subunidades intrínsecas de la membrana de las F1F0-ATP sintasa mitocondriales. TIP Revista Especializada En Ciencias Químico-Biológicas, 20(2), 29–47. https://doi.org/10.1016/j.recqb.2017.04.004
Santivañez, M., Moreno, E., Monge, A., & Pérez, S. (2013). Quinoxalinas como potenciales agentes antimycobacterium tuberculosis: una revisión. In Rev Soc Quím Perú (Vol. 79, Issue 3). http://www.scielo.org.pe/pdf/rsqp/v79n3/a10v79n3.pdf
Santos, P. (2010). Sistema de transporte ATPasa en vesículas de membranas de Mycobacterium tuberculosis involucrado en la regulación de la concentración de protones: posible blanco terapéutico de la acción de péptidos antimicrobianos [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/3005/1/188110.2010.pdf
Santos, P. (2020). ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77933
Santos, P., Lopez, F., Ramírez, D., Caballero, J., Espinosa, M., Hernández-pando, R., & Soto, C. Y. (2019). Identification of Mycobacterium tuberculosis CtpF as a target for designing new antituberculous compounds. Bioorganic and Medicinal Chemistry, 115256. https://doi.org/10.1016/j.bmc.2019.115256
Schrödinger LLC. (2021). Maestro. Schrödinger.
Schrödinger, L. (2010). The PyMOL Molecular Graphics System, Version 1.7.4.
Seddon, G., Lounnas, V., Mcguire, R., Bywater, R. P., Oliveira, L., & Vriend, G. (2012). Drug design for ever , from hype to hope. 137–150. https://doi.org/10.1007/s10822-011-9519-9
Shalini, P. (2016). Desarrollo de fármacos. Manual MSD. https://www.msdmanuals.com/es-co/professional/fármacología-clínica/conceptos-fármacoterapéuticos/desarrollo-de-fármacos
Sheen, P., Ferrer, P., Gilman, R. H., López-Llano, J., Fuentes, P., Valencia, E., & Zimic, M. J. (2009). Effect of pyrazinamidase activity on pyrazinamide resistance in Mycobacterium tuberculosis. Tuberculosis (Edinburgh, Scotland), 89(2), 109–13
Sheldon, R. A. (2005). Green solvents for sustainable organic synthesis: State of the art. Green Chemistry, 7(5), 267–278. https://doi.org/10.1039/b418069k
Silverstein, R., Webster, F., & Kiemle, D. (n.d.). Spectrometric Identification of Organic Compunds 7th ed - R. Silverstein, et al., (Wiley, 2005) W (2).pdf (septima).
Simithy, J., Reeve, N., Hobrath, J. V., Reynolds, R. C., & Calderón, A. I. (2014). Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS. Tuberculosis, 94(2), 152–158. https://doi.org/10.1016/j.tube.2013.12.004
Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114(21), 11060–11082. https://doi.org/10.1021/cr300162p
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
Vasava, M. S., Bhoi, M. N., Rathwa, S. K., Borad, M. A., Nair, S. G., & Patel, H. D. (2017). Drug development against tuberculosis: Past, present and future. Indian Journal of Tuberculosis, 64(4), 252–275. https://doi.org/10.1016/j.ijtb.2017.03.002
World Health Organization. (2021). Global tuberculosis report 2021. file:///C:/Users/Nuestro compu/Downloads/9789240037021-eng.pdf
Worley, M., & Estrada, S. (2014). Bedaquiline: A novel antitubercular agent for the treatment of multidrug-resistant tuberculosis. Pharmacotherapy, 34(11), 1187–1197. https://doi.org/10.1002/phar.1482
Zor, T., & Selinger, Z. (1996). Linearization of the Bradford Protein Assay Increases Its Sensitivity : Theoretical and Experimental Studies. 308(236), 302–308.
Zumla, A., Nahid, P., & Cole, S. T. (2013). Advances in the development of new tuberculosis drugs and treatment regimens. Nature Reviews. Drug Discovery, 12(5), 388–404. https://doi.org/10.1038/nrd4001
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 78 paginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81534/3/Tesis%20de%20maestria%20Michael%20Daniela%20Rodriguez%20Afanador%20.pdf
https://repositorio.unal.edu.co/bitstream/unal/81534/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81534/5/Tesis%20de%20maestria%20Michael%20Daniela%20Rodriguez%20Afanador%20.pdf.jpg
bitstream.checksum.fl_str_mv dd7bce9f0f972d1e9de534c072c3ce35
8153f7789df02f0a4c9e079953658ab2
ee5af47ae071adbce98976ad01dce0b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089453000458240
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Salazar Pulido, Luz Maryada99096b2301478657e273ff0ee9557Ochoa Puentes, Cristian42e14d381f1b918cc0c85c77a0ec35c2Rodriguez Afanador, Michael Danielad874fd9e661a9ecb7f4e0fcc03532a67Bioquímica y Biología Molecular de las MicobacteriasSíntesis Orgánica Sostenible2022-06-08T17:11:08Z2022-06-08T17:11:08Z2021https://repositorio.unal.edu.co/handle/unal/81534Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, tablasLa Ca2+-ATPasa tipo P de CtpF de Mycobacterium tuberculosis (Mtb), es un transportador de membrana fundamental en la homeóstasis iónica y la viabilidad celular de la micobacteria; posee un sitio de unión cuya interacción con compuestos inhiben la función enzimática y la actividad micobacteriana. Teniendo en cuenta lo anterior, se postularon y estudiaron mediante estrategias in silico, compuestos con el núcleo pirrolo[1,2- a]quinoxalínico sustituido en la posición C-4 como posibles inhibidores de CtpF, ya que han mostrado en estudios anteriores un amplio perfil farmacológico, contra bacterias, virus, y con actividad antitumoral, sin embargo, su potencial antituberculoso no ha sido explorado. Consecuentemente, el objetivo de este trabajo fue diseñar, sintetizar y evaluar el efecto en la actividad Ca2+ -ATPasa de CtpF de algunos compuestos derivados del núcleo pirrolo[1,2-a]quinoxalínico con potencial antimicobacteriano. Se Identificaron los compuestos 4-(3,4-metilenedioxifenil)pirrolo[1,2-a]quinoxalina 4b y 4-(2-clorofenil)pirrolo[1,2-a]quinoxalina 4c como posibles inhibidores de CtpF por medio de un cribado virtual y acoplamiento molecular. La síntesis de ambas moléculas se realizó con el uso de Solventes de punto eutéctico bajo (DES) como disolventes y catalizadores, obteniendo tiempos de reacción cortos, alta pureza en los productos y procesos amigables con el ambiente, lo cual es una mejora en la síntesis de estos compuestos. Se estudió la inhibición de ambas moléculas sobre la actividad Ca2+ -ATPasa de CtpF, se obtuvo un 30.51% para 4c y 18.17% para 4b. El compuesto 4b presentó una Concentración Mínima Inhibitoria (CMI) interesante de 25 µg/mL, lo cual lo convierte en un candidato promisorio como posible antituberculoso. Ninguna de las moléculas presentó toxicidad sobre células eucariotas; por lo tanto, su optimización puede contribuir al desarrollo de nuevos compuestos antimicobacterianos. (Texto tomado de la fuente)The P-type Ca2+-ATPase of CtpF from Mycobacterium tuberculosis (Mtb), a membrane transporter essential for ionic homeostasis and cell viability of mycobacteria, possesses a binding site whose interaction with compounds inhibits enzymatic function and mycobacterial activity. Considering the above, compounds with the pyrrolo[1,2- a]quinoxalinic core substituted at the C-4 position were postulated and studied by in silico strategies as possible CtpF inhibitors, since they have shown in previous studies a broad pharmacological profile, against bacteria, viruses, and with antitumor activity, however, their antituberculosis potential has not been explored. Consequently, the aim of this work was to design, synthesize and evaluate the effect on the Ca2+-ATPase activity of CtpF of some compounds derived from the pyrrolo[1,2- a]quinoxaline cores with antimycobacterial potential. Compounds 4-(3,4- methylenedioxyphenyl)pyrrolo[1,2-a]quinoxalin 4b and 4-(2-chlorophenyl)pyrrolo[1,2- a]quinoxalin 4c were identified as potential CtpF inhibitors by virtual screening and molecular docking. The synthesis of both molecules was performed with the use of Low Eutectic Point Solvents (DES) as solvents and catalysts, obtaining short reaction times, high purity in the products and environmentally friendly processes, which is an improvement in the synthesis of these compounds. The inhibition of both molecules on the Ca2+ -ATPase activity of CtpF was studied, 30.51% was obtained for 4c and 18.17% for 4b. Compound 4b presented an interesting Minimum Inhibitory Concentration (MIC) of 25 µg/mL, which makes it a promising candidate as a possible antituberculous. None of the molecules showed toxicity on eukaryotic cells; therefore, their optimization may contribute to the development of new antimycobacterial compounds.MaestríaMagíster en Bioquímicaxvi, 78 paginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaMycobacterium tuberculosisPyrrolo[1,2-a]quinoxalinesDeep Eutectic SolventsMycobacterium tuberculosisP-type ATPaseDockingPirrolo[1,2-a]quinoxalinasCtpFSolventes Eutécticos ProfundosMycobacterium tuberculosisATPasa tipo PAcoplamiento molecularDiseño in silico, síntesis y efecto en la actividad Ca2+ -ATPasa de CtpF de los compuestos derivados del núcleo pirrolo[1,2- a]quinoxalinas con potencial antimicobacterianoIn silico design, synthesis and effect on Ca2+ -ATPase activity of CtpF of pyrrolo[1,2- a]quinoxaline core-derived compounds with antimycobacterial potentialTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbott, A. P., Boothby, D., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126(29), 9142– 9147. https://doi.org/10.1021/ja048266jAhmad, S., & Mokaddas, E. (2009). Recent advances in the diagnosis and treatment of multidrug-resistant tuberculosis. Respiratory medicine, 103(12), 1777– 90Alós, J.-I. (2015). Resistencia bacteriana a los antibióticos: una crisis global. Enfermedades Infecciosas y Microbiología Clínica, 33(10), 692–699. https://doi.org/10.1016/j.eimc.2014.10.004Caminero, J. A. (2006). Treatment of multidrug-resistant tuberculosis: evidence and controversies. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union against Tuberculosis and Lung Disease, 10(8), 829–837.Campillo, N. E., Naranjo, P. G., & Paez, J. A. (2011). Presente y Futuro en el Descubrimiento de Fármacos para la Enfermedad de Chagas. Instituto de Química Médica. CSIC. http://www.anales.ranf.com/ojs/2012/01/08.htmChaudhary, K. kumar, & Mishra, N. (2016). A Review on Molecular Docking: Novel Tool for Drug Discovery Design of Novel small molecule mimics binding to quorum sensors in Ralstonia Solanacearum View project synthesis of nanocomposites for drug delivery View project Central Bringing Excellence in O. A Review on Molecular Docking: Novel Tool for Drug Discovery. JSM Chem, 4(3), 1029.Chingaté L, S. M. (2012). Análogos de péptidos antimicrobianos con potencial actividad como compuestos antituberculosos. Universidad Nacional de Colombia.Cires Pujol, M. (2002). La resistencia a los antimicrobianos, un problema mundial. Revista Cubana de Medicina General Integral, 18(2), 165–168. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21252002000200012&lng=es&nrm=iso&tlng=enColl, P. (2003). Fármacos con actividad frente a Mycobacterium tuberculosis. Tuberculosis, 299–307.Curvo, L., Teixeira, L., & Caseiro, F. (2005). Tuberculosis of the chest. European Journal of Radiology, 55(2), 158–172. https://doi.org/10.1016/j.ejrad.2005.04.014De La Fuente-Salcido, N. M., Villarreal-Prieto, M., Ángel, M., León, D., Patricia, A., Pérez, G., Norma, D., & De La Fuente-Salcido, M. (2015). Evaluation of the activity of antimicrobial agents against the challenge of bacterial resistance. Revista Mexicana de Ciencias Farmacéuticas, 2(46), 1–16. http://www.scielo.org.mx/pdf/rmcf/v46n2/1870-0195-rmcf-46-02-00007.pdfDesplat, V., Moreau, S., Gay, A., Fabre, S. B., Thiolat, D., Massip, S., Macky, G., Godde, F., Mossalayi, D., Jarry, C., & Guillon, J. (2010). Synthesis and evaluation of the antiproliferative activity of novel pyrrolo[1,2-a]quinoxaline derivatives, potential inhibitors of Akt kinase. Part II. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(2), 204–215. https://doi.org/10.3109/14756360903169881Dover, L. G., Bhatt, A., Bhowruth, V., Willcox, B. E., & Besra, G. S. (2008). New drugs and vaccines for drug-resistant Mycobacterium tuberculosis infections. Expert Review of Vaccines, 7(4), 481–497. https://doi.org/10.1586/14760584.7.4.481Dupont, C., Viljoen, A., Thomas, S., & Roquet-banères, F. (2017). Bedaquiline inhibits the ATP synthase in Mycobacterium abscessus and is effective in infected zebrafish Downloaded from http://aac.asm.org/ on August 17 , 2017 by FUDAN UNIVERSITY Downloaded from http://aac.asm.org/ on August 17 , 2017 by FUDAN UNIVERSITY. American Society for Microbiology, August. https://doi.org/10.1128/AAC.01225-17El-Elimat, T., Raja, H. A., Figueroa, M., Swanson, S. M., Falkinham, J. O., Lucas, D. M., Grever, M. R., Wani, M. C., Pearce, C. J., & Oberlies, N. H. (2015). Sorbicillinoid analogs with cytotoxic and selective anti-Aspergillus activities from Scytalidium album. Journal of Antibiotics, 68(3), 191–196. https://doi.org/10.1038/ja.2014.125Fabian, L. E. (2015). Diseño y síntesis de análogos quinoxalínicos con potencial actividad quimioterápica [Universidad de Buenos Aires]. http://repositoriouba.sisbi.uba.ar/gsdl/collect/posgrauba/index/assoc/HWA_1139.dir/1139.PDFFilimonov, D., Lagunin, A., Gloriozova, A., Rudik, D., Druzhilovskii, P., Pogodin, V., & Poroikov, V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource (No. 50; p. way2drug.com). Chemistry of Heterocyclic Compound. http://www.way2drug.com/passonline/definition.phpGorocica, P., Jimenez, M. del C., Garfias, Y., Sada, I., & Lascurian, R. (2005). Componentes glicosilados de la envoltura de Mycobacterium tuberculosis que intervienen en la patogénes de la tuberculosis. Revista Del Instituto Nacional de Enfermedades Respiratorias, 18(2), 142–153Guillom, J., Dallemagnea, P., Pfeifferb, B., Renard, P., Manechez, D., Kervrand, A., & Raulv, S. (1998). Synthesis of new pyrrolo[1,2-a]quinoxalines: potential non-peptide glucagon receptor antagonists Jean Guillom, Patrick Dallemagnea, Bruno Pfeifferb, Pierre Renard b, Dominique Manechez~, Alain Kervrand, Sylvain Raulv,*. 33, 293–308.Guillon, J., Cohen, A., Gueddouda, N. M., Das, R. N., Moreau, S., Ronga, L., Savrimoutou, S., Basmaciyan, L., Monnier, A., Monget, M., Rubio, S., Garnerin, T., Azas, N., Mergny, J. L., Mullié, C., & Sonnet, P. (2017). Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 547–563. https://doi.org/10.1080/14756366.2016.1268608Guillon, J., Forfar, I., Mamani-Matsuda, M., Desplat, V., Saliège, M., Thiolat, D., Massip, S., Tabourier, A., Léger, J. M., Dufaure, B., Haumont, G., Jarry, C., & Mossalayi, D. (2007). Synthesis, analytical behaviour and biological evaluation of new 4-substituted pyrrolo[1,2-a]quinoxalines as antileishmanial agents. Bioorganic and Medicinal Chemistry, 15(1), 194–210. https://doi.org/10.1016/j.bmc.2006.09.068Guillon, J., Le Borgne, M., Rimbault, C., Moreau, S., Savrimoutou, S., Pinaud, N., Baratin, S., Marchivie, M., Roche, S., Bollacke, A., Pecci, A., Alvarez, L., Desplat, V., & Jose, J. (2013). Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a] quinoxaline derivatives as inhibitors of the human protein kinase CK2. European Journal of Medicinal Chemistry, 65, 205–222. https://doi.org/10.1016/j.ejmech.2013.04.051Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: un editor químico semantico avanzado, plataforma de visualización y analisis (1.2.0). Journal of Cheminformatics. http://avogadro.cc/Hern, C. R. (2019). Determinación de características funcionales de CtpF, una Ca 2+ - ATPasa tipo P de Mycobacterium tuberculosis [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/72633/1/1026577431.2019.pdfHorsburgh, R., Barry, C., & Lange, C. (2015). Treatment of tuberculosis. The New Engl and Journal of Medicine, 373(11), 2149–2160. https://doi.org/10.1056/NEJMra1413919Jager, V., Dawson, R., Niekerk, C., Vanker, N., Merwe, L., Choi, J., & Diacon, A. (2020). Telacebec (Q203), a New Antituberculosis Agent To. New England Journal of Medicine, 382(13), 1278–1280. https://doi.org/10.1056/nejmc2001899Jiménez, M. A., García, R. S., Sarmiento, A. M., Guidet, L. G., Gálvez, J., & García-Domenech, R.(2016). Application of molecular topology for predicting the leishmanicidal activity of a group of compounds derived from pyrrolo [1,2-α] quinoxaline. Anales de La Real Academia Nacional de Farmacia, 82(3), 317–323.Kandasamy, S., Hassan, S., Gopalaswamy, R., & Narayanan, S. (2014). Homology modelling, docking, pharmacophore and site directed mutagenesis analysis to identify the critical amino acid residue of PknI from Mycobacterium tuberculosis. Journal of Molecular Graphics and Modelling, 52, 11–19. https://doi.org/10.1016/j.jmgm.2014.05.011Kant S, Maurya AK, Kushwaha RA, Nag VL, Prasad R. Multi-drug resistant tuberculosis: an iatrogenic problem. Biosci Trends. 2010 Apr;4(2):48-55. PMID: 20448341.Kapetanovic, I. M. (2008). Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chemico-Biological Interactions, 171, 165–176. https://doi.org/10.1016/j.cbi.2006.12.006Khalifa, R. A., Nasser, M. S., Gomaa, A. A., Osman, N. M., & Salem, H. M. (2013). Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egyptian Journal of Chest Diseases and Tuberculosis, 62(2), 241–247. https://doi.org/10.1016/j.ejcdt.2013.05.008Klenc, J., Raux, E., Barnes, S., Sullivan, S., Duszynska, B., Bojarski, A. J., & Strekowski, L. (2009). Synthesis of 4-Substituted 2- ( 4-Methylpiperazino ) pyrimidines and Quinazoline Analogs as Serotonin 5-HT 2A Receptor Ligands. Journal of Heterocyclic Chemistry, 46(November), 1259–1265. https://doi.org/10.1002/jhetKnechel, N. A. (2009). Tuberculosis: Pathophysiology, clinical features, and diagnosis. Critical Care Nurse, 29(2), 34–43. https://doi.org/10.4037/ccn2009968Kontogiorgis, C. A., & Hadjipavlou, D. (2004). Current trends in quantitative structure activity relationships on fxa inhibitors: Evaluation and comparative analysis. In Medicinal Research Reviews (Vol. 24, pp. 687–747). https://doi.org/10.1002/med.20006Kumar, A., Chaturvedi, V., Bhatnagar, S., Sinha, S., & Siddiqi, M. I. (2009). Knowledge based identification of potent antitubercular compounds using structure based virtual screening and structure interaction fingerprints. Journal of Chemical Information and Modeling, 49(1), 35–42. https://doi.org/Doi 10.1021/Ci8003607Jossefa, C. (2019). Infecciones. MSD Salud. https://www.msdsalud.es/cuidar-en/infecciones/infecciones-bacterianas/se-transmiten-infecciones-bacterianas.htmlLombardino, J. G., & Lowe, J. (2004). The role of the medicinal chemist drug discovery - then and now. 3(October). https://doi.org/10.1038/nrd1523López, F., Medina, J. L., & Castillo, R. (2018). Diseño de fármacos asistido por computadora. Educación Química, 17(4), 452. https://doi.org/10.22201/fq.18708404e.2006.4.66027Mateo, A. J., García, R. S., Sarmiento, A. M., Guidet, L. G., Gálvez, J., & García-Domenech, R. (2016). Application of molecular topology for predicting the leishmanicidal activity of a group of compounds derived from pyrrolo [1,2-α] quinoxaline. Anales de La Real Academia Nacional de Farmacia, 82(3), 317–323.Mdluli, K., Kaneko, T., & Upton, A. (2015). The Tuberculosis Drug Discovery and Development Pipeline and Emerging Drug Targets. Cold Spring Harb Perspect Med, 5(6), 1–24. https://doi.org/10.1007/978-3-642-27769-6_4970-1Medina, J. L. (2007). Aplicaciones exitosas de diseño de fármacos utilizando métodos computacionales. In Comunicaciones libres (pp. 1–8). Ciencia.Mondal, S., Upamanyu, N., & Sen, D. (2013). Hybrid Computational Simulation and Modeling Assisted Structural Analysis of Anti-tubercular Molecules. Procedia Technology, 10, 53–61. https://doi.org/10.1016/j.protcy.2013.12.336Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. P., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256Murcia, G. D. (2009). Microbiologia para enfermeros (U. N. de Colombia (ed.); primera).Murima, P., de Sessions, P. F., Lim, V., Naim, A. N. M., Bifani, P., Boshoff, H. I. M., Sambandamurthy, V. K., Dick, T., Hibberd, M. L., Schreiber, M., & Rao, S. P. S. (2013). Exploring the Mode of Action of Bioactive Compounds by Microfluidic Transcriptional Profiling in Mycobacteria. PLoS ONE, 8(7), 1–11. https://doi.org/10.1371/journal.pone.0069191Narwal, S., Kumar, S., & Verma, P. K. (2016). Synthesis and therapeutic potential of quinoline derivatives. Res Chem Intermed, 43, 1–34.Navarro, C. A. (2015). Estudio de disolventes ambientalmente amigables para la síntesis de 1,8-dioxo-octahidroxantenos y decahidroacridin-1,8-dionas [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/52085/NCBI. (2019). National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/mesh/68007239Niu, M.-M., Qin, J.-Y., Tian, C.-P., Yan, X.-F., Dong, F.-G., Cheng, Z.-Q., Fida, G., Yang, M., Chen, H., & Gu, Y.-Q. (2014). Tubulin inhibitors: pharmacophore modeling, virtual screening and molecular docking. Acta Pharmacologica Sinica, 967–979. https://doi.org/10.1038/aps.2014.34Novoa, L., & Soto, C. Y. (2014). Mycobacterium tuberculosis p-type atpases: Possible targets for drug or vaccine development. BioMed Research International, 2014(January 2015). https://doi.org/10.1155/2014/296986Novoa, L., León, A., Patiño, M., Cuesta, J., Salazar, L. mary, Landsman, D., Mariño, L., & Soto, C. (2012). In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. https://doi.org/10.1186/1472-6807-12-25Nunes, C., Booty, M. G., Carpenter, S. M., Jayaraman, P., Rothchild, A. C., & Behar, S. M. (2014). In search of a new paradigm for protective immunity to TB. Nature Reviews Microbiology, 12(4), 289–299. https://doi.org/10.1038/nrmicro3230Osborne, R. (2013). First novel anti-tuberculosis drug in 40 years. Nature Biotechnology, 31(2), 89–91. https://doi.org/10.1038/nbt0213-89Paz, R. (2010). Utilización de solventes eutécticos como medio de miscibilidad de compuestos bioactivos y polisacáridos. 65. https://ciad.repositorioinstitucional.mx/jspui/handle/1006/376Pérez, R. M. (1998). Resistencia bacteriana a antimicrobianos: su importancia en la toma de decisiones en la práctica diaria. Información Terapéutica Del Sistema Nacional de Salud, 57–67. http://www.mscbs.gob.es/gl/biblioPublic/publicaciones/docs/bacterias.pdfPerkinElmer. (2011). ChemDraw Professional. https://perkinelmerinformatics.com/products/research/chemdraw/Perri, M., Aiello, F., Cione, E., Carullo, G., Amendola, L., Mazzotta, S., & Caroleo, M. C. (2019). Investigation of TNBC in vitro Antiproliferative Effects of Versatile Pirrolo[1,2-a]quinoxaline Compounds. Frontiers in Molecular Biosciences, 6(March), 1–5. https://doi.org/10.3389/fmolb.2019.00012Prasad, B., Kumar, K. S., Babu, P. V., Anusha, K., Rambabu, D., Kandale, A., Vanaja, G. R., Kalle, A. M., & Pal, M. (2012). AlCl 3 induced C – N bond formation followed by Pd / C – Cu mediated coupling – cyclization strategy : synthesis of pyrrolo [ 2 , 3- b ] quinoxalines as anticancer agents. Tetrahedron Letters, 53(45), 6059–6066. https://doi.org/10.1016/j.tetlet.2012.08.119Quiñones D., (2017). Resistencia antimicrobiana: evolución y perspectivas actuales ante el enfoque "Una salud" Revista Cubana de Medicina Tropical, 69(3), 1–17. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602017000300009&lng=es&nrm=iso&tlng=esRamos, P. M., & Gil, J. (2017). Biorrefinerías basadas en explotaciones agropecuarias y forestales.Universidad de Zaragoza, November, 191.Rub, C., & Konig, B. (2012). Low melting mixtures in organic synthesis – an alternative to ionic liquids? Green Chemistry, 207890, 14. https://doi.org/10.1039/b000000xSaffioti, N. A., de Sautu, M., Ferreira-Gomes, M. S., Rossi, R. C., Berlin, J., Rossi, J. P. F. C., & Mangialavori, I. C. (2019). E2P-like states of plasma membrane Ca2+‑ATPase characterization of vanadate and fluoride-stabilized phosphoenzyme analogues. Biochimica et Biophysica Acta - Biomembranes, 1861(2), 366–379. https://doi.org/10.1016/j.bbamem.2018.11.001Sánchez, L., & González, D. (2017). Topología y función de las subunidades intrínsecas de la membrana de las F1F0-ATP sintasa mitocondriales. TIP Revista Especializada En Ciencias Químico-Biológicas, 20(2), 29–47. https://doi.org/10.1016/j.recqb.2017.04.004Santivañez, M., Moreno, E., Monge, A., & Pérez, S. (2013). Quinoxalinas como potenciales agentes antimycobacterium tuberculosis: una revisión. In Rev Soc Quím Perú (Vol. 79, Issue 3). http://www.scielo.org.pe/pdf/rsqp/v79n3/a10v79n3.pdfSantos, P. (2010). Sistema de transporte ATPasa en vesículas de membranas de Mycobacterium tuberculosis involucrado en la regulación de la concentración de protones: posible blanco terapéutico de la acción de péptidos antimicrobianos [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/3005/1/188110.2010.pdfSantos, P. (2020). ATPasas tipo P de Mycobacterium tuberculosis como dianas para el diseño racional de compuestos antituberculosos [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77933Santos, P., Lopez, F., Ramírez, D., Caballero, J., Espinosa, M., Hernández-pando, R., & Soto, C. Y. (2019). Identification of Mycobacterium tuberculosis CtpF as a target for designing new antituberculous compounds. Bioorganic and Medicinal Chemistry, 115256. https://doi.org/10.1016/j.bmc.2019.115256Schrödinger LLC. (2021). Maestro. Schrödinger.Schrödinger, L. (2010). The PyMOL Molecular Graphics System, Version 1.7.4.Seddon, G., Lounnas, V., Mcguire, R., Bywater, R. P., Oliveira, L., & Vriend, G. (2012). Drug design for ever , from hype to hope. 137–150. https://doi.org/10.1007/s10822-011-9519-9Shalini, P. (2016). Desarrollo de fármacos. Manual MSD. https://www.msdmanuals.com/es-co/professional/fármacología-clínica/conceptos-fármacoterapéuticos/desarrollo-de-fármacosSheen, P., Ferrer, P., Gilman, R. H., López-Llano, J., Fuentes, P., Valencia, E., & Zimic, M. J. (2009). Effect of pyrazinamidase activity on pyrazinamide resistance in Mycobacterium tuberculosis. Tuberculosis (Edinburgh, Scotland), 89(2), 109–13Sheldon, R. A. (2005). Green solvents for sustainable organic synthesis: State of the art. Green Chemistry, 7(5), 267–278. https://doi.org/10.1039/b418069kSilverstein, R., Webster, F., & Kiemle, D. (n.d.). Spectrometric Identification of Organic Compunds 7th ed - R. Silverstein, et al., (Wiley, 2005) W (2).pdf (septima).Simithy, J., Reeve, N., Hobrath, J. V., Reynolds, R. C., & Calderón, A. I. (2014). Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS. Tuberculosis, 94(2), 152–158. https://doi.org/10.1016/j.tube.2013.12.004Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114(21), 11060–11082. https://doi.org/10.1021/cr300162pTrott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334Vasava, M. S., Bhoi, M. N., Rathwa, S. K., Borad, M. A., Nair, S. G., & Patel, H. D. (2017). Drug development against tuberculosis: Past, present and future. Indian Journal of Tuberculosis, 64(4), 252–275. https://doi.org/10.1016/j.ijtb.2017.03.002World Health Organization. (2021). Global tuberculosis report 2021. file:///C:/Users/Nuestro compu/Downloads/9789240037021-eng.pdfWorley, M., & Estrada, S. (2014). Bedaquiline: A novel antitubercular agent for the treatment of multidrug-resistant tuberculosis. Pharmacotherapy, 34(11), 1187–1197. https://doi.org/10.1002/phar.1482Zor, T., & Selinger, Z. (1996). Linearization of the Bradford Protein Assay Increases Its Sensitivity : Theoretical and Experimental Studies. 308(236), 302–308.Zumla, A., Nahid, P., & Cole, S. T. (2013). Advances in the development of new tuberculosis drugs and treatment regimens. Nature Reviews. Drug Discovery, 12(5), 388–404. https://doi.org/10.1038/nrd4001EstudiantesORIGINALTesis de maestria Michael Daniela Rodriguez Afanador .pdfTesis de maestria Michael Daniela Rodriguez Afanador .pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf1981150https://repositorio.unal.edu.co/bitstream/unal/81534/3/Tesis%20de%20maestria%20Michael%20Daniela%20Rodriguez%20Afanador%20.pdfdd7bce9f0f972d1e9de534c072c3ce35MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81534/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAILTesis de maestria Michael Daniela Rodriguez Afanador .pdf.jpgTesis de maestria Michael Daniela Rodriguez Afanador .pdf.jpgGenerated Thumbnailimage/jpeg4996https://repositorio.unal.edu.co/bitstream/unal/81534/5/Tesis%20de%20maestria%20Michael%20Daniela%20Rodriguez%20Afanador%20.pdf.jpgee5af47ae071adbce98976ad01dce0b2MD55unal/81534oai:repositorio.unal.edu.co:unal/815342023-08-04 23:04:55.715Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK