Monitoreo de perfiles no lineales con dependencia temporal en fase II desde un enfoque del análisis de datos funcionales

En el control estadístico de procesos caracterizados por una relación funcional entre dos variables, el supuesto de independencia entre las observaciones de un mismo perfil o entre perfiles es de uso recurrente en una gran cantidad de aplicaciones. La rápida obtención de información, la inercia de l...

Full description

Autores:
Cardenas Pineda, David Humberto
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80213
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80213
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas
Análisis multivariante
Multivariate analysis
Functional time series
Control charts
Nonlinear profiles
Functional data
Cartas de Control
Datos Funcionales
Perfiles no Lineales
Series de Tiempo Funcionales
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_3591e40f4fbc65fb6ed6416ebd5f0730
oai_identifier_str oai:repositorio.unal.edu.co:unal/80213
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Monitoreo de perfiles no lineales con dependencia temporal en fase II desde un enfoque del análisis de datos funcionales
dc.title.translated.eng.fl_str_mv Phase II monitoring of nonlinear profiles with temporal dependece using a functional data analysis approach
title Monitoreo de perfiles no lineales con dependencia temporal en fase II desde un enfoque del análisis de datos funcionales
spellingShingle Monitoreo de perfiles no lineales con dependencia temporal en fase II desde un enfoque del análisis de datos funcionales
510 - Matemáticas
Análisis multivariante
Multivariate analysis
Functional time series
Control charts
Nonlinear profiles
Functional data
Cartas de Control
Datos Funcionales
Perfiles no Lineales
Series de Tiempo Funcionales
title_short Monitoreo de perfiles no lineales con dependencia temporal en fase II desde un enfoque del análisis de datos funcionales
title_full Monitoreo de perfiles no lineales con dependencia temporal en fase II desde un enfoque del análisis de datos funcionales
title_fullStr Monitoreo de perfiles no lineales con dependencia temporal en fase II desde un enfoque del análisis de datos funcionales
title_full_unstemmed Monitoreo de perfiles no lineales con dependencia temporal en fase II desde un enfoque del análisis de datos funcionales
title_sort Monitoreo de perfiles no lineales con dependencia temporal en fase II desde un enfoque del análisis de datos funcionales
dc.creator.fl_str_mv Cardenas Pineda, David Humberto
dc.contributor.advisor.none.fl_str_mv Guevara Gonzáles, Ruben Darío
Calderón Villanueva, Sergio Alejandro
dc.contributor.author.none.fl_str_mv Cardenas Pineda, David Humberto
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas
topic 510 - Matemáticas
Análisis multivariante
Multivariate analysis
Functional time series
Control charts
Nonlinear profiles
Functional data
Cartas de Control
Datos Funcionales
Perfiles no Lineales
Series de Tiempo Funcionales
dc.subject.lemb.spa.fl_str_mv Análisis multivariante
dc.subject.lemb.eng.fl_str_mv Multivariate analysis
dc.subject.proposal.eng.fl_str_mv Functional time series
Control charts
Nonlinear profiles
Functional data
dc.subject.proposal.spa.fl_str_mv Cartas de Control
Datos Funcionales
Perfiles no Lineales
Series de Tiempo Funcionales
description En el control estadístico de procesos caracterizados por una relación funcional entre dos variables, el supuesto de independencia entre las observaciones de un mismo perfil o entre perfiles es de uso recurrente en una gran cantidad de aplicaciones. La rápida obtención de información, la inercia de los procedimientos, entre otras causas, propician la violación del anterior supuesto, causando que una proporción considerable de los esquemas de control típicos se presenten como inadecuados. En este trabajo se plantea una propuesta de control para el monitoreo de perfiles no lineales en fase II, vistos como realizaciones de procesos temporales estacionarios en espacios funcionales, mediante un enfoque desde el análisis de datos funcionales. A través de un estudio de simulación el desempeño de la propuesta se evalúa. Además, se ilustra su aplicación usando datos industriales para el monitoreo de perfiles de temperatura en hornos industriales. (Texto tomado de la fuente)
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-09-16T15:01:04Z
dc.date.available.none.fl_str_mv 2021-09-16T15:01:04Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80213
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80213
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alshraideh, H. & Runger, G. (2014), “Process monitoring using hidden markov models”, Quality and Reliability Engineering International 30(8), 1379-1387.
Alwan, L. C. & Roberts, H. V. (1988), “Time-series modeling for statistical process control”, Journal of Business and Economic Statistics 6(1), 87-95.
Atienza, O. O., Tang, L. C. & Ang, B. W. (2002), “A CUSUM scheme for autocorrelated observations”, Journal of Quality Technology 34(2), 187-199. URL: https://doi.org/10.1080/00224065.2002.11980145
Aue, A., Norinho, D. D. & Hörmann, S. (2015), “On the prediction of stationary functional time series”, Journal of the American Statistical Association 110(509), 378-392. URL: https://www.tandfonline.com/doi/abs/10.1080/01621459.2014.909317
Bosq, D. (2000), Linear Processes in Function Spaces Theory and Applications, Springer.
Box, G. E. P. & Jenkins, G. M. (1976), Time Series Analysis Forecasting and Control., Holden-Day series in time series analysis and digital processing, Holden-Day.
Chakraborti, S. (2000), “Run length, average run length and false alarm rate of shewhart x-bar chart: Exact derivations by conditioning”, Communications in Statistics Part B: Simulation and Computation 29(1), 61-81. URL: https://doi.org/10.1080/03610910008813602
Chakraborti, S. (2007), “Run length distribution and percentiles: The shewhart X-bar chart with unknown parameters”, Quality Engineering 19(2), 119-127. URL: https://doi.org/10.1080/08982110701276653
Champ, C. W. & Woodall, W. H. (1987), “Exact results for shewhart control charts with supplementary runs rules”, Technometrics 29(4), 393-399. URL: https://www.tandfonline.com/doi/abs/10.1080/00401706.1987.10488266
Cheng, T., Hsieh, P. & Yang, S. (2014), “Process Control for the Vector Autoregressive Model”, Quality and Reability Engieneering International 30, 57-81
Chiang, J. Y., Lio, Y. L. & Tsai, T. R. (2017), “MEWMA Control Chart and Process Capability Indices for Simple Linear Profiles with Within-profile Autocorrelation”, Quality and Reliability Engineering International 33(5), 1083-1094.
Chuang, S. C., Hung, Y. C., Tsai, W. C. & Yang, S. F. (2013), “A framework for nonparametric profile monitoring”, Computers and Industrial Engineering 64(1), 482-491. URL: http://www.sciencedirect.com/science/article/pii/S0360835212002057
Dawod, A., Riaz, M. & Abbasi, S. (2017), “On model selection for autocorrelated processes in statistical process control”, Quality Reliability Engineering International 33, 867-882.
De Ketelaere, B., Rato, T., Schmitt, E. & Hubert, M. (2016), “Statistical process monitoring of time-dependent data”, Quality Engineering 28(1), 127-142.
Didericksen, D., Kokoszka, P. & Zhang, X. (2012), “Empirical properties of forecast with the functional autoregressive model”, Comput Stat 27(2), 285-298.
Faltin, W., Mastrangelo, C., Runger, G. & Ryan, T. (1997), “Considerations in monitoring of autocorrelated and independent data”, Journal of Quality Technology 29(2), 131-133.
Fraiman, R. & Muniz, G. (2001), “Trimmed means for functional data”, Test 10(2), 419- 440.
Gabrys, R. & Kokoszka, P. (2007), “Portmanteau test of independence for functional observations”, Journal of the American Statistical Association 102(480), 1338-1348.
Garthoff, R. & Schmid, W. (2015), “Control charts for multivariate nonlinear time series”, REVSTAT 13(2), 131-144.
Garthoff, R. & Schmid, W. (2017), “Monitoring means and covariances of multivariate non linear time series with heavy tails”, Communications in Statistics - Theory and Methods 46(21), 10394-10415. URL: https://doi.org/10.1080/03610926.2015.1085567
Gohberg, Y., Goldberg, S. & Kaashoek, M. A. (1993), Classes of linear operators: advances and applications, Vol. 59, Birkhäuser.
Goma, A. & Birch, J. (2019), “A semiparametric nonlinear mixed model approach to phase I profiles monitoring”, Communications in Statistics - Simulation and Computation 48(6), 1677-1693.
Haridy, S. & Zhang, W. (2009), “Univariate and multiariate control charts for monitoring dynamic-behavior processes: a case study”, Journal of Industrial Engineering and Management 2(3), 464-498.
Hauck, D. J., Runger, G. C. & Montgomery, D. C. (1999), “Multivariate statistical process monitoring and diagnosis with grouped regression-adjusted variables”, Communications in Statistics Part B: Simulation and Computation 28(2), 309-328. URL: https://www.tandfonline.com/doi/abs/10.1080/03610919908813551
Hörmann, S., Kidzi, L. & Hallin, M. (2015), “Dynamic functional principal components”, Journal of the Royal Statistical Society. Series B: Statistical Methodology 77(2), 319- 348. URL: http://doi.wiley.com/10.1111/rssb.12076
Hörmann, S. & Kidzinski, L. (2015), “A note on estimation in hilbertian linear models”, Scandinavian Journal of Statistics 42(1), 43-62. URL: http://doi.wiley.com/10.1111/sjos.12094
Hörmann, S. & Kokoszka, P. (2010), “Weakly dependent functional data”, Annals of Sta- tistics 38(3), 1845-1884. URL: https://projecteuclid.org/euclid.aos/1269452656
Horváth, L. & Kokoszka, P. (2012), Inference for Functional Data with Applications, Springer. Horváth, L., Kokoszka, P. & Rice, G. (2014), “Testing stationarity of functional time series”, Journal of Econometrics 179(1), 66-82. URL: http://www.sciencedirect.com/science/article/pii/S0304407613002327
Human, S. W., Kritzinger, P. & Chakraborti, S. (2011), “Robustness of the EWMA control chart for individual observations”, Journal of Applied Statistics 38(10), 2071-2087. URL: https://doi.org/10.1080/02664763.2010.545114
Hyndman, R. J. & Shahid Ullah, M. (2007), “Robust forecasting of mortality and fertility rates: A functional data approach”, Computational Statistics and Data Analysis 51(10), 4942-4956.
Jarrett, J. E. & Pan, X. (2007), “The quality control chart for monitoring multivariate autocorrelated processes”, Computational Statistics and Data Analysis 51(8), 3862-3870.
Jensen, W. A. & Birch, J. B. (2011), Correlation and Autocorrelation in Profiles, in R. Noorossana, A. Saghaei & A. Amiri, eds, “Statistical Analysis of Profile Monitoring”, Wiley Series in Probability and Statistics, Jhon Wiley & Sons, Inc, chapter 9, pp. 253-268.
Jensen, W. & Birch, J. (2009), “Profile monitoring via nonlinear mixed models”, Journal of Quality Technology 41(1), 18-34.
Jensen, W., Birch, J. & Woodal, W. (2008), “Monitoring correlation within linear profiles using mixed models”, Journal of Quality Technology 40(2), 167-183.
Jiang, W., Tsui, K. L. & Woodall, W. H. (2000), “A new SPC monitoring method: The ARMA chart”, Technometrics 42(4), 399-410. URL: http://www.jstor.org/stable/1270950
Kazemzadeh, R., Noorossana, R. & Amiri, A. (2010), “Phase II Monitoring of Autocorrelated Polynomial Profiles in AR(1) Processes”, Scientia Iranica 17(1), 12-24.
Khedmati, M. & Niaki, S. T. A. (2016), “Phase II monitoring of general linear profiles in the presence of between-profile autocorrelation”, Quality and Reliability Engineering International 32(2), 443-452.
Kokoszka, P. & Reimherr, M. (2017), Introduction to functional data analysis, CRC Press.
Kokoszka, P. & Zhang, X. (2012), “Functional prediction of intraday cumulative returns”, Statistical Modelling 12(4), 377-398. URL: http://journals.sagepub.com/doi/10.1177/1471082X1201200404
Kramer, H. G. & Schmid, L. V. (1997), “Ewma charts for multivariate time series”, Se- quential Analysis 16(2), 131-154. URL: https://doi.org/10.1080/07474949708836378
Kunsch, H. R. (1989), “The Jackknife and the Bootstrap for General Stationary Observations”, The Annals of Statistics 17(3), 1217-1241. URL: https://doi.org/10.1214/aos/1176347265
Lawler, G. F. (2006), Introduction to Stochastic Processes, 2 edn, Taylor and Francis/CRC Press.
Li, Y., Huang, M. & Pan, E. (2018), “Residual chart with hidden Markov model to monitoring the auto-correlated processes”, Journal of Shanghai Jiaotong University (Science) 83(Suppl 1), 103-108.
Li, Y., Pan, E. & Xiao, Y. (2020), “On autoregressive model selection for the exponentially weighted moving average control chart of residuals in monitoring the mean of autocorrelated processes”, Quality and Reliability Engineering International 36(7), 2351-2369.
Macgregor, J. & Harris, T. (1993), “The Exponentially Weighted Moving Variance”, Jour- nal of Quality Technology 25(2), 106-118.
Maleki, M. R., Amiri, A. & Castagliola, P. (2018), “An overview on recent profile monitoring papers (2008-2018) based on conceptual classification scheme”, Computers & Industrial Engineering 126, 705-728.
Mingoti, S. A., de Carvalho, J. P. & de Oliveira Lima, J. (2008), “On the estimation of serial correlation in Markov-dependent production processes”, Journal of Applied Statistics 35(7), 763-771. URL: https://doi.org/10.1080/02664760802005688
Montgomery, D. (2013), Introduction to statistical quality control, 7 edn, John Wiley & Sons.
Montgomery, D. C. & Mastrangelo, C. M. (1991), “Some Statistical Process Control Methods for Autocorrelated Data”, Journal of Quality Technology 23(3), 179-193.
Noorossana, R., Amiri, A. & Soleimani, P. (2008), “On the Monitoring of Autocorrelated Linear Profiles”, Communications in Statistics|Theory and Methods 37(3), 425-442.
Noorossana, R., Saghaei, A. & Amiri, A. (2011), Statistical Analysis of Profile Monitoring, Wiley Series in Probability and Statistics, Jhon Wiley & Sons, Inc.
Noorossana, R. & Vaghe_, S. (2006), “E_ect of autocorrelation on performance of the MCUSUM control chart”, Quality Reliability Engeenering International 22, 191-197.
Osei-Aning, R., Abbasi, S. A. & Riaz, M. (2017a), “Mixed EWMA-CUSUM and mixed CUSUM-EWMA modified control charts for monitoring first order autoregressive processes”, Quality Technology and Quantitative Management 14(4), 429-453. URL: http://dx.doi.org/10.1080/16843703.2017.1304038
Osei-Aning, R., Abbasi, S. A. & Riaz, M. (2017b), “Monitoring of serially correlated processes using residual control charts”, Scientia Iranica 24(3), 1603-1614.
Pan, J.-N. & Chen, S.-T. (2008), “Monitoring long-memory air quality data using ARFIMA model”, Environmetrics 19(2), 209-219.
Pan, X. & Jarret, J. (2007), “Using vector autoregressive residuals to monitor multivariate processes in the presence of serial correlation”, International journal of production economics 106, 204-216.
Paynabar, K. & Jin, J. (2011), “Characterization of non-linear profiles variations using mixed-effect models and wavelets”, IIE Transactions (Institute of Industrial Engineers) 43(4), 275-290.
Pilavakis, D., Paparoditis, E. & Sapatinas, T. (2019), “Moving block and tapered block bootstrap for functional time series with an application to the Ksample mean problem”, Bernoulli 25(4B), 3496-3526. URL: https://doi.org/10.3150/18-BEJ1099
Psarakis, S. & Papaleonida, G. E. A. (2007), “SPC Procedures for Monitoring Autocorrelated Processes”, Quality Technology & Quantitative Management 4(4), 501-540.
Qiu, P. (2013), Introduction to statistical process control, CRC Press.
Qiu, P., Zou, C. & Wang, Z. (2010), “Nonparametric profile monitoring by mixed effects modeling”, Technometrics 52(3), 265-277.
Ramsay, J. & Silverman, B. W. (2005), Functional Data Analysis, Springer Series in Statistics, Springer.
Reynolds, M. R., Arnold, J. C. & Baik, J. W. (1996), “Variable sampling interval X charts in the presence of correlation”, Journal of Quality Technology 28(1), 12-30. URL: https://doi.org/10.1080/00224065.1996.11979633
Roberts, S. W. (1959), “Control chart tests based on geometric moving averages”, Techno- metrics 1(3), 239-250. URL: https://www.tandfonline.com/doi/abs/10.1080/00401706.1959.10489860
Ryan, T. P. (2011), Statistical Methods for Quality Improvement: Third Edition, 3 edn, John Wiley & Sons.
Sheu, S. H., Ouyoung, C. W. & Hsu, T. S. (2013), “Phase II statistical process control for functional data”, Journal of Statistical Computation and Simulation 83(11), 2144-2159.
Shiau, J.-J. H. & Ya-Chen, H. (2005), “Robustness of the EWMA Control Chart to Nonnormality for Autocorrelated Processes”, Quality Technology & Quantitative Management 2(2), 125-146. URL: https://doi.org/10.1080/16843703.2005.11673089
Shongwe, S. & Malela-Majika, J. (2019), “Shewhart-type monitoring schemes with suplementary w-of-w run-rules to monitor the mean of autocorrelated samples”, Communications in Statistics - Simulation and Computation pp. 1-30.
Siddiqui, Z. & Abdel-Salam, A. S. G. (2019), “A semiparametric profile monitoring via residuals”, Quality and Reliability Engineering International 35(4), 959-977.
Steiner, S., Jensen, W. A., Grimshaw, S. D. & Espen, B. (2016), “Nonlinear profile monitoring for oven-temperature data”, Journal of Quality Technology 48(1), 84-97.
Tang, L. C. & Cheong, W. T. (2006), “A control scheme for high-yield correlated production under group inspection”, Journal of Quality Technology 38(1), 45-55. URL: https://doi.org/10.1080/00224065.2006.11918583
Vanbrackle, L. N. & Reynolds, M. R. J. (1997), “EWMA and CUSUM control charts in the presence of correlation”, Communications in Statistics - Simulation and Computation 26(3), 979-1008. URL: https://doi.org/10.1080/03610919708813421
Walker, E. & Wright, S. P. (2002), “Comparing curves using additive models”, Journal of Quality Technology 34(1), 118-129.
Wang, H., Kim, S. H., Huo, X., Hur, Y. & Wilson, J. R. (2015), “Monitoring nonlinear profiles adaptively with a wavelet-based distribution-free CUSUM chart”, International Journal of Production Research 53(15), 4648-4667. URL: http://dx.doi.org/10.1080/00207543.2015.1029085
Wardell, D., Moskowitz, H. & Plante, R. (1994), “Control charts in the presence of data autocorrelation”, Management Science 38(8), 1084-1105.
Williams, J. D. (2011), Parametric Nonlinear Profiles, in R. Noorossana, A. Saghaei & A. Amiri, eds, “Statistical Analysis of Profile Monitoring”, Wiley Series in Probability and Statistics, Jhon Wiley & Sons, Inc, chapter 5, pp. 129-156.
Woodall, W. (2017), “Bridging the gap between theory and practice in basic statistical process monitoring”, Quality Engineering 29(1), 2-15.
Woodall, W. H. (2007), “Current research on profile monitoring”, Producao 17(3), 420-425.
Woodall, W. H. & Montgomery, D. C. (1999), “Research Issues and Ideas in Statistical Process Control”, Journal of Quality Technology 31(4), 376-386. URL: https://doi.org/10.1080/00224065.1999.11979944
Zhang, J., Ren, H., Yao, R., Zou, C. & Wang, Z. (2015), “Phase I analysis of multivariate profiles based on regression adjustment”, Computers and Industrial Engineering 85, 132- 144. URL: http://www.sciencedirect.com/science/article/pii/S0360835215001047
Zhang, N. (1998), “A statistical control chart for stationary process data”, Technometrics 40(1), 24-39.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 87 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.department.spa.fl_str_mv Departamento de Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá - Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80213/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80213/2/1032470253.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/80213/3/1032470253.2020.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
270cee843a6015e70086d9598768793e
9fc9097c937d493bb87556029223db23
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089419460706304
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guevara Gonzáles, Ruben Daríoaa42312186461230e87a1ebb140b3710Calderón Villanueva, Sergio Alejandro4435821363acfcc5a0b97c50464db9d4Cardenas Pineda, David Humberto5b04117d4deaf838a59cfbe2583d48a42021-09-16T15:01:04Z2021-09-16T15:01:04Z2020https://repositorio.unal.edu.co/handle/unal/80213Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/En el control estadístico de procesos caracterizados por una relación funcional entre dos variables, el supuesto de independencia entre las observaciones de un mismo perfil o entre perfiles es de uso recurrente en una gran cantidad de aplicaciones. La rápida obtención de información, la inercia de los procedimientos, entre otras causas, propician la violación del anterior supuesto, causando que una proporción considerable de los esquemas de control típicos se presenten como inadecuados. En este trabajo se plantea una propuesta de control para el monitoreo de perfiles no lineales en fase II, vistos como realizaciones de procesos temporales estacionarios en espacios funcionales, mediante un enfoque desde el análisis de datos funcionales. A través de un estudio de simulación el desempeño de la propuesta se evalúa. Además, se ilustra su aplicación usando datos industriales para el monitoreo de perfiles de temperatura en hornos industriales. (Texto tomado de la fuente)In the statistical control of processes characterized by functional relationships between two variables the independence assumption of observations within a profile or between profiles is commonly used in most of applications. Flows of data at higher speeds, procedures inertia, among other causes, leads to a violation of the former assumption, driving a considerable amount of control schemes to be classified as inadequate. In this thesis, a control schema is proposed for phase II monitoring of nonlinear profiles, treated as realizations of stationary functional processes, using a functional data analysis approach. Through simulation studies the proposal performance is accessed, furthermore, its use is explained within an industrial application in profile monitoring of industrial ovens temperature.MaestríaMagíster en Ciencias - Estadísticaxv, 87 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaDepartamento de EstadísticaFacultad de CienciasBogotá - ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - MatemáticasAnálisis multivarianteMultivariate analysisFunctional time seriesControl chartsNonlinear profilesFunctional dataCartas de ControlDatos FuncionalesPerfiles no LinealesSeries de Tiempo FuncionalesMonitoreo de perfiles no lineales con dependencia temporal en fase II desde un enfoque del análisis de datos funcionalesPhase II monitoring of nonlinear profiles with temporal dependece using a functional data analysis approachTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlshraideh, H. & Runger, G. (2014), “Process monitoring using hidden markov models”, Quality and Reliability Engineering International 30(8), 1379-1387.Alwan, L. C. & Roberts, H. V. (1988), “Time-series modeling for statistical process control”, Journal of Business and Economic Statistics 6(1), 87-95.Atienza, O. O., Tang, L. C. & Ang, B. W. (2002), “A CUSUM scheme for autocorrelated observations”, Journal of Quality Technology 34(2), 187-199. URL: https://doi.org/10.1080/00224065.2002.11980145Aue, A., Norinho, D. D. & Hörmann, S. (2015), “On the prediction of stationary functional time series”, Journal of the American Statistical Association 110(509), 378-392. URL: https://www.tandfonline.com/doi/abs/10.1080/01621459.2014.909317Bosq, D. (2000), Linear Processes in Function Spaces Theory and Applications, Springer.Box, G. E. P. & Jenkins, G. M. (1976), Time Series Analysis Forecasting and Control., Holden-Day series in time series analysis and digital processing, Holden-Day.Chakraborti, S. (2000), “Run length, average run length and false alarm rate of shewhart x-bar chart: Exact derivations by conditioning”, Communications in Statistics Part B: Simulation and Computation 29(1), 61-81. URL: https://doi.org/10.1080/03610910008813602Chakraborti, S. (2007), “Run length distribution and percentiles: The shewhart X-bar chart with unknown parameters”, Quality Engineering 19(2), 119-127. URL: https://doi.org/10.1080/08982110701276653Champ, C. W. & Woodall, W. H. (1987), “Exact results for shewhart control charts with supplementary runs rules”, Technometrics 29(4), 393-399. URL: https://www.tandfonline.com/doi/abs/10.1080/00401706.1987.10488266Cheng, T., Hsieh, P. & Yang, S. (2014), “Process Control for the Vector Autoregressive Model”, Quality and Reability Engieneering International 30, 57-81Chiang, J. Y., Lio, Y. L. & Tsai, T. R. (2017), “MEWMA Control Chart and Process Capability Indices for Simple Linear Profiles with Within-profile Autocorrelation”, Quality and Reliability Engineering International 33(5), 1083-1094.Chuang, S. C., Hung, Y. C., Tsai, W. C. & Yang, S. F. (2013), “A framework for nonparametric profile monitoring”, Computers and Industrial Engineering 64(1), 482-491. URL: http://www.sciencedirect.com/science/article/pii/S0360835212002057Dawod, A., Riaz, M. & Abbasi, S. (2017), “On model selection for autocorrelated processes in statistical process control”, Quality Reliability Engineering International 33, 867-882.De Ketelaere, B., Rato, T., Schmitt, E. & Hubert, M. (2016), “Statistical process monitoring of time-dependent data”, Quality Engineering 28(1), 127-142.Didericksen, D., Kokoszka, P. & Zhang, X. (2012), “Empirical properties of forecast with the functional autoregressive model”, Comput Stat 27(2), 285-298.Faltin, W., Mastrangelo, C., Runger, G. & Ryan, T. (1997), “Considerations in monitoring of autocorrelated and independent data”, Journal of Quality Technology 29(2), 131-133.Fraiman, R. & Muniz, G. (2001), “Trimmed means for functional data”, Test 10(2), 419- 440.Gabrys, R. & Kokoszka, P. (2007), “Portmanteau test of independence for functional observations”, Journal of the American Statistical Association 102(480), 1338-1348.Garthoff, R. & Schmid, W. (2015), “Control charts for multivariate nonlinear time series”, REVSTAT 13(2), 131-144.Garthoff, R. & Schmid, W. (2017), “Monitoring means and covariances of multivariate non linear time series with heavy tails”, Communications in Statistics - Theory and Methods 46(21), 10394-10415. URL: https://doi.org/10.1080/03610926.2015.1085567Gohberg, Y., Goldberg, S. & Kaashoek, M. A. (1993), Classes of linear operators: advances and applications, Vol. 59, Birkhäuser.Goma, A. & Birch, J. (2019), “A semiparametric nonlinear mixed model approach to phase I profiles monitoring”, Communications in Statistics - Simulation and Computation 48(6), 1677-1693.Haridy, S. & Zhang, W. (2009), “Univariate and multiariate control charts for monitoring dynamic-behavior processes: a case study”, Journal of Industrial Engineering and Management 2(3), 464-498.Hauck, D. J., Runger, G. C. & Montgomery, D. C. (1999), “Multivariate statistical process monitoring and diagnosis with grouped regression-adjusted variables”, Communications in Statistics Part B: Simulation and Computation 28(2), 309-328. URL: https://www.tandfonline.com/doi/abs/10.1080/03610919908813551Hörmann, S., Kidzi, L. & Hallin, M. (2015), “Dynamic functional principal components”, Journal of the Royal Statistical Society. Series B: Statistical Methodology 77(2), 319- 348. URL: http://doi.wiley.com/10.1111/rssb.12076Hörmann, S. & Kidzinski, L. (2015), “A note on estimation in hilbertian linear models”, Scandinavian Journal of Statistics 42(1), 43-62. URL: http://doi.wiley.com/10.1111/sjos.12094Hörmann, S. & Kokoszka, P. (2010), “Weakly dependent functional data”, Annals of Sta- tistics 38(3), 1845-1884. URL: https://projecteuclid.org/euclid.aos/1269452656Horváth, L. & Kokoszka, P. (2012), Inference for Functional Data with Applications, Springer. Horváth, L., Kokoszka, P. & Rice, G. (2014), “Testing stationarity of functional time series”, Journal of Econometrics 179(1), 66-82. URL: http://www.sciencedirect.com/science/article/pii/S0304407613002327Human, S. W., Kritzinger, P. & Chakraborti, S. (2011), “Robustness of the EWMA control chart for individual observations”, Journal of Applied Statistics 38(10), 2071-2087. URL: https://doi.org/10.1080/02664763.2010.545114Hyndman, R. J. & Shahid Ullah, M. (2007), “Robust forecasting of mortality and fertility rates: A functional data approach”, Computational Statistics and Data Analysis 51(10), 4942-4956.Jarrett, J. E. & Pan, X. (2007), “The quality control chart for monitoring multivariate autocorrelated processes”, Computational Statistics and Data Analysis 51(8), 3862-3870.Jensen, W. A. & Birch, J. B. (2011), Correlation and Autocorrelation in Profiles, in R. Noorossana, A. Saghaei & A. Amiri, eds, “Statistical Analysis of Profile Monitoring”, Wiley Series in Probability and Statistics, Jhon Wiley & Sons, Inc, chapter 9, pp. 253-268.Jensen, W. & Birch, J. (2009), “Profile monitoring via nonlinear mixed models”, Journal of Quality Technology 41(1), 18-34.Jensen, W., Birch, J. & Woodal, W. (2008), “Monitoring correlation within linear profiles using mixed models”, Journal of Quality Technology 40(2), 167-183.Jiang, W., Tsui, K. L. & Woodall, W. H. (2000), “A new SPC monitoring method: The ARMA chart”, Technometrics 42(4), 399-410. URL: http://www.jstor.org/stable/1270950Kazemzadeh, R., Noorossana, R. & Amiri, A. (2010), “Phase II Monitoring of Autocorrelated Polynomial Profiles in AR(1) Processes”, Scientia Iranica 17(1), 12-24.Khedmati, M. & Niaki, S. T. A. (2016), “Phase II monitoring of general linear profiles in the presence of between-profile autocorrelation”, Quality and Reliability Engineering International 32(2), 443-452.Kokoszka, P. & Reimherr, M. (2017), Introduction to functional data analysis, CRC Press.Kokoszka, P. & Zhang, X. (2012), “Functional prediction of intraday cumulative returns”, Statistical Modelling 12(4), 377-398. URL: http://journals.sagepub.com/doi/10.1177/1471082X1201200404Kramer, H. G. & Schmid, L. V. (1997), “Ewma charts for multivariate time series”, Se- quential Analysis 16(2), 131-154. URL: https://doi.org/10.1080/07474949708836378Kunsch, H. R. (1989), “The Jackknife and the Bootstrap for General Stationary Observations”, The Annals of Statistics 17(3), 1217-1241. URL: https://doi.org/10.1214/aos/1176347265Lawler, G. F. (2006), Introduction to Stochastic Processes, 2 edn, Taylor and Francis/CRC Press.Li, Y., Huang, M. & Pan, E. (2018), “Residual chart with hidden Markov model to monitoring the auto-correlated processes”, Journal of Shanghai Jiaotong University (Science) 83(Suppl 1), 103-108.Li, Y., Pan, E. & Xiao, Y. (2020), “On autoregressive model selection for the exponentially weighted moving average control chart of residuals in monitoring the mean of autocorrelated processes”, Quality and Reliability Engineering International 36(7), 2351-2369.Macgregor, J. & Harris, T. (1993), “The Exponentially Weighted Moving Variance”, Jour- nal of Quality Technology 25(2), 106-118.Maleki, M. R., Amiri, A. & Castagliola, P. (2018), “An overview on recent profile monitoring papers (2008-2018) based on conceptual classification scheme”, Computers & Industrial Engineering 126, 705-728.Mingoti, S. A., de Carvalho, J. P. & de Oliveira Lima, J. (2008), “On the estimation of serial correlation in Markov-dependent production processes”, Journal of Applied Statistics 35(7), 763-771. URL: https://doi.org/10.1080/02664760802005688Montgomery, D. (2013), Introduction to statistical quality control, 7 edn, John Wiley & Sons.Montgomery, D. C. & Mastrangelo, C. M. (1991), “Some Statistical Process Control Methods for Autocorrelated Data”, Journal of Quality Technology 23(3), 179-193.Noorossana, R., Amiri, A. & Soleimani, P. (2008), “On the Monitoring of Autocorrelated Linear Profiles”, Communications in Statistics|Theory and Methods 37(3), 425-442.Noorossana, R., Saghaei, A. & Amiri, A. (2011), Statistical Analysis of Profile Monitoring, Wiley Series in Probability and Statistics, Jhon Wiley & Sons, Inc.Noorossana, R. & Vaghe_, S. (2006), “E_ect of autocorrelation on performance of the MCUSUM control chart”, Quality Reliability Engeenering International 22, 191-197.Osei-Aning, R., Abbasi, S. A. & Riaz, M. (2017a), “Mixed EWMA-CUSUM and mixed CUSUM-EWMA modified control charts for monitoring first order autoregressive processes”, Quality Technology and Quantitative Management 14(4), 429-453. URL: http://dx.doi.org/10.1080/16843703.2017.1304038Osei-Aning, R., Abbasi, S. A. & Riaz, M. (2017b), “Monitoring of serially correlated processes using residual control charts”, Scientia Iranica 24(3), 1603-1614.Pan, J.-N. & Chen, S.-T. (2008), “Monitoring long-memory air quality data using ARFIMA model”, Environmetrics 19(2), 209-219.Pan, X. & Jarret, J. (2007), “Using vector autoregressive residuals to monitor multivariate processes in the presence of serial correlation”, International journal of production economics 106, 204-216.Paynabar, K. & Jin, J. (2011), “Characterization of non-linear profiles variations using mixed-effect models and wavelets”, IIE Transactions (Institute of Industrial Engineers) 43(4), 275-290.Pilavakis, D., Paparoditis, E. & Sapatinas, T. (2019), “Moving block and tapered block bootstrap for functional time series with an application to the Ksample mean problem”, Bernoulli 25(4B), 3496-3526. URL: https://doi.org/10.3150/18-BEJ1099Psarakis, S. & Papaleonida, G. E. A. (2007), “SPC Procedures for Monitoring Autocorrelated Processes”, Quality Technology & Quantitative Management 4(4), 501-540.Qiu, P. (2013), Introduction to statistical process control, CRC Press.Qiu, P., Zou, C. & Wang, Z. (2010), “Nonparametric profile monitoring by mixed effects modeling”, Technometrics 52(3), 265-277.Ramsay, J. & Silverman, B. W. (2005), Functional Data Analysis, Springer Series in Statistics, Springer.Reynolds, M. R., Arnold, J. C. & Baik, J. W. (1996), “Variable sampling interval X charts in the presence of correlation”, Journal of Quality Technology 28(1), 12-30. URL: https://doi.org/10.1080/00224065.1996.11979633Roberts, S. W. (1959), “Control chart tests based on geometric moving averages”, Techno- metrics 1(3), 239-250. URL: https://www.tandfonline.com/doi/abs/10.1080/00401706.1959.10489860Ryan, T. P. (2011), Statistical Methods for Quality Improvement: Third Edition, 3 edn, John Wiley & Sons.Sheu, S. H., Ouyoung, C. W. & Hsu, T. S. (2013), “Phase II statistical process control for functional data”, Journal of Statistical Computation and Simulation 83(11), 2144-2159.Shiau, J.-J. H. & Ya-Chen, H. (2005), “Robustness of the EWMA Control Chart to Nonnormality for Autocorrelated Processes”, Quality Technology & Quantitative Management 2(2), 125-146. URL: https://doi.org/10.1080/16843703.2005.11673089Shongwe, S. & Malela-Majika, J. (2019), “Shewhart-type monitoring schemes with suplementary w-of-w run-rules to monitor the mean of autocorrelated samples”, Communications in Statistics - Simulation and Computation pp. 1-30.Siddiqui, Z. & Abdel-Salam, A. S. G. (2019), “A semiparametric profile monitoring via residuals”, Quality and Reliability Engineering International 35(4), 959-977.Steiner, S., Jensen, W. A., Grimshaw, S. D. & Espen, B. (2016), “Nonlinear profile monitoring for oven-temperature data”, Journal of Quality Technology 48(1), 84-97.Tang, L. C. & Cheong, W. T. (2006), “A control scheme for high-yield correlated production under group inspection”, Journal of Quality Technology 38(1), 45-55. URL: https://doi.org/10.1080/00224065.2006.11918583Vanbrackle, L. N. & Reynolds, M. R. J. (1997), “EWMA and CUSUM control charts in the presence of correlation”, Communications in Statistics - Simulation and Computation 26(3), 979-1008. URL: https://doi.org/10.1080/03610919708813421Walker, E. & Wright, S. P. (2002), “Comparing curves using additive models”, Journal of Quality Technology 34(1), 118-129.Wang, H., Kim, S. H., Huo, X., Hur, Y. & Wilson, J. R. (2015), “Monitoring nonlinear profiles adaptively with a wavelet-based distribution-free CUSUM chart”, International Journal of Production Research 53(15), 4648-4667. URL: http://dx.doi.org/10.1080/00207543.2015.1029085Wardell, D., Moskowitz, H. & Plante, R. (1994), “Control charts in the presence of data autocorrelation”, Management Science 38(8), 1084-1105.Williams, J. D. (2011), Parametric Nonlinear Profiles, in R. Noorossana, A. Saghaei & A. Amiri, eds, “Statistical Analysis of Profile Monitoring”, Wiley Series in Probability and Statistics, Jhon Wiley & Sons, Inc, chapter 5, pp. 129-156.Woodall, W. (2017), “Bridging the gap between theory and practice in basic statistical process monitoring”, Quality Engineering 29(1), 2-15.Woodall, W. H. (2007), “Current research on profile monitoring”, Producao 17(3), 420-425.Woodall, W. H. & Montgomery, D. C. (1999), “Research Issues and Ideas in Statistical Process Control”, Journal of Quality Technology 31(4), 376-386. URL: https://doi.org/10.1080/00224065.1999.11979944Zhang, J., Ren, H., Yao, R., Zou, C. & Wang, Z. (2015), “Phase I analysis of multivariate profiles based on regression adjustment”, Computers and Industrial Engineering 85, 132- 144. URL: http://www.sciencedirect.com/science/article/pii/S0360835215001047Zhang, N. (1998), “A statistical control chart for stationary process data”, Technometrics 40(1), 24-39.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80213/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1032470253.2020.pdf1032470253.2020.pdfTesis de Maestría en Ciencias Estadísticaapplication/pdf1250121https://repositorio.unal.edu.co/bitstream/unal/80213/2/1032470253.2020.pdf270cee843a6015e70086d9598768793eMD52THUMBNAIL1032470253.2020.pdf.jpg1032470253.2020.pdf.jpgGenerated Thumbnailimage/jpeg3571https://repositorio.unal.edu.co/bitstream/unal/80213/3/1032470253.2020.pdf.jpg9fc9097c937d493bb87556029223db23MD53unal/80213oai:repositorio.unal.edu.co:unal/802132024-07-29 00:02:52.915Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==