Hydrogen kinetics limitation of an autotrophic sulphate reduction reactor

Sulphate-reducing bacteria (SRB) are microorganisms that can be used as removal agents in polluted water sources. The use of inorganic substrates in SRB systems could reduce the cost and simplify operation. However, the use of H2 as an energetic substrate and the production of H2S as a metabolic pro...

Full description

Autores:
Sáez Navarrete, César
Rodrígez Córdova, Leonardo
Baraza, Xavier
Gelmi, Claudio
Herrera, Leandro
Tipo de recurso:
Article of journal
Fecha de publicación:
2012
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/40655
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/40655
http://bdigital.unal.edu.co/30752/
Palabra clave:
Sulphate reducing bacteria
hydrogen
mass transfer
autotrophic.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Sulphate-reducing bacteria (SRB) are microorganisms that can be used as removal agents in polluted water sources. The use of inorganic substrates in SRB systems could reduce the cost and simplify operation. However, the use of H2 as an energetic substrate and the production of H2S as a metabolic product could produce kinetic limitations. The aim of this study was to assess the extent to which the kinetics of a sulphate reduction bioreactor was limited by its gas transfer capacity. Reactor kinetics were monitored by total pressure kinetics without sulphate limitation. It was concluded that the bioreactor design should be based on transfer properties. The uptake rate of H2 reached a maximum of 10-4 M/min, equivalent to a sulphate reduction rate of 3.4 g·L-1·d-1. The hydrogen mass transfer rate required a kLa of 1.48 min-1 at 1.2·109 cells/L in order to avoid limitation by H2 bio-availability (1.23·10-9 L·min-1·cell-1), which is a relevant value for scaling-up purposes.