Diseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseo

ilustraciones, fotografías, graficas

Autores:
Ocampo Páramo, Adolfo Mario
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82052
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82052
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Huesos
TEJIDO OSEO
Osteoporosis
Andamio
Extrusión
Impresión
Electrohidrodinámico
Osteoporosis
Scaffolding
Extrusion
Printing
Electrohydrodynamic
3D
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_3631fa1fed0b3b226a8eefb3ec9d6a26
oai_identifier_str oai:repositorio.unal.edu.co:unal/82052
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Diseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseo
dc.title.translated.eng.fl_str_mv Design of an electrohydrodynamic 3D printing system to improve the resolution of printed scaffolds for bone tissue
title Diseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseo
spellingShingle Diseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseo
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Huesos
TEJIDO OSEO
Osteoporosis
Andamio
Extrusión
Impresión
Electrohidrodinámico
Osteoporosis
Scaffolding
Extrusion
Printing
Electrohydrodynamic
3D
title_short Diseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseo
title_full Diseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseo
title_fullStr Diseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseo
title_full_unstemmed Diseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseo
title_sort Diseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseo
dc.creator.fl_str_mv Ocampo Páramo, Adolfo Mario
dc.contributor.advisor.none.fl_str_mv Clavijo Grimaldo, Dianney
dc.contributor.author.none.fl_str_mv Ocampo Páramo, Adolfo Mario
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncb
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Huesos
TEJIDO OSEO
Osteoporosis
Andamio
Extrusión
Impresión
Electrohidrodinámico
Osteoporosis
Scaffolding
Extrusion
Printing
Electrohydrodynamic
3D
dc.subject.other.eng.fl_str_mv Huesos
dc.subject.lemb.spa.fl_str_mv TEJIDO OSEO
dc.subject.proposal.spa.fl_str_mv Osteoporosis
Andamio
Extrusión
Impresión
Electrohidrodinámico
dc.subject.proposal.eng.fl_str_mv Osteoporosis
Scaffolding
Extrusion
Printing
Electrohydrodynamic
dc.subject.proposal.none.fl_str_mv 3D
description ilustraciones, fotografías, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-24T13:13:13Z
dc.date.available.none.fl_str_mv 2022-08-24T13:13:13Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82052
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82052
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Aurel ARION, TG Dobrescu, and Nicoleta-Elisabeta PASCU. 3d surface modelling aspects for 3d printing. Proceedings in Manufacturing Systems, 9(4):199–204, 2014.
Jingwei Xie, Jiang Jiang, Pooya Davoodi, Madapusi P Srinivasan, and Chi-Hwa Wang. Electrohydrodynamic atomization: A two-decade effort to produce and process micro- /nanoparticulate materials. Chemical engineering science, 125:32–57, 2015.
Cem Balda Dayan, Ferdows Afghah, Burcu Saner Okan, Mehmet Yıldız, Yusuf Mence- loglu, Mustafa Culha, and Bahattin Koc. Modeling 3d melt electrospinning writing by response surface methodology. Materials & Design, 148:87–95, 2018.
Yuan Jin, Qing Gao, Chaoqi Xie, Guangyong Li, Jianke Du, Jianzhong Fu, and Yong He. Fabrication of heterogeneous scaffolds using melt electrospinning writing: Design and optimization. Materials & Design, 185:108274, 2020.
Kai Li, Dazhi Wang, Kuipeng Zhao, Kedong Song, and Junsheng Liang. Electrohy- drodynamic jet 3d printing of pcl/pvp composite scaffold for cell culture. Talanta, 211:120750, 2020.
Trinath Biswal, Sushant Kumar BadJena, and Debabrata Pradhan. Sustainable bioma- terials and their applications: A short review. Materials Today: Proceedings, 2020.
Patitapabana Parida, Ajit Behera, and S Chandra Mishra. Classification of biomaterials used in medicine. 2012.
Toktam Ghassemi, Azadeh Shahroodi, Mohammad H Ebrahimzadeh, Alireza Mousa- vian, Jebraeel Movaffagh, and Ali Moradi. Current concepts in scaffolding for bone tissue engineering. Archives of Bone and Joint Surgery, 6(2):90, 2018.
Masami Okamoto and Baiju John. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Progress in Polymer Science, 38(10-11):1487–1503, 2013.
Alexandros Repanas, Sofia Andriopoulou, and Birgit Glasmacher. The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. Journal of Drug Delivery Science and Technology, 31:137– 146, 2016.
Gloria I Ruiz-Henao, Henry Mauricio Arenas-Quintero, Jorge M. Estrada-a ́lvarez, and Yuledy Villegas-Mun ̃oz. Trastornos de la densidad mineral ́osea en personas con vih en tratamiento antirretroviral pereira- risaralda-colombia, 2017.
Luis Alonso González, Gloria María Vásquez, and José Fernando Molina. Epidemiology of osteoporosis, 2009.
Jonatan Miguel-Carrera, Carlos García-Porrua, Francisco Javier de Toro Santos, and Jose Antonio Picallo-Sánchez. Prevalencia de osteoporosis, estimación de la probabilidad de fractura y estudio del metabolismo óseo en pacientes con reciente diagnóstico de cáncer de próstata en el área sanitaria de lugo. Atención Primaria, 50(3):176–183, 2018.
Manuel Muñoz Torres, M Varsavsky, and MD Avilés Pérez. Osteoporosis. definición. epidemiología - revista de osteoporosis y metabolismo mineral - publicación oficial seiomm, 2010.
Flores-Figueroa, E., Montesinos, J. J., & Mayani, H. (2006). Células troncales mesenquimales: historia, biología y aplicación clínica. Revista de investigación clínica, 58(5), 498-511.
Elena Fernández Burguera. Ingeniería de tejidos.
Vijayavenkataraman, S., Yan, W. C., Lu, W. F., Wang, C. H., & Fuh, J. Y. H. (2018). 3D bioprinting of tissues and organs for regenerative medicine. Advanced drug delivery reviews, 132, 296-332.
Livia Roseti, Valentina Parisi, Mauro Petretta, Carola Cavallo, Giovanna Desando, Isa- bella Bartolotti, and Brunella Grigolo. Scaffolds for bone tissue engineering: State of the art and new perspectives. Materials Science and Engineering: C, 78:1246–1262, 2017.
Ibrahim T. Ozbolat and Monika Hospodiuk. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76:321–343, 2016.
Barrero, A., Márquez, M., & Loscertales, I. G. (2005). Microchorros y nanochorros. Investigación y ciencia, (351), 44-51.
Jingwei Xie, Jiang Jiang, Pooya Davoodi, Madapusi P Srinivasan, and Chi-Hwa Wang. Electrohydrodynamic atomization: A two-decade effort to produce and process micro- /nanoparticulate materials. Chemical engineering science, 125:32–57, 2015.
Franz Jakob, Regina Ebert, Anita Ignatius, Takashi Matsushita, Yoshinobu Watanabe, Juergen Groll, and Heike Walles. Bone tissue engineering in osteoporosis. Maturitas, 75(2):118–124, 2013.
Anirudha Singh and Jennifer Elisseeff. Biomaterials for stem cell differentiation. Journal of Materials Chemistry, 20(40):8832–8847, 2010.
Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., ... & Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive materials, 3(3), 278-314.
A. K. Salem, R. Stevens, R. G. Pearson, M. C. Davies, S. J. B. Tendler, C. J. Roberts, P. M. Williams, and K. M. Shakesheff. Interactions of 3t3 fibroblasts and endothelial cells with defined pore features. Journal of Biomedical Materials Research, 61(2):212– 217, 2002.
Hojjat Naderi, Maryam M Matin, and Ahmad Reza Bahrami. Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. Journal of biomaterials applications, 26(4):383–417, 2011.
Naghmeh Abbasi, Stephen Hamlet, Robert M. Love, and Nam-Trung Nguyen. Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices, 5(1):1–9, 2020.
Xin Bai, Mingzhu Gao, Sahla Syed, Jerry Zhuang, Xiaoyang Xu, and Xue-Qing Zhang. Bioactive hydrogels for bone regeneration. Bioactive Materials, 3(4):401–417, 2018.
Chong Wang, Wei Huang, Yu Zhou, Libing He, Zhi He, Ziling Chen, Xiao He, Shuo Tian, Jiaming Liao, Bingheng Lu, et al. 3d printing of bone tissue engineering scaffolds. Bioactive Materials, 5(1):82–91, 2020.
Carla C Winter, Kritika S Katiyar, Nicole S Hernandez, Yeri J Song, Laura A Struzy- na, James P Harris, and D Kacy Cullen. Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration. Acta biomaterialia, 38:44–58, 2016.
Yuan Cheng, Yang Xu, Yun Qian, Xuan Chen, Yuanming Ouyang, and Wei-En Yuan. 3d structured self-powered pvdf/pcl scaffolds for peripheral nerve regeneration. Nano Energy, 69:104411, 2020.
Karbalaei Kh. Fesharaki Mehrafarin Nasresfahani Mohammad Hossein Baharvand Hos- sein Ghasemi Mobarakeh L., Morshed Mohammad. Electrospun Poly (epsilon- caprolactone)Nanofiber Mat As Extracellular Matrix, volume 75. 2017.
Yoshitaka Nakanishi, Takamitsu Okada, Naohide Takeuchi, Naoya Kozono, Takahiro Senju, Koichi Nakayama, and Yasuharu Nakashima. Histological evaluation of tendon formation using a scaffold-free three-dimensional-bioprinted construct of human dermal fibroblasts under in vitro static tensile culture. Regenerative therapy, 11:47–55, 2019.
Muhammad Qasim, Dong Sik Chae, and Nae Yoon Lee. Advancements and frontiers in nano-based 3d and 4d scaffolds for bone and cartilage tissue engineering. International Journal of Nanomedicine, Volume 14:4333–4351, 2019.
Joshua R Porter, Timothy T Ruckh, and Ketul C Popat. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology progress, 25(6):1539–1560, 2009.
Joshua R Porter, Timothy T Ruckh, and Ketul C Popat. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology progress, 25(6):1539–1560, 2009.
SK Nandi, Samudra Roy, P Mukherjee, Biswanath Kundu, DK De, and Debabrata Basu. Orthopaedic applications of bone graft & graft substitutes: a review. Indian Journal of Medical Reseach, 132(1):15–30, 2010.
Monika Saini, Yashpal Singh, Pooja Arora, Vipin Arora, and Krati Jain. Implant bio- materials: A comprehensive review. World Journal of Clinical Cases: WJCC, 3(1):52, 2015.
Kogan, G., Šoltés, L., Stern, R., & Gemeiner, P. (2007). Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology letters, 29(1), 17-25.
Simón Pascual-Gil, Elisa Garbayo, Paula Díaz-Herráez, Felipe Prosper, and María José Blanco-Prieto. Heart regeneration after myocardial infarction using synthe- tic biomaterials. Journal of Controlled Release, 203:23–38, 2015.
Nupur Kohli, Vaibhav Sharma, Stuart J Brown, and Elena García-Gareta. Synthetic polymers for skin biomaterials. In Biomaterials for Skin Repair and Regeneration, pages 125–149. Elsevier, 2019.
Stephanie Willerth. Synthetic biomaterials for engineering neural tissue from stem cells. Engineering Neural Tissue from Stem Cells, pages 127–158, 2017.
Tiziana Nardo, Irene Carmagnola, Francesca Ruini, Silvia Caddeo, Stefano Calzone, Valeria Chiono, and Gianluca Ciardelli. Synthetic biomaterial for regenerative medicine applications. In Kidney Transplantation, Bioengineering and Regeneration, pages 901– 921. Elsevier, 2017.
Dominique P Pioletti, Hiroshi Takei, Tong Lin, Pascale Van Landuyt, Quing Jun Ma, Soon Yong Kwon, and K-L Paul Sung. The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials, 21(11):1103–1114, 2000.
Mohammed Shehadul Islam, Aditya Aryasomayajula, and Ponnambalam Ravi Selvaga- napathy. A review on macroscale and microscale cell lysis methods. Micromachines, 8(3):83, 2017.
Solon T Kao and Daniel D Scott. A review of bone substitutes. Oral and maxillofacial surgery clinics of North America, 19(4):513–521, 2007.
Xiaohua Liu and Peter X Ma. Polymeric scaffolds for bone tissue engineering. Annals of biomedical engineering, 32(3):477–486, 2004.
Julie R Fuchs, Boris A Nasseri, and Joseph P Vacanti. Tissue engineering: a 21st century solution to surgical reconstruction. The Annals of thoracic surgery, 72(2):577–591, 2001.
Kurosh Rezwan, QZ Chen, J Ju Blaker, and Aldo Roberto Boccaccini. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18):3413–3431, 2006.
Alireza Shahin-Shamsabadi, Ata Hashemi, Mohammadreza Tahriri, Farshid Bastami, Majid Salehi, and Fatemeh Mashhadi Abbas. Mechanical, material, and biological study of a pcl/bioactive glass bone scaffold: Importance of viscoelasticity. Materials Science and Engineering: C, 90:280–288, 2018.
Ko Eun Park, Beom Su Kim, Min Hee Kim, Hyung Keun You, Jun Lee, and Won Ho Park. Basic fibroblast growth factor-encapsulated pcl nano/microfibrous composite scaffolds for bone regeneration. Polymer, 76:8–16, 2015.
Gianluca Ciardelli, Valeria Chiono, Giovanni Vozzi, Mariano Pracella, Arti Ahluwa- lia, Niccoletta Barbani, Caterina Cristallini, and Paolo Giusti. Blends of poly-(ε- caprolactone) and polysaccharides in tissue engineering applications. Biomacromole- cules, 6(4):1961–1976, 2005.
Scott Stratton, Namdev B Shelke, Kazunori Hoshino, Swetha Rudraiah, and Sanga- mesh G Kumbar. Bioactive polymeric scaffolds for tissue engineering. Bioactive mate- rials, 1(2):93–108, 2016.
Valdir Mano, Ribeiro e Silva, and Maria Elisa Scarpelli. Bioartificial polymeric materials based on collagen and poly (n-isopropylacrylamide). Materials Research, 10(2):165–170, 2007.
Alok Kumar, Sourav Mandal, Srimanta Barui, Ramakrishna Vasireddi, Uwe Gbureck, Michael Gelinsky, and Bikramjit Basu. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering: R: Reports, 103:1–39, 2016.
Maria P Nikolova and Murthy S Chavali. Recent advances in biomaterials for 3d scaffolds: A review. Bioactive materials, 4:271–292, 2019.
Liisa T. Kuhn. Introduction to biomedical engineering. Biomaterials, pages 219–271, 2012.
IbrahimT.Ozbolat,KazimK.Moncal,andHemanthGudapati.Evaluationofbioprinter technologies. Additive Manufacturing, 13:179–200, 2017.
Qian Yan, Hanhua Dong, Jin Su, Jianhua Han, Bo Song, Qingsong Wei, and Yusheng Shi. A review of 3d printing technology for medical applications. Engineering, 4(5):729– 742, 2018.
Ibrahim T. Ozbolat. Laser-based bioprinting. 3D Bioprinting, pages 165–197, 2017.
Ian Gibson, David W Rosen, Brent Stucker, et al. Additive manufacturing technologies, volume 17. Springer, 2014.
Friedrich Ba ̈hr and Engelbert Westka ̈mper. Correlations between influencing parameters and quality properties of components produced by fused deposition modeling. Procedia CIRP, 72(1):1214–1219, 2018.
Xianfeng Wang, Bin Ding, and Bingyun Li. Biomimetic electrospun nanofibrous struc- tures for tissue engineering. Materials today, 16(6):229–241, 2013.
Bin Ding, Moran Wang, Xianfeng Wang, Jianyong Yu, and Gang Sun. Electrospun nanomaterials for ultrasensitive sensors. Materials today, 13(11):16–27, 2010.
Hang Liu, Sanjairaj Vijayavenkataraman, Dandan Wang, Linzhi Jing, Jie Sun, and Kai He. Influence of electrohydrodynamic jetting parameters on the morphology of pcl scaffolds. Int. J. Bioprint, 3(1):72–82, 2017.
J Pelipenko, P Kocbek, and J Kristl. Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. International journal of pharmaceutics, 484(1- 2):57–74, 2015.
Bogdan Cramariuc, Radu Cramariuc, Roxana Scarlet, Liliana Rozemarie Manea, Iulia- na G Lupu, and Oana Cramariuc. Fiber diameter in electrospinning process. Journal of Electrostatics, 71(3):189–198, 2013.
Adnan Haider, Sajjad Haider, and Inn-Kyu Kang. A comprehensive review summari- zing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8):1165–1188, 2018.
Eunjoo Koh and Yong Taek Lee. Development of an embossed nanofiber hemodialysis membrane for improving capacity and efficiency via 3d printing and electrospinning technology. Separation and Purification Technology, 241:116657, 2020.
Dilshan Sooriyaarachchi, Jiaxin Wu, Aixin Feng, Maksud Islam, and George Z Tan. Hybrid fabrication of biomimetic meniscus scaffold by 3d printing and parallel electros- pinning. Procedia Manufacturing, 34:528–534, 2019.
Weiming Chen, Yong Xu, Yaqiang Li, Litao Jia, Xiumei Mo, Gening Jiang, and Guang- dong Zhou. 3d printing electrospinning fiber-reinforced decellularized extracellular ma- trix for cartilage regeneration. Chemical Engineering Journal, 382:122986, 2020.
Rita Ambrus, Areen Alshweiat, Ildiko ́ Cs ́oka, George Ovari, Ammar Esmail, and Nor- bert Radacsi. 3d-printed electrospinning setup for the preparation of loratadine nanofi- bers with enhanced physicochemical properties. International journal of pharmaceutics, 567:118455, 2019.
Pooya Davoodi, Fang Feng, Qingxing Xu, Wei-Cheng Yan, Yen Wah Tong, MP Srini- vasan, Vijay Kumar Sharma, and Chi-Hwa Wang. Coaxial electrohydrodynamic ato- mization: microparticles for drug delivery applications. Journal of controlled release, 205:70–82, 2015.
Dianney Clavijo-Grimaldo, Nubia Ponce-Zapata, and Ciro Casadiego-Torrado. Control of bacterial proliferation and formation of biofilm in membranes for food packaging manufactured by electrospinning. Chemical Engineering Transactions, 75:241–246, 2019.
L Ghasemi-Mobarakeh, D Semnani, and M Morshed. A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications. Journal of applied polymer science, 106(4):2536–2542, 2007.
Ralph E Holmes, Robert W Wardrop, and Larry M Wolford. Hydroxylapatite as a bone graft substitute in orthognathic surgery: histologic and histometric findings. Journal of oral and maxillofacial surgery, 46(8):661–671, 1988.
Hideki Yoshikawa, Noriyuki Tamai, Tsuyoshi Murase, and Akira Myoui. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. Journal of the Royal Society Interface, 6(suppl 3):S341–S348, 2009.
Ee Jay Chong, Than Thang Phan, Ivor Jiun Lim, YZ Zhang, Boom Huat Bay, See- ram Ramakrishna, and Chwee Teck Lim. Evaluation of electrospun pcl/gelatin nanofi- brous scaffold for wound healing and layered dermal reconstitution. Acta biomaterialia, 3(3):321–330, 2007.
MOBARAKEH L GHASEMI, Mohammad Morshed, KH KARBALAEI, Mehrafarin Fesharaki, MOHAMMAD HOSSEIN NASRESFAHANI, and Hossein Baharvand. Elec- trospun poly (epsilon-caprolactone) nanofiber mat as extracellular matrix. 2008.
Yun Hui Lee, Jong Hoon Lee, In-Gu An, Chan Kim, Doo Sung Lee, Young Kwan Lee, and Jae-Do Nam. Electrospun dual-porosity structure and biodegradation morphology of montmorillonite reinforced plla nanocomposite scaffolds. Biomaterials, 26(16):3165– 3172, 2005.
R Baptista and M Guedes. Porosity and pore design influence on fatigue behavior of 3d printed scaffolds for trabecular bone replacement. Journal of the Mechanical Behavior of Biomedical Materials, 117:104378, 2021.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 92 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Ingeniería Biomédica
dc.publisher.department.spa.fl_str_mv Departamento de Morfología
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82052/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82052/3/1018484140.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82052/4/1018484140.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
ab3d53f0c525b86d038b64736de54f75
7998ecf224da33d80aa1ec1b2ffc8473
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089936879484928
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Clavijo Grimaldo, Dianney4b13611d3332df5d0ea7077fa160b1faOcampo Páramo, Adolfo Mariofa64a0a4f59f310e58161f8560e5edccGrupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncb2022-08-24T13:13:13Z2022-08-24T13:13:13Z2022https://repositorio.unal.edu.co/handle/unal/82052Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasLa osteoporosis es una patología esquelética caracterizada por la perdida de masa ósea que, dependiendo el riesgo del paciente, requiere desde tratamientos farmacéuticos hasta intervenciones quirúrgicas. Los fármacos se encargan de compensar dicha perdida ósea, mas no previenen la ocurrencia de una fractura. Ante la eventualidad de una fractura se recurre a la cirugía donde utilizando diferentes tipos de biomateriales se fabrican andamios óseos para reemplazar el tejido perdido y/o afectado. Una de las técnicas comunes de fabricación de estos andamios es la impresión por extrusión, debido a su facilidad de implementación. Sin embargo, esta técnica cuenta con importantes limitaciones, en cuanto a resolución se trata, refiriéndose así al diámetro de las fibras y porosidad. Estas características son fundamentales para imitar las propiedad de un tejido óseo sano, lo que se desea para que el proceso curativo del paciente se de de la forma deseada. Con el fin de lograr andamios que biomimeticen el ambiente celular óseo, desde hace unos años se han estudiado diferentes técnicas de impresión de andamios, una de ellas es la impresión Electrohidrodinámica(EHDA). Con este método de impresión se pretende mejorar la resolución de los andamios que se han venido realizando por extrusión. En el presente proyecto se inicio modificando el equipo de impresión EHDA, agregando un mecanismo de movimiento en los ejes XY para movilizar la base colectora y así habilitar la impresión 3D, dé tal forma que los resultados a obtener entre los dos sistemas de impresión EHDA vs Extrusión sean comparables. Se fabricaron andamios tanto por extrusión como por Electrospinning. Por medio del microscopio electrónico de barrido se obtuvieron imágenes detalladas de cada uno. Con dichas imágenes se procedió a realizar las respectivas medidas de porosidad y diámetro de fibras para cada andamio impreso, tanto por extrusión como por EHDA, utilizando el método de análisis de imagen por medio del software ``Image J" (National Institutes of Health). Al comparar los datos se obtiene que con la técnica de Electrospinning se pueden fabricar andamios a partir de nano y micro fibras, mientras que con la técnica de Extrusión las fibras se encuentran en el orden de los micrómetros y milímetros. Los poros para los andamios se encuentran en el mismo orden del tamaño de sus fibras, esto quiere decir que los andamios fabricados por Electrospinning cuentan con un tamaño de poros considerablemente menor a los fabricados por Extrusión, que a su vez indica que para la fabricación de andamios óseos la técnica EHDA es una mejor opción, puesto que es capaz de emular con mayor fidelidad el ambiente celular óseo propicio para la proliferación y supervivencia de este tipo celular. (Texto tomado de la fuente)Osteoporosis is a skeletal pathology characterized by the loss of bone mass that, depending on the patient's risk, requires from pharmaceutical treatments to surgical interventions. The drugs are responsible for compensating for this bone loss, but they do not prevent the occurrence of a fracture. In the event of a fracture, surgery is used where, using different types of biomaterials, bone scaffolds are manufactured to replace the lost and/or affected tissue. One of the common manufacturing techniques for these scaffolds is extrusion printing, due to its ease of implementation. However, this technique has important limitations, in terms of resolution, referring to the diameter of the fibers and porosity. These characteristics are essential to imitate the properties of healthy bone tissue, which is desired so that the patient's healing process occurs as desired. In order to achieve scaffolds that biomimetic the bone cell environment, different scaffold printing techniques have been studied for a few years, one of them is Electrohydrodynamic printing (EHDA). With this printing method it is intended to improve the resolution of the scaffolds that have been made by extrusion. In this project, we began by modifying the EHDA printing equipment, adding a movement mechanism in the XY axes to mobilize the collector base and thus enable 3D printing, in such a way that the results to be obtained between the two EHDA printing systems vs. Extrusion are comparable. Scaffolds were manufactured both by extrusion and Electrospinning. Detailed images of each were obtained by means of the scanning electron microscope. With these images, the respective measurements of porosity and fiber diameter were made for each printed scaffold, both by extrusion and by EHDA, using the image analysis method using the ``Image J" software (National Institutes of Health). When comparing the data, it is obtained that with the Electrospinning technique, scaffolds can be manufactured from nano and micro fibers, while with the Extrusion technique, the fibers are in the order of micrometers and millimeters. The pore size in the scaffolds are in the same order of size of their fibers, this means that the scaffolds manufactured by Electrospinning have a considerably smaller pore size than those manufactured by Extrusion, which in turn indicates that for the manufacture of bone scaffolds the EHDA technique it is a better option, since it is able to more faithfully emulate the bone cell environment propitious to the proliferation and survival of this cell type.Ministerio de Ciencia, tecnología e innovación de Colombia, la Fundación Universidad Sanitas y la Universidad Nacional de Colombia financiaron gran parte de esta investigación a través del proyecto Código 1101744555730 (Contrato 630-2017).MaestríaMagíster en Ingeniería BiomédicaBiomaterialesxvi, 92 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en Ingeniería BiomédicaDepartamento de MorfologíaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaHuesosTEJIDO OSEOOsteoporosisAndamioExtrusiónImpresiónElectrohidrodinámicoOsteoporosisScaffoldingExtrusionPrintingElectrohydrodynamic3DDiseño de un sistema de impresión electrohidrodinámico 3D para mejorar la resolución de andamios impresos para el tejido óseoDesign of an electrohydrodynamic 3D printing system to improve the resolution of printed scaffolds for bone tissueTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAurel ARION, TG Dobrescu, and Nicoleta-Elisabeta PASCU. 3d surface modelling aspects for 3d printing. Proceedings in Manufacturing Systems, 9(4):199–204, 2014.Jingwei Xie, Jiang Jiang, Pooya Davoodi, Madapusi P Srinivasan, and Chi-Hwa Wang. Electrohydrodynamic atomization: A two-decade effort to produce and process micro- /nanoparticulate materials. Chemical engineering science, 125:32–57, 2015.Cem Balda Dayan, Ferdows Afghah, Burcu Saner Okan, Mehmet Yıldız, Yusuf Mence- loglu, Mustafa Culha, and Bahattin Koc. Modeling 3d melt electrospinning writing by response surface methodology. Materials & Design, 148:87–95, 2018.Yuan Jin, Qing Gao, Chaoqi Xie, Guangyong Li, Jianke Du, Jianzhong Fu, and Yong He. Fabrication of heterogeneous scaffolds using melt electrospinning writing: Design and optimization. Materials & Design, 185:108274, 2020.Kai Li, Dazhi Wang, Kuipeng Zhao, Kedong Song, and Junsheng Liang. Electrohy- drodynamic jet 3d printing of pcl/pvp composite scaffold for cell culture. Talanta, 211:120750, 2020.Trinath Biswal, Sushant Kumar BadJena, and Debabrata Pradhan. Sustainable bioma- terials and their applications: A short review. Materials Today: Proceedings, 2020.Patitapabana Parida, Ajit Behera, and S Chandra Mishra. Classification of biomaterials used in medicine. 2012.Toktam Ghassemi, Azadeh Shahroodi, Mohammad H Ebrahimzadeh, Alireza Mousa- vian, Jebraeel Movaffagh, and Ali Moradi. Current concepts in scaffolding for bone tissue engineering. Archives of Bone and Joint Surgery, 6(2):90, 2018.Masami Okamoto and Baiju John. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Progress in Polymer Science, 38(10-11):1487–1503, 2013.Alexandros Repanas, Sofia Andriopoulou, and Birgit Glasmacher. The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. Journal of Drug Delivery Science and Technology, 31:137– 146, 2016.Gloria I Ruiz-Henao, Henry Mauricio Arenas-Quintero, Jorge M. Estrada-a ́lvarez, and Yuledy Villegas-Mun ̃oz. Trastornos de la densidad mineral ́osea en personas con vih en tratamiento antirretroviral pereira- risaralda-colombia, 2017.Luis Alonso González, Gloria María Vásquez, and José Fernando Molina. Epidemiology of osteoporosis, 2009.Jonatan Miguel-Carrera, Carlos García-Porrua, Francisco Javier de Toro Santos, and Jose Antonio Picallo-Sánchez. Prevalencia de osteoporosis, estimación de la probabilidad de fractura y estudio del metabolismo óseo en pacientes con reciente diagnóstico de cáncer de próstata en el área sanitaria de lugo. Atención Primaria, 50(3):176–183, 2018.Manuel Muñoz Torres, M Varsavsky, and MD Avilés Pérez. Osteoporosis. definición. epidemiología - revista de osteoporosis y metabolismo mineral - publicación oficial seiomm, 2010.Flores-Figueroa, E., Montesinos, J. J., & Mayani, H. (2006). Células troncales mesenquimales: historia, biología y aplicación clínica. Revista de investigación clínica, 58(5), 498-511.Elena Fernández Burguera. Ingeniería de tejidos.Vijayavenkataraman, S., Yan, W. C., Lu, W. F., Wang, C. H., & Fuh, J. Y. H. (2018). 3D bioprinting of tissues and organs for regenerative medicine. Advanced drug delivery reviews, 132, 296-332.Livia Roseti, Valentina Parisi, Mauro Petretta, Carola Cavallo, Giovanna Desando, Isa- bella Bartolotti, and Brunella Grigolo. Scaffolds for bone tissue engineering: State of the art and new perspectives. Materials Science and Engineering: C, 78:1246–1262, 2017.Ibrahim T. Ozbolat and Monika Hospodiuk. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 76:321–343, 2016.Barrero, A., Márquez, M., & Loscertales, I. G. (2005). Microchorros y nanochorros. Investigación y ciencia, (351), 44-51.Jingwei Xie, Jiang Jiang, Pooya Davoodi, Madapusi P Srinivasan, and Chi-Hwa Wang. Electrohydrodynamic atomization: A two-decade effort to produce and process micro- /nanoparticulate materials. Chemical engineering science, 125:32–57, 2015.Franz Jakob, Regina Ebert, Anita Ignatius, Takashi Matsushita, Yoshinobu Watanabe, Juergen Groll, and Heike Walles. Bone tissue engineering in osteoporosis. Maturitas, 75(2):118–124, 2013.Anirudha Singh and Jennifer Elisseeff. Biomaterials for stem cell differentiation. Journal of Materials Chemistry, 20(40):8832–8847, 2010.Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., ... & Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive materials, 3(3), 278-314.A. K. Salem, R. Stevens, R. G. Pearson, M. C. Davies, S. J. B. Tendler, C. J. Roberts, P. M. Williams, and K. M. Shakesheff. Interactions of 3t3 fibroblasts and endothelial cells with defined pore features. Journal of Biomedical Materials Research, 61(2):212– 217, 2002.Hojjat Naderi, Maryam M Matin, and Ahmad Reza Bahrami. Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. Journal of biomaterials applications, 26(4):383–417, 2011.Naghmeh Abbasi, Stephen Hamlet, Robert M. Love, and Nam-Trung Nguyen. Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices, 5(1):1–9, 2020.Xin Bai, Mingzhu Gao, Sahla Syed, Jerry Zhuang, Xiaoyang Xu, and Xue-Qing Zhang. Bioactive hydrogels for bone regeneration. Bioactive Materials, 3(4):401–417, 2018.Chong Wang, Wei Huang, Yu Zhou, Libing He, Zhi He, Ziling Chen, Xiao He, Shuo Tian, Jiaming Liao, Bingheng Lu, et al. 3d printing of bone tissue engineering scaffolds. Bioactive Materials, 5(1):82–91, 2020.Carla C Winter, Kritika S Katiyar, Nicole S Hernandez, Yeri J Song, Laura A Struzy- na, James P Harris, and D Kacy Cullen. Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration. Acta biomaterialia, 38:44–58, 2016.Yuan Cheng, Yang Xu, Yun Qian, Xuan Chen, Yuanming Ouyang, and Wei-En Yuan. 3d structured self-powered pvdf/pcl scaffolds for peripheral nerve regeneration. Nano Energy, 69:104411, 2020.Karbalaei Kh. Fesharaki Mehrafarin Nasresfahani Mohammad Hossein Baharvand Hos- sein Ghasemi Mobarakeh L., Morshed Mohammad. Electrospun Poly (epsilon- caprolactone)Nanofiber Mat As Extracellular Matrix, volume 75. 2017.Yoshitaka Nakanishi, Takamitsu Okada, Naohide Takeuchi, Naoya Kozono, Takahiro Senju, Koichi Nakayama, and Yasuharu Nakashima. Histological evaluation of tendon formation using a scaffold-free three-dimensional-bioprinted construct of human dermal fibroblasts under in vitro static tensile culture. Regenerative therapy, 11:47–55, 2019.Muhammad Qasim, Dong Sik Chae, and Nae Yoon Lee. Advancements and frontiers in nano-based 3d and 4d scaffolds for bone and cartilage tissue engineering. International Journal of Nanomedicine, Volume 14:4333–4351, 2019.Joshua R Porter, Timothy T Ruckh, and Ketul C Popat. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology progress, 25(6):1539–1560, 2009.Joshua R Porter, Timothy T Ruckh, and Ketul C Popat. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology progress, 25(6):1539–1560, 2009.SK Nandi, Samudra Roy, P Mukherjee, Biswanath Kundu, DK De, and Debabrata Basu. Orthopaedic applications of bone graft & graft substitutes: a review. Indian Journal of Medical Reseach, 132(1):15–30, 2010.Monika Saini, Yashpal Singh, Pooja Arora, Vipin Arora, and Krati Jain. Implant bio- materials: A comprehensive review. World Journal of Clinical Cases: WJCC, 3(1):52, 2015.Kogan, G., Šoltés, L., Stern, R., & Gemeiner, P. (2007). Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology letters, 29(1), 17-25.Simón Pascual-Gil, Elisa Garbayo, Paula Díaz-Herráez, Felipe Prosper, and María José Blanco-Prieto. Heart regeneration after myocardial infarction using synthe- tic biomaterials. Journal of Controlled Release, 203:23–38, 2015.Nupur Kohli, Vaibhav Sharma, Stuart J Brown, and Elena García-Gareta. Synthetic polymers for skin biomaterials. In Biomaterials for Skin Repair and Regeneration, pages 125–149. Elsevier, 2019.Stephanie Willerth. Synthetic biomaterials for engineering neural tissue from stem cells. Engineering Neural Tissue from Stem Cells, pages 127–158, 2017.Tiziana Nardo, Irene Carmagnola, Francesca Ruini, Silvia Caddeo, Stefano Calzone, Valeria Chiono, and Gianluca Ciardelli. Synthetic biomaterial for regenerative medicine applications. In Kidney Transplantation, Bioengineering and Regeneration, pages 901– 921. Elsevier, 2017.Dominique P Pioletti, Hiroshi Takei, Tong Lin, Pascale Van Landuyt, Quing Jun Ma, Soon Yong Kwon, and K-L Paul Sung. The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials, 21(11):1103–1114, 2000.Mohammed Shehadul Islam, Aditya Aryasomayajula, and Ponnambalam Ravi Selvaga- napathy. A review on macroscale and microscale cell lysis methods. Micromachines, 8(3):83, 2017.Solon T Kao and Daniel D Scott. A review of bone substitutes. Oral and maxillofacial surgery clinics of North America, 19(4):513–521, 2007.Xiaohua Liu and Peter X Ma. Polymeric scaffolds for bone tissue engineering. Annals of biomedical engineering, 32(3):477–486, 2004.Julie R Fuchs, Boris A Nasseri, and Joseph P Vacanti. Tissue engineering: a 21st century solution to surgical reconstruction. The Annals of thoracic surgery, 72(2):577–591, 2001.Kurosh Rezwan, QZ Chen, J Ju Blaker, and Aldo Roberto Boccaccini. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18):3413–3431, 2006.Alireza Shahin-Shamsabadi, Ata Hashemi, Mohammadreza Tahriri, Farshid Bastami, Majid Salehi, and Fatemeh Mashhadi Abbas. Mechanical, material, and biological study of a pcl/bioactive glass bone scaffold: Importance of viscoelasticity. Materials Science and Engineering: C, 90:280–288, 2018.Ko Eun Park, Beom Su Kim, Min Hee Kim, Hyung Keun You, Jun Lee, and Won Ho Park. Basic fibroblast growth factor-encapsulated pcl nano/microfibrous composite scaffolds for bone regeneration. Polymer, 76:8–16, 2015.Gianluca Ciardelli, Valeria Chiono, Giovanni Vozzi, Mariano Pracella, Arti Ahluwa- lia, Niccoletta Barbani, Caterina Cristallini, and Paolo Giusti. Blends of poly-(ε- caprolactone) and polysaccharides in tissue engineering applications. Biomacromole- cules, 6(4):1961–1976, 2005.Scott Stratton, Namdev B Shelke, Kazunori Hoshino, Swetha Rudraiah, and Sanga- mesh G Kumbar. Bioactive polymeric scaffolds for tissue engineering. Bioactive mate- rials, 1(2):93–108, 2016.Valdir Mano, Ribeiro e Silva, and Maria Elisa Scarpelli. Bioartificial polymeric materials based on collagen and poly (n-isopropylacrylamide). Materials Research, 10(2):165–170, 2007.Alok Kumar, Sourav Mandal, Srimanta Barui, Ramakrishna Vasireddi, Uwe Gbureck, Michael Gelinsky, and Bikramjit Basu. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering: R: Reports, 103:1–39, 2016.Maria P Nikolova and Murthy S Chavali. Recent advances in biomaterials for 3d scaffolds: A review. Bioactive materials, 4:271–292, 2019.Liisa T. Kuhn. Introduction to biomedical engineering. Biomaterials, pages 219–271, 2012.IbrahimT.Ozbolat,KazimK.Moncal,andHemanthGudapati.Evaluationofbioprinter technologies. Additive Manufacturing, 13:179–200, 2017.Qian Yan, Hanhua Dong, Jin Su, Jianhua Han, Bo Song, Qingsong Wei, and Yusheng Shi. A review of 3d printing technology for medical applications. Engineering, 4(5):729– 742, 2018.Ibrahim T. Ozbolat. Laser-based bioprinting. 3D Bioprinting, pages 165–197, 2017.Ian Gibson, David W Rosen, Brent Stucker, et al. Additive manufacturing technologies, volume 17. Springer, 2014.Friedrich Ba ̈hr and Engelbert Westka ̈mper. Correlations between influencing parameters and quality properties of components produced by fused deposition modeling. Procedia CIRP, 72(1):1214–1219, 2018.Xianfeng Wang, Bin Ding, and Bingyun Li. Biomimetic electrospun nanofibrous struc- tures for tissue engineering. Materials today, 16(6):229–241, 2013.Bin Ding, Moran Wang, Xianfeng Wang, Jianyong Yu, and Gang Sun. Electrospun nanomaterials for ultrasensitive sensors. Materials today, 13(11):16–27, 2010.Hang Liu, Sanjairaj Vijayavenkataraman, Dandan Wang, Linzhi Jing, Jie Sun, and Kai He. Influence of electrohydrodynamic jetting parameters on the morphology of pcl scaffolds. Int. J. Bioprint, 3(1):72–82, 2017.J Pelipenko, P Kocbek, and J Kristl. Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. International journal of pharmaceutics, 484(1- 2):57–74, 2015.Bogdan Cramariuc, Radu Cramariuc, Roxana Scarlet, Liliana Rozemarie Manea, Iulia- na G Lupu, and Oana Cramariuc. Fiber diameter in electrospinning process. Journal of Electrostatics, 71(3):189–198, 2013.Adnan Haider, Sajjad Haider, and Inn-Kyu Kang. A comprehensive review summari- zing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8):1165–1188, 2018.Eunjoo Koh and Yong Taek Lee. Development of an embossed nanofiber hemodialysis membrane for improving capacity and efficiency via 3d printing and electrospinning technology. Separation and Purification Technology, 241:116657, 2020.Dilshan Sooriyaarachchi, Jiaxin Wu, Aixin Feng, Maksud Islam, and George Z Tan. Hybrid fabrication of biomimetic meniscus scaffold by 3d printing and parallel electros- pinning. Procedia Manufacturing, 34:528–534, 2019.Weiming Chen, Yong Xu, Yaqiang Li, Litao Jia, Xiumei Mo, Gening Jiang, and Guang- dong Zhou. 3d printing electrospinning fiber-reinforced decellularized extracellular ma- trix for cartilage regeneration. Chemical Engineering Journal, 382:122986, 2020.Rita Ambrus, Areen Alshweiat, Ildiko ́ Cs ́oka, George Ovari, Ammar Esmail, and Nor- bert Radacsi. 3d-printed electrospinning setup for the preparation of loratadine nanofi- bers with enhanced physicochemical properties. International journal of pharmaceutics, 567:118455, 2019.Pooya Davoodi, Fang Feng, Qingxing Xu, Wei-Cheng Yan, Yen Wah Tong, MP Srini- vasan, Vijay Kumar Sharma, and Chi-Hwa Wang. Coaxial electrohydrodynamic ato- mization: microparticles for drug delivery applications. Journal of controlled release, 205:70–82, 2015.Dianney Clavijo-Grimaldo, Nubia Ponce-Zapata, and Ciro Casadiego-Torrado. Control of bacterial proliferation and formation of biofilm in membranes for food packaging manufactured by electrospinning. Chemical Engineering Transactions, 75:241–246, 2019.L Ghasemi-Mobarakeh, D Semnani, and M Morshed. A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications. Journal of applied polymer science, 106(4):2536–2542, 2007.Ralph E Holmes, Robert W Wardrop, and Larry M Wolford. Hydroxylapatite as a bone graft substitute in orthognathic surgery: histologic and histometric findings. Journal of oral and maxillofacial surgery, 46(8):661–671, 1988.Hideki Yoshikawa, Noriyuki Tamai, Tsuyoshi Murase, and Akira Myoui. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. Journal of the Royal Society Interface, 6(suppl 3):S341–S348, 2009.Ee Jay Chong, Than Thang Phan, Ivor Jiun Lim, YZ Zhang, Boom Huat Bay, See- ram Ramakrishna, and Chwee Teck Lim. Evaluation of electrospun pcl/gelatin nanofi- brous scaffold for wound healing and layered dermal reconstitution. Acta biomaterialia, 3(3):321–330, 2007.MOBARAKEH L GHASEMI, Mohammad Morshed, KH KARBALAEI, Mehrafarin Fesharaki, MOHAMMAD HOSSEIN NASRESFAHANI, and Hossein Baharvand. Elec- trospun poly (epsilon-caprolactone) nanofiber mat as extracellular matrix. 2008.Yun Hui Lee, Jong Hoon Lee, In-Gu An, Chan Kim, Doo Sung Lee, Young Kwan Lee, and Jae-Do Nam. Electrospun dual-porosity structure and biodegradation morphology of montmorillonite reinforced plla nanocomposite scaffolds. Biomaterials, 26(16):3165– 3172, 2005.R Baptista and M Guedes. Porosity and pore design influence on fatigue behavior of 3d printed scaffolds for trabecular bone replacement. Journal of the Mechanical Behavior of Biomedical Materials, 117:104378, 2021.Código 1101744555730 (Contrato 630-2017)Ministerio de Ciencia, tecnología e innovación de ColombiaFundación Universidad SanitasUniversidad Nacional de ColombiaEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/82052/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52ORIGINAL1018484140.2022.pdf1018484140.2022.pdfTesis de Maestría en Ingeniería Biomédicaapplication/pdf102651608https://repositorio.unal.edu.co/bitstream/unal/82052/3/1018484140.2022.pdfab3d53f0c525b86d038b64736de54f75MD53THUMBNAIL1018484140.2022.pdf.jpg1018484140.2022.pdf.jpgGenerated Thumbnailimage/jpeg4925https://repositorio.unal.edu.co/bitstream/unal/82052/4/1018484140.2022.pdf.jpg7998ecf224da33d80aa1ec1b2ffc8473MD54unal/82052oai:repositorio.unal.edu.co:unal/820522024-08-08 23:11:59.662Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK