Síntesis de cumarinas 3-azometino-sustituidas como quimiosensores para la detección de iones Pb2+ y Hg2+ en medio acuoso.

ilustraciones, diagramas

Autores:
Díaz Núñez, Astrid Yhuleidy
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80057
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80057
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
Cumarinas
Sondas fluorescentes
Selectividad
Cumarínicos 3-azometino-sustituidos
Sensibilidad
Isomerización
Desulfurización
Isomerization
Desulfurization
Selectivity
Sensitivity
3-azomethine-substituted coumarins
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_356d30580156ba9663f20c38480279a1
oai_identifier_str oai:repositorio.unal.edu.co:unal/80057
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis de cumarinas 3-azometino-sustituidas como quimiosensores para la detección de iones Pb2+ y Hg2+ en medio acuoso.
dc.title.translated.eng.fl_str_mv Synthesis of 3-azometin-substituted coumarin as a chemosensor for the detection of Pb2+ and Hg2+ ions in aqueous medium
title Síntesis de cumarinas 3-azometino-sustituidas como quimiosensores para la detección de iones Pb2+ y Hg2+ en medio acuoso.
spellingShingle Síntesis de cumarinas 3-azometino-sustituidas como quimiosensores para la detección de iones Pb2+ y Hg2+ en medio acuoso.
540 - Química y ciencias afines
Cumarinas
Sondas fluorescentes
Selectividad
Cumarínicos 3-azometino-sustituidos
Sensibilidad
Isomerización
Desulfurización
Isomerization
Desulfurization
Selectivity
Sensitivity
3-azomethine-substituted coumarins
title_short Síntesis de cumarinas 3-azometino-sustituidas como quimiosensores para la detección de iones Pb2+ y Hg2+ en medio acuoso.
title_full Síntesis de cumarinas 3-azometino-sustituidas como quimiosensores para la detección de iones Pb2+ y Hg2+ en medio acuoso.
title_fullStr Síntesis de cumarinas 3-azometino-sustituidas como quimiosensores para la detección de iones Pb2+ y Hg2+ en medio acuoso.
title_full_unstemmed Síntesis de cumarinas 3-azometino-sustituidas como quimiosensores para la detección de iones Pb2+ y Hg2+ en medio acuoso.
title_sort Síntesis de cumarinas 3-azometino-sustituidas como quimiosensores para la detección de iones Pb2+ y Hg2+ en medio acuoso.
dc.creator.fl_str_mv Díaz Núñez, Astrid Yhuleidy
dc.contributor.advisor.none.fl_str_mv Durango Restrepo, Diego Luis
García-Beltrán, Olimpo
dc.contributor.author.none.fl_str_mv Díaz Núñez, Astrid Yhuleidy
dc.contributor.researchgroup.spa.fl_str_mv Química de los Productos Naturales y los Alimentos
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
Cumarinas
Sondas fluorescentes
Selectividad
Cumarínicos 3-azometino-sustituidos
Sensibilidad
Isomerización
Desulfurización
Isomerization
Desulfurization
Selectivity
Sensitivity
3-azomethine-substituted coumarins
dc.subject.lemb.none.fl_str_mv Cumarinas
Sondas fluorescentes
dc.subject.proposal.spa.fl_str_mv Selectividad
Cumarínicos 3-azometino-sustituidos
Sensibilidad
Isomerización
Desulfurización
dc.subject.proposal.eng.fl_str_mv Isomerization
Desulfurization
Selectivity
Sensitivity
3-azomethine-substituted coumarins
description ilustraciones, diagramas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-31T16:27:43Z
dc.date.available.none.fl_str_mv 2021-08-31T16:27:43Z
dc.date.issued.none.fl_str_mv 2021-08-27
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80057
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80057
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abebe, F., Perkins, P., Shaw, R., & Tadesse, S. (2020). A rhodamine-based fluorescent sensor for selective detection of Cu2+ in aqueous media: Synthesis and spectroscopic properties. Journal of molecular structure, 1205, 127594. Abollino, O., Giacomino, A., Malandrino, M., Piscionieri, G., & Mentasti, E. (2008). Determination of mercury by anodic stripping voltammetry with a gold nanoparticle‐modified glassy carbon electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 20(1), 75-83. Ali, H., & Khan, E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicological & Environmental Chemistry, 100(1), 6-19. Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019. Aliaga, M. E., Gazitua, M., Rojas-Bolaños, A., Fuentes-Estrada, M., Durango, D., & García-Beltrán, O. (2020). A selective thioxothiazolidin-coumarin probe for Hg2+ based on its desulfurization reaction. Exploring its potential for live cell imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, 117372. Ang, C. Y., Tan, S. Y., Wu, S., Qu, Q., Wong, M. F. E., Luo, Z., ... & Zhao, Y. (2016). A dual responsive “turn-on” fluorophore for orthogonal selective sensing of biological thiols and hydrogen peroxide. Journal of Materials Chemistry C, 4(14), 2761-2774. Antonisse, M. M., & Reinhoudt, D. N. (1998). Neutral anion receptors: design and application. Chemical communications, (4), 443-448. Armas, M. A., María-Hormigos, R., Cantalapiedra, A., Gismera, M. J., Sevilla, M. T., & Procopio, J. R. (2016). Multiparametric optimization of a new high-sensitive and disposable mercury (II) electrochemical sensor. Analytica chimica acta, 904, 76-82. Arshad, M., Naqvi, N., Gul, I., Yaqoob, K., Bilal, M., & Kallerhoff, J. (2020). Lead phytoextraction by Pelargonium hortorum: Comparative assessment of EDTA and DIPA for Pb mobility and toxicity. Science of The Total Environment, 748, 141496. Baird, C. (2001). Química ambiental. Reverté. S.A, México. Balderas-Hernández, P., Rojas-Hernández, A., Galván, M., Romo, M. R., Palomar-Pardavé, M., & Ramírez-Silva, M. T. (2007). Determination of the complexation constants of Pb (II) and Cd (II) with thymol blue using spectrophotometry, SQUAD and the HSAB principle. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(1), 68-73. Beklova, M., Vrba, R., & Kizek, R. (2011). Electrochemical analysis of lead toxicosis in vultures. Int. J. Electrochem. Sci, 6, 5980-6010. Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40(12), 1335-1351. Borges, F., Roleira, F., Milhazes, N., Santana, L., & Uriarte, E. (2005). Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Current medicinal chemistry, 12(8), 887-916. Bowman-James, K. (2005). Alfred Werner revisited: the coordination chemistry of anions. Accounts of chemical research, 38(8), 671-678. Brewin, C. R., & Burgess, N. (2014). Contextualisation in the revised dual representation theory of PTSD: A response to Pearson and colleagues. Journal of Behavior Therapy and Experimental Psychiatry, 45(1), 217-219. Castañeda Briones M, (2017). Sistemas de iluminación y adquisición de imágenes digitales para aplicaciones médicas. (Tesis de maestría). Instituto politécnico nacional, México, Ciudad de México. Cha, S., Hwang, J., Choi, M. G., & Chang, S. K. (2010). Dual signaling of m-chloroperbenzoic acid by desulfurization of thiocoumarin. Tetrahedron Letters, 51(50), 6663-6665. Chen, C. S., Ogawa, S., Imura, Y., Suzuki, M., & Yoshimura, E. (2020). Post-column detection of cadmium chelators by high-performance liquid chromatography using 5, 10, 15, 20-tetraphenyl-21H, 23H-porphinetetrasulfonic acid. Journal of Chromatography B, 1141, 122025. Chen, C. T., & Huang, W. P. (2002). A highly selective fluorescent chemosensor for lead ions. Journal of the American Chemical Society, 124(22), 6246-6247. Chen, W., Xu, H., Ju, L., & Lu, H. (2021). A highly sensitive fluorogenic “turn-on” chemosensor for the recognition of Cd2+ based on a hybrid purine-quinoline Schiff base. Tetrahedron, 132123. Cho, H., Chae, J. B., & Kim, C. (2018). A thiophene-based blue-fluorescent emitting chemosensor for detecting indium (III) ion. Inorganic Chemistry Communications, 97, 171-175. Choi, M. G., Kim, Y. H., Namgoong, J. E., & Chang, S. K. (2009). Hg 2+-selective chromogenic and fluorogenic chemodosimeter based on thiocoumarins. Chemical communications, (24), 3560-3562. Christus, A. A. B., Panneerselvam, P., Ravikumar, A., Morad, N., & Sivanesan, S. (2018). Colorimetric determination of Hg (II) sensor based on magnetic nanocomposite (Fe3O4@ ZIF-67) acting as peroxidase mimics. Journal of Photochemistry and Photobiology A: Chemistry, 364, 715-724. Costa-Malaquias, A., Almeida, M. B., Monteiro, J. R. S., de Matos Macchi, B., do Nascimento, J. L. M., & Crespo-Lopez, M. E. (2014). Morphine protects against methylmercury intoxication: a role for opioid receptors in oxidative stress? PloS one, 9(10), e110815. Dapul, H., & Laraque, D. (2014). Lead poisoning in children. Advances in pediatrics,61(1), 313-333. Delogu, G., Picciau, C., Ferino, G., Quezada, E., Podda, G., Uriarte, E., & Viña, D. (2011). Synthesis, human monoamine oxidase inhibitory activity and molecular docking studies of 3-heteroarylcoumarin derivatives. European journal of medicinal chemistry, 46(4), 1147-1152. Díaz, N. A., Ruiz, J. A. B., Reyes, E. F., Cejudo, A. G., Novo, J. J., Peinado, J. P., ... & Fiñana, I. T. (2000). Espectrofometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas. sf http://www. uco. es/dptos/bioquimica-biolmol/pdfs/08_ESPECTROFOTOMETR% C3% 8DA. pdf (último acceso: 9 de febrero de 2016). Díaz-Uribe, C. E., Vallejo-Lozada, W. A., & Alvarado-Rueda, L. J. (2014). The Hydroxyl Radical (ΦOH) Productions Quantic Yield, by Fluorosconco in the TcPPFe/H2O2/UV-VIS System. Revista Facultad de Ingeniería, 23(36), 85-90. Ding, H., Liang, C., Sun, K., Wang, H., Hiltunen, J. K., Chen, Z., & Shen, J. (2014). Dithiothreitol-capped fluorescent gold nanoclusters: an efficient probe for detection of copper (II) ions in aqueous solution. Biosensors and Bioelectronics, 59, 216-220. Ding, Y., Zhao, C., Zhang, P., Chen, Y., Song, W., Liu, G., ... & Han, R. (2021). A novel quinoline derivative as dual chemosensor for selective sensing of Al3+ by fluorescent and Fe2+ by colorimetric methods. Journal of Molecular Structure, 1231, 129965. Eisler, R. (2006). Mercury hazards to living organisms. CRC Press Ellenhorn, M. J., & Barceloux, D. G. (1997). Diagnosis and treatment of human poisoning. Medical toxicology, 609-610. Epstein, D. M., Choudhary, S., Churchill, M. R., Keil, K. M., Eliseev, A. V., & Morrow, J. R. (2001). Chloroform-soluble Schiff-base Zn (II) or Cd (II) complexes from a dynamic combinatorial library. Inorganic chemistry, 40(7), 1591-1596. Eren, Z., & Acar, F. N. (2006). Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination, 194(1-3), 1-10. Escolar González, A. Plomo, arsénico, cadmio y mercurio: efectos y estudios en Colombia (Bachelors thesis, Uniandes). Esteban-Gómez, D. (2002). Complejación de plomo (II) y cadmio (II) con nuevos receptores macrocíclicos derivados de azacronandos. Universidad da coruña, Coruña, España. Expósito Monar, A., Fanjul Vélez, F., & Arce Diego, J. L. (2018). Análisis de propiedades espectroscópicas de fluoróforos utilizados en el diagnóstico clínico. Fabbrizzi, L., Licchelli, M., Pallavicini, P., Parodi, L., & Taglietti, A. (1999). Fluorescent sensors for and with transition metals. Transition Metals in Supramolecular Chemistry, 5, 93-134. Formica, M., Fusi, V., Giorgi, L., & Micheloni, M. (2012). New fluorescent chemosensors for metal ions in solution. Coordination Chemistry Reviews, 256(1-2), 170-192. Fu, X. W., Feng, X., Dong, Z. Q., Yin, R. S., Wang, J. X., Yang, Z. R., & Zhang, H. (2010). Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry & Physics, 10(5). Gaioli, M., Amoedo, D., & González, D. (2012). Impacto del mercurio sobre la salud humana y el ambiente. Archivos argentinos de pediatría, 110(3), 259-264. Gálvez Buerba, E. M. (2004). Nuevas sondas moleculares fluorescentes basadas en cambios de la intensidad de emisión debidas a interacciones dipolares inducidas. García Brieva, R. (2011). Determinación del rendimiento cuántico y tiempos de vida media de fluorescencia en sustancia colorantes con aplicaciones como fuentes de láser. (Tesis de pregrado). Universidad industrial de Santander, Bucaramanga, Colombia. García Suárez, A. (2015). Determinación de rendimientos cuánticos de fluorescencia por métodos indirectos. (Tesis de maestría), Universidad de Oviedo, Austrias, España. García-Beltrán, O., Mena, N., Berríos, T. A., Castro, E. A., Cassels, B. K., Núñez, M. T., & Aliaga, M. E. (2012). A selective fluorescent probe for the detection of mercury (II) in aqueous media and its applications in living cells. Tetrahedron Letters, 53(48), 6598-6601. García-Beltrán, O., Rodríguez, A., Trujillo, A., Cañete, A., Aguirre, P., Gallego-Quintero, S., ... & Aliaga, M. E. (2015). Synthesis and characterization of a novel fluorescent and colorimetric probe for the detection of mercury (II) even in the presence of relevant biothiols. Tetrahedron Letters, 56(42), 5761-5766. García-Beltrán, O., Santos, J. G., Fuentealba, S., De la Torre, P., Pavez, P., Mena, N., ... & Aliaga, M. E. (2015). Mechanism study of the thiol-addition reaction to benzothiazole derivative for sensing endogenous thiols. Tetrahedron Letters, 56(19), 2437-2440. Gharami, S., Sarkar, D., Ghosh, P., Acharyya, S., Aich, K., Murmu, N., & Mondal, T. K. (2017). A coumarin based azo-phenol ligand as efficient fluorescent “OFF-ON-OFF” chemosensor for sequential detection of Mg2+ and F−: Application in live cell imaging and as molecular logic gate. Sensors and Actuators B: Chemical, 253, 317-325. Giri, R., Rathi, S. S., Machwe, M. K., & Murti, V. V. S. (1988). Effect of substituents on the fluorescence and absorption spectra of coumarins. Spectrochimica Acta Part A: Molecular Spectroscopy, 44(8), 805-807. Giri, R., Rathi, S. S., Machwe, M. K., & Murti, V. V. S. (1988). Effect of substituents on the fluorescence and absorption spectra of coumarins. Spectrochimica Acta Part A: Molecular Spectroscopy, 44(8), 805-807. Gómez Aguirre, D. (2009). Señora Jefa de Área de Medio Ambiente y Desarrollo Sustentable. González-Morales, D., Valencia, A., Díaz-Núñez, A., Fuentes-Estrada, M., López-Santos, O., & García-Beltrán, O. (2020). Development of a low-cost UV-vis spectrophotometer and its application for the detection of mercuric ions assisted by chemosensors. Sensors, 20(3), 906.
Gu, L., Zheng, T., Xu, Z., Song, Y., Li, H., Xia, S., & Shen, L. (2019). A novel bifunctional fluorescent and colorimetric probe for detection of mercury and fluoride ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 207, 88-95. Gutiérrez, A. R., Vázquez, R. A., Coreño, O., Coreño, J., Castruita, G., Moggio, I., ... & Martínez, M. (2010). Síntesis y mecanosíntesis de fenilendivinilenbisquinolinas para la optoelectrónica. Superficies y vacío, 23, 73-79. Hamisu, A. M., Ariffin, A., & Wibowo, A. C. (2020). Cation Exchange in Metal-Organic Frameworks (MOFs): The Hard-Soft Acid-Base (HSAB) Principle Appraisal. Inorganica Chimica Acta, 119801. Hammerl, M., & Fund, P. D. G. N. (2008). La Agencia de Protección Ambiental de los Estados Unidos, EPA, reclasificó los plaguicidas que contienen glifosato como clase II, es decir altamente tóxicos. Herramientas, 13, 07. Han, L., Wu, H., Cui, Y., Zu, X., Ye, Q., & Gao, J. (2014). Synthesis and density functional theory study of novel coumarin-type dyes for dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 290, 54-62. Huang, S. H. (2014). Fractional distribution and risk assessment of heavy metal contaminated soil in vicinity of a lead/zinc mine. Transactions of Nonferrous Metals Society of China, 24(10), 3324-3331. Jeong, H. Y., Lee, S. Y., Han, J., Lim, M. H., & Kim, C. (2017). Thiophene and diethylaminophenol-based “turn-on” fluorescence chemosensor for detection of Al3+ and F− in a near-perfect aqueous solution. Tetrahedron, 73(18), 2690-2697. Jiao, Y., Zhou, L., He, H., Yin, J., & Duan, C. (2017). A new fluorescent chemosensor for recognition of Hg2+ ions based on a coumarin derivative. Talanta, 162, 403-407. Jiao, Y., Zhou, L., He, H., Yin, J., & Duan, C. (2017). A new fluorescent chemosensor for recognition of Hg2+ ions based on a coumarin derivative. Talanta, 162, 403-407. Joao Matos, M., Vazquez-Rodriguez, S., Santana, L., Uriarte, E., Fuentes-Edfuf, C., Santos, Y., & Munoz-Crego, A. (2012). Looking for new targets: simple coumarins as antibacterial agents. Medicinal chemistry, 8(6), 1140-1145 Jonaghani, Z., Mohammad y ZALI-BOEINI, Hassan. Highly selective fluorescent and colorimetric chemosensor for detection of Hg2 + ion in aqueous media. En: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Mayo, 2017, vol. 178, p. 66-70 Kadhum, A. A. H., Mohamad, A. B., Al-Amiery, A. A., & Takriff, M. S. (2011). Antimicrobial and antioxidant activities of new metal complexes derived from 3-aminocoumarin. Molecules, 16(8), 6969-6984. Karachi, N., Azadi, O., Razavi, R., Tahvili, A., & Parsaee, Z. (2018). Combinatorial experimental and DFT theoretical evaluation of a nano novel thio-dicarboxaldehyde based Schiff base supported on a thin polymer film as a chemosensor for Pb2+ detection. Journal of Photochemistry and Photobiology A: Chemistry, 360, 152-165. Kaur, M., Cho, M. J., & Choi, D. H. (2016). A phenothiazine-based “naked-eye” fluorescent probe for the dual detection of Hg2+ and Cu2+: Application as a solid state sensor. Dyes and Pigments, 125, 1-7. Kaur, N., & Kaur, B. (2020). Colorimetric and fluorescent multi-ion recognition by Anthracene appended di-Schiff base chemosensor. Inorganic Chemistry Communications, 121, 108239. Kehrig, H. D. A., Seixas, T. G., Palermo, E. A., Baêta, A. P., Castelo-Branco, C. W., Malm, O., & Moreira, I. (2009). The relationships between mercury and selenium in plankton and fish from a tropical food web. Environmental Science and Pollution Research, 16(1), 10-24. Kim, J. S., & Quang, D. T. (2007). Calixarene-derived fluorescent probes. Chemical Reviews, 107(9), 3780-3799. Kolcu, F., Erdener, D., & Kaya, İ. (2021). Synthesis and characterization of a highly selective turn-on fluorescent chemosensor for Sn2+ derived from diimine Schiff base. Synthetic Metals, 272, 116668. Lee, C. G., Kang, S., Oh, J., Eom, M. S., Oh, J., Kim, M. G., ... & Han, M. S. (2017). A colorimetric and fluorescent chemosensor for detection of Hg2+ using counterion exchange of cationic polydiacetylene. Tetrahedron Letters, 58(46), 4340-4343. Lehn, J. M., & Sanders, J. K. (1995). Supramolecular chemistry. Concepts and perspectives. Angewandte Chemie-English Edition, 34(22), 2563. Leray, I., Lefevre, J. P., Delouis, J. F., Delaire, J., & Valeur, B. (2001). Synthesis and photophysical and cation‐binding properties of mono‐and tetranaphthylcalix [4] arenes as highly sensitive and selective fluorescent sensors for sodium. Chemistry–A European Journal, 7(21), 4590-4598. Li, H. Y., Gao, S., & Xi, Z. (2009). A colorimetric and “turn-on” fluorescent chemosensor for Zn (II) based on coumarin Shiff-base derivative. Inorganic Chemistry Communications, 12(4), 300-303. Li, J., Yim, D., Jang, W. D., & Yoon, J. (2017). Recent progress in the design and applications of fluorescence probes containing crown ethers. Chemical Society Reviews, 46(9), 2437-2458. Liang, X. C., Chen, S., Gao, J., Zhang, H., Wang, Y., Wang, J. H., & Feng, L. (2018). A versatile fluorimetric chemosensor for mercury (II) assay based on carbon nanodots. Sensors and Actuators B: Chemical, 265, 293-301. Liu, T., Wan, X., & Yao, Y. (2018). Dual sensitive and selective sensor for Pb2+ and Al3+ with distinctive fluorescence response. Sensors and Actuators B: Chemical, 254, 1094-1100. Lobera, M. R., & Merino, E. (2009). Fotoisomerización de azobencenos: movimientos moleculares a la carta. In Anales de la Real Sociedad Española de Química (No. 4, pp. 290-299). Real Sociedad Española de Química. Lorente, C. (2003). Fotofísica y propiedades fotosensibilizadoras de pterinas en solución acuosa (Doctoral dissertation, Universidad Nacional de La Plata). Ma, W., Xu, Q., Du, J., Song, B., Peng, X., Wang, Z., ... & Wang, X. (2010). A Hg2+-selective chemodosimeter based on desulfurization of coumarin thiosemicarbazide in aqueous media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76(2), 248-252. Mahbub, K. R., Bahar, M. M., Megharaj, M., & Labbate, M. (2018). Are the existing guideline values adequate to protect soil health from inorganic mercury contamination? Environment international, 117, 10-15. Maikala, R. V. (2010). Modified Beers Law–historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue. International Journal of Industrial Ergonomics, 40(2), 125-134. Martin, S., & Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology briefs for citizens, 15, 1-6. Matarazzo, A., & Hudson, R. H. (2015). Fluorescent adenosine analogs: a comprehensive survey. Tetrahedron, 11(71), 1627-1657. Mejri, A., Fliss, O., & Alouani, K. (2017). Bis (aminophosphine) diselenides as chemosensors for heavy metal cations: An electrochemical, spectroscopic and theoretical study. Journal of Electroanalytical Chemistry, 787, 163-171. Melnikov, F., Geohagen, B. C., Gavin, T., LoPachin, R. M., Anastas, P. T., Coish, P., & Herr, D. W. (2020). Application of the hard and soft, acids and bases (HSAB) theory as a method to predict cumulative neurotoxicity. Neurotoxicology, 79, 95-103. Méndez_Delgado, J. (2018). Modelización molecular mediante cálculos mecanocuánticos de un nuevo BODIPY fluorescente para la determinación de cisteína y homocisteína. Meng, X., Cao, D., Hu, Z., Han, X., Li, Z., & Ma, W. (2018). A highly sensitive and selective chemosensor for Pb 2+ based on quinoline–coumarin. RSC advances, 8(59), 33947-33951. Mercury, W. I. (1991). Environmental Health Criteria 118. Geneva: World Health Organization, 107. Miranda, R., Noguez, O., Velasco, B., Arroyo, G., Penieres, G., Martínez, J. O., & Delgado, F. (2009). Irradiación infrarroja: una alternativa para la activación de reacciones y su contribución a la química verde. Educación química, 20(4), 421-425. Mondal, D., Pal, P., & Baitalik, S. (2017). Anthraquinone-biimidazole based ruthenium (II) complexes as selective multichannel anion sensors and multi-readout molecular logic gates and memory devices: Combined experimental and DFT/TD-DFT study. Sensors and Actuators B: Chemical, 242, 746-759. Naik, L., Maridevarmath, C. V., Thippeswamy, M. S., Savanur, H. M., Khazi, I. A. M., & Malimath, G. H. (2021). A highly selective and sensitive thiophene substituted 1, 3, 4-oxadiazole based turn-off fluorescence chemosensor for Fe2+ and turn on fluorescence chemosensor for Ni2+ and Cu2+ detection. Materials Chemistry and Physics, 260, 124063. Nguyen, V. N., Heo, S., Kim, S., Swamy, K. M. K., Ha, J., Park, S., & Yoon, J. (2020). A thiocoumarin-based turn-on fluorescent probe for hypochlorite detection and its application to live-cell imaging. Sensors and Actuators B: Chemical, 317, 128213. Nolan, E. M., & Lippard, S. J. (2008). Tools and tactics for the optical detection of mercuric ion. Chemical reviews, 108(9), 3443-3480. Oneill, P. (1998). Environmental chemistry. CRC Press. Osweiler, G. D., Van Gelder, G. A., & Buck, W. B. (1978). Toxicity of Heavy Metals in the Environment. vol. 1, FW Oehme, ed. Ozdemir, M. (2016). A rhodamine-based colorimetric and fluorescent probe for dual sensing of Cu2+ and Hg2+ ions. Journal of Photochemistry and Photobiology A: Chemistry, 318, 7-13. Palacios-Torres, Y., Caballero-Gallardo, K., & Olivero-Verbel, J. (2018). Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere, 193, 421-430. Patil, A., & Salunke-Gawali, S. (2018). Overview of the chemosensor ligands used for selective detection of anions and metal ions (Zn2+, Cu2+, Ni2+, Co2+, Fe2+, Hg2+). Inorganica Chimica Acta, 482, 99-112. Qin, S., Chen, B., Huang, J., & Han, Y. (2018). A thiocoumarin-based colorimetric and ratiometric fluorescent probe for Hg 2+ in aqueous solution and its application in live-cell imaging. New Journal of Chemistry, 42(15), 12766-12772. Rahimi, H., Hosseinzadeh, R., & Tajbakhsh, M. (2021). A new and efficient pyridine-2 6-dicarboxamide-based fluorescent and colorimetric chemosensor for sensitive and selective recognition of Pb2+ and Cu2+. Journal of Photochemistry and Photobiology A: Chemistry, 407, 113049. Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental monitoring and assessment, 191(7), 419. Ramírez, A. V. (2005, March). El cuadro clínico de la intoxicación ocupacional por plomo. In Anales de la Facultad de Medicina (Vol. 66, No. 1, pp. 57-70). UNMSM. Facultad de Medicina. Rani, B. K., & John, S. A. (2018). Fluorogenic mercury ion sensor based on pyrene-amino mercapto thiadiazole unit. Journal of hazardous materials, 343, 98-106. Ray, D., Nag, A., Jana, A., Goswami, D., & Bharadwaj, P. K. (2010). Coumarin derived chromophores in the donor–acceptor–donor format that gives fluorescence enhancement and large two-photon activity in presence of specific metal ions. Inorganica Chimica Acta, 363(12), 2824-2832. Roussakis, E., Pergantis, S. A., & Katerinopoulos, H. E. (2008). Coumarin-based ratiometric fluorescent indicators with high specificity for lead ions. Chemical communications, (46), 6221-6223. Rubio, C., Gutiérrez, A. J., Izquierdo, R. M., Revert, C., Lozano, G., & Hardisson, A. (2004). El plomo como contaminante alimentario. Revista de toxicología, 21(2-3), 72-80. Rui, Q. Q., Zhou, Y., Fang, Y., & Yao, C. (2016). Spirolactone and spirothiolactone rhodamine-pyrene probes for detection of Hg2+ with different sensing properties and its application in living cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 159, 209-218. S. Warrier and P. S. Kharkar, “Highly selective on-off fluorescence recognition of Fe3+based on a coumarin derivative and its application in live-cell imaging,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 188, pp. 659–665, 2018. Sahana, A., Banerjee, A., Lohar, S., Sarkar, B., Mukhopadhyay, S. K., & Das, D. (2013). Rhodamine-based fluorescent probe for Al3+ through time-dependent PET–CHEF–FRET processes and its cell staining application. Inorganic chemistry, 52(7), 3627-3633. Salmon, L., Thuéry, P., Rivière, E., & Ephritikhine, M. (2006). Synthesis, structure, and magnetic behavior of a series of trinuclear Schiff base complexes of 5f (UIV, ThIV) and 3d (CuII, ZnII) ions. Inorganic chemistry, 45(1), 83-93. Seiler, H. G., Sigel, H., & Sigel, A. (1988). Handbook on toxicity of inorganic compounds. Seoane-Rivero, R., Ruiz-Bilbao, E., Navarro, R., Laza, J. M., Cuevas, J. M., Artetxe, B., ... & Marcos-Fernandez, Á. (2020). Structural Characterization of Mono and Dihydroxylated Umbelliferone Derivatives. Molecules, 25(15), 3497. Shyamal, M., Mazumdar, P., Maity, S., Samanta, S., Sahoo, G. P., & Misra, A. (2016). Highly selective turn-on fluorogenic chemosensor for robust quantification of Zn (II) based on aggregation induced emission enhancement feature. ACS Sensors, 1(6), 739-747. Soria, M. L., y Repetto, M. (1995). Estado actual de la toxicolo-gía del mercurio.Toxicología Avanzada, Ma-drid. Suzuki, T., Imura, N., & Clarkson, T. W. (Eds.). (2013). Advances in mercury toxicology. Springer Science & Business Media. Tahmasebi, E., Masoomi, M. Y., Yamini, Y., & Morsali, A. (2015). Application of mechanosynthesized azine-decorated zinc (II) metal–organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study. Inorganic chemistry, 54(2), 425-433. Tang, J., Robichaux, M. A., Wu, K. L., Pei, J., Nguyen, N. T., Zhou, Y., ... & Xiao, H. (2019). Single-atom fluorescence switch: a general approach toward visible-light-activated dyes for biological imaging. Journal of the American Chemical Society, 141(37), 14699-14706. Tárraga, A. T. (2012). Sensores moleculares: Un reto para el químico, una demanda social. Murcia, España, Compobell S.L. Tasior, M., Kim, D., Singha, S., Krzeszewski, M., Ahn, K. H., & Gryko, D. T. (2015). π-Expanded coumarins: synthesis, optical properties and applications. Journal of Materials Chemistry C, 3(7), 1421-1446. Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., & Sutton, D. (2003). Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology: An International Journal, 18(3), 149-175. Velmurugan, K., Vickram, R., Jipsa, C. V., Karthick, R., Prabakaran, G., Suresh, S., ... & Nandhakumar, R. (2021). Quinoline based reversible fluorescent probe for Pb2+; applications in milk, bioimaging and INHIBIT molecular logic gate. Food Chemistry, 348, 129098. Vijayakumar, P., Dhineshkumar, E., Negar, S. N., & Renganathan, R. (2021). Novel schiff base synthesis of EN-(1-(1H-phenothiazin-2yl)-ethylidene)-3-((E)-(2-phenylhydrazono) methyl) aniline “Turn-on” fluorescent chemosensor for sensitivity and selectivity of detection of Cr3+ and Pb2+ ions. Materials Today: Proceedings. Vilar, S., Quezada, E., Santana, L., Uriarte, E., Yánez, M., Fraiz, N., ... & Orallo, F. (2006). Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin–resveratrol hybrids. Bioorganic & medicinal chemistry letters, 16(2), 257-261. Wang, D. F., Ke, Y. C., Guo, H. X., Chen, J., & Weng, W. (2014). A novel highly selective colorimetric sensor for aluminum (III) ion using Schiff base derivative. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122, 268-272. Wang, L., Li, W., Zhi, W., Huang, Y., Han, J., Wang, Y., ... & Ni, L. (2018). A new coumarin schiff based fluorescent-colorimetric chemosensor for dual monitoring of Zn2+ and Fe3+ in different solutions: An application to bio-imaging. Sensors and Actuators B: Chemical, 260, 243-254. Wang, L., Pan, Y. Q., Wang, J. F., Zhang, Y., & Ding, Y. J. (2020). A highly selective and sensitive half-salamo-based fluorescent chemosensor for sequential detection of Pb (II) ion and Cys. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112719. Wang, W., Wu, J., Liu, Q., Gao, Y., Liu, H., & Zhao, B. (2018). A highly selective coumarin-based chemosensor for the sequential detection of Fe3+ and pyrophosphate and its application in living cell imaging. Tetrahedron Letters, 59(19), 1860-1865. Warrier, S. B., & Kharkar, P. S. (2018). A coumarin based chemosensor for selective determination of Cu (II) ions based on fluorescence quenching. Journal of Luminescence, 199, 407-415. Warrier, S., & Kharkar, P. S. (2018). Highly selective on-off fluorescence recognition of Fe3+ based on a coumarin derivative and its application in live-cell imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 659-665. White, E. M., Vaughan, P. P., & Zepp, R. G. (2003). Role of the photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of colored dissolved organic matter in a coastal river of the southeastern United States. Aquatic Sciences, 65(4), 402-414. World Health Organization. (1990). IPCS Environmental Health Criteria 101: Methylmercury. International Programme of Chemical Safety. World Health Organization, Geneva, Switzerland. Xu, Y., Kong, L., Bai, L., Chen, A., Li, N., Cheng, L., ... & Li, G. (2021). A new water-soluble polymer fluorescent chemosensor with thiophene Schiff base site for selectively sensing Al3+ ions. Tetrahedron, 79, 131888. Xu, Y., Mao, S., Peng, H., Wang, F., Zhang, H., Aderinto, S. O., & Wu, H. (2017). A fluorescent sensor for selective recognition of Al3+ based on naphthalimide Schiff-base in aqueous media. Journal of Luminescence, 192, 56-63. Zhang, W., Feng, Y., Ma, L., An, J., Zhang, H., Cao, M., ... & Lian, K. (2019). A method for determining glyphosate and its metabolite aminomethyl phosphonic acid by gas chromatography-flame photometric detection. Journal of Chromatography A, 1589, 116-121. Zhang, Y., & Hu, W. (2017). Energy donor effect on the sensing performance for a series of FRET-based two-photon fluorescent Hg2+ probes. Materials, 10(2), 108. Zhang, Y., Cao, X., Zhen, L., & Wang, X. (2021). A mesoporous silica-based fluorescent chemosensor bearing bis-Schiff base for the sensitive detection of Cu2+ ions. Journal of Solid State Chemistry, 297, 122093. Zhong, C., Gao, J., Cui, Y., Li, T., & Han, L. (2015). Coumarin-bearing triarylamine sensitizers with high molar extinction coefficient for dye-sensitized solar cells. Journal of Power Sources, 273, 831-838. Zhou, Y., Chu, K., Zhen, H., Fang, Y., & Yao, C. (2013). Visualizing Hg2+ ions in living cells using a FRET-based fluorescent sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 106, 197-202. Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the total environment, 407(5), 1551-1556.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Escuela de química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80057/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80057/3/1117885446.pdf
https://repositorio.unal.edu.co/bitstream/unal/80057/4/1117885446.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
d164348a10ddc321e52815cb1a618122
82980b3cfe9aaa0b3024428dbf1180d2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089916104048640
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Durango Restrepo, Diego Luis07c2497f44a59162bd9eac38401b16e2García-Beltrán, Olimpo6429bba5bd0c6b7446231957677cbd02600Díaz Núñez, Astrid Yhuleidy1fb05777b0bf4ed1c86a22147cde3e04Química de los Productos Naturales y los Alimentos2021-08-31T16:27:43Z2021-08-31T16:27:43Z2021-08-27https://repositorio.unal.edu.co/handle/unal/80057Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasMetales como el plomo y mercurio no se le conoce función fisiológica beneficiosa en el cuerpo humano, su acumulación hace que resulte tóxico, debido a la afinidad que presenta al grupo sulfhidrilo (-SH) provocando la inhibición de procesos biológicos, generando así daños en la salud humana, incluyendo problemas principalmente en el sistema nervioso. Estos metales son generados por la contaminación industrial, y eventos naturales, lo que permite que sean incorporados en el suelo, cuerpos de agua lóticos y lénticos, organismos vegetales y animales, y se incorporan a la cadena alimenticia alterando la sostenibilidad de la cadena trófica y generando riesgo para la salud humana y animal. Por lo tanto, durante las últimas dos décadas se viene desarrollando una serie de compuesto denominados sondas fluorescentes o quimiosensores, que pueden detectar iones de forma sensible y selectiva. Dentro de los núcleos químicos para el diseño de señores moleculares encontramos las cumarinas que poseen propiedades fotofísicas como cambios de intensidad y desplazamiento de banda fluorescente, desplazamientos de Stokes y, altos rendimientos cuánticos. Todas estas propiedades fotofísicas se debe a la optimización sistemática de su estructura electrónica mediante la introducción o adición de grupos funcionales en la posición C-3 y C-7 (electrón-atractor y electrón-donador), logrando una mayor sensibilidad y selectividad, hacia la traza de iones metálicos. En este trabajo se desarrolló la síntesis de derivados cumarínicos 3-azometino- sustituidos y una tiocumarina, los compuestos obtenidos fueron usados para estudiar su afinidad frente a diferentes metales en medio acuoso. Estos fueron caracterizados y evaluados por espectroscopia 1H y 13C RMN, UV-Vis y fluorescencia. La afinidad de los ligandos cumarínicos 3-azometino-sustituidos (H1imina, H2imina y De1imina) mostraron selectividad y sensibilidad por Pb2+/Fe3+/Fe2+, mientras De2imina mostró interacción por Pb2+/Hg2+/Fe3+/Fe2+ y el compuesto Cum-S mostró una reacción desulfurización presentada por Hg2+. Los resultados obtenidos involucraron que los quimiosensores cumarínicos 3-azometino-sustituidos presentaron un mecanismo de fluorescencia de APAGADO–ENCENDIDO donde podría deberse al efecto de fluorescencia potenciado por quelación (CHEF–siglas en inglés) inhibiendo el proceso de isomerización del grupo azometino, mientras la tiocumarina presentó un desplazamiento hipsocrómico de la banda de emisión. Además, los compuestos cumarínicos mostraron propiedades colorimétricas tras la interacción ligando-metal. Estos resultados muestran la utilidad de nuevos compuestos basados en la plantilla estructural cumarínica con ligandos imínicos y con tiocarbonilo para la detección directa de plomo y mercurio de interés biológico y ambiental. Además, podrían ser útiles para el desarrollo de nuevas metodologías que permitan diagnosticar la presencia de metales pesados en recursos hidrológicos y así mitigar el impacto ambiental generado por los iones Pb2+ y Hg2+. (Texto tomado de la fuente)Metals such as lead and mercury have no known beneficial physiological function in the human body; their accumulation makes them toxic due to their affinity to the sulfhydryl group (-SH), causing the inhibition of biological processes, thus causing damage to human health, including problems mainly in the nervous system. These metals are generated by industrial pollution and natural events, which allow them to be incorporated into the soil, lotic and lentic water bodies, plant, and animal organisms, and are incorporated into the food chain, altering the sustainability of the trophic chain, and generating risk to human and animal health. Therefore, during the last two decades a series of compounds called fluorescent probes or chemosensors, which can detections sensitively and selectively, have been developed. Among the chemical cores for the design of molecular decoys, we find coumarins that possess photophysical properties such as intensity changes and fluorescent band shifts, Stokes shifts, and high quantum yields. All these photophysical properties are due to the systematic optimization of its electronic structure by the introduction or addition of functional groups in the C-3 and C-7 position (electron-attractor and electron-donor), achieving greater sensitivity and selectivity towards trace metal ions. In this work the synthesis of 3-substituted coumarin 3-azomethine derivatives and a thiocoumarin was developed, the compounds obtained were used to study their affinity towards different metals in aqueous media. These were characterized and evaluated by 1H and 13C NMR, UV-Vis, and fluorescence spectroscopy. The affinity of the 3-azomethine-substituted coumarin ligands (H1imine, H2imine, and De1imine) showed selectivity and sensitivity for Pb2+/Fe3+/Fe2+, while De2imine showed interaction for Pb2+/Hg2+/Fe3+/Fe2+ and the Cum-S compound showed a desulfurization presented by Hg2+. The results obtained involved that the 3-azomethine-substituted coumarin coumarin chemosensors presented an OFF-ON fluorescence mechanism where it could be due to the chelation-enhanced fluorescence (CHEF) inhibiting the isomerization process of the azomethine group, while thiocoumarin presented a hypsochromic shift of the emission band. In addition, coumarin compounds showed colorimetric properties upon ligand-metal interaction. These results show the usefulness of new compounds based on the coumarin structural template with iminic and thiocarbonyl ligands for the direct detection of lead and mercury of biological and environmental interest. Furthermore, they could be useful for the development of new methodologies to diagnose the presence of heavy metals in hydrological resources and thus mitigate the environmental impact generated by Pb2+ and Hg2+ ions.MaestríaMagíster en Ciencias – QuímicaSensores Moleculares Fluorescentesxxii, 13 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - QuímicaEscuela de químicaFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín540 - Química y ciencias afinesCumarinasSondas fluorescentesSelectividadCumarínicos 3-azometino-sustituidosSensibilidadIsomerizaciónDesulfurizaciónIsomerizationDesulfurizationSelectivitySensitivity3-azomethine-substituted coumarinsSíntesis de cumarinas 3-azometino-sustituidas como quimiosensores para la detección de iones Pb2+ y Hg2+ en medio acuoso.Synthesis of 3-azometin-substituted coumarin as a chemosensor for the detection of Pb2+ and Hg2+ ions in aqueous mediumTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbebe, F., Perkins, P., Shaw, R., & Tadesse, S. (2020). A rhodamine-based fluorescent sensor for selective detection of Cu2+ in aqueous media: Synthesis and spectroscopic properties. Journal of molecular structure, 1205, 127594. Abollino, O., Giacomino, A., Malandrino, M., Piscionieri, G., & Mentasti, E. (2008). Determination of mercury by anodic stripping voltammetry with a gold nanoparticle‐modified glassy carbon electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 20(1), 75-83. Ali, H., & Khan, E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicological & Environmental Chemistry, 100(1), 6-19. Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019. Aliaga, M. E., Gazitua, M., Rojas-Bolaños, A., Fuentes-Estrada, M., Durango, D., & García-Beltrán, O. (2020). A selective thioxothiazolidin-coumarin probe for Hg2+ based on its desulfurization reaction. Exploring its potential for live cell imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, 117372. Ang, C. Y., Tan, S. Y., Wu, S., Qu, Q., Wong, M. F. E., Luo, Z., ... & Zhao, Y. (2016). A dual responsive “turn-on” fluorophore for orthogonal selective sensing of biological thiols and hydrogen peroxide. Journal of Materials Chemistry C, 4(14), 2761-2774. Antonisse, M. M., & Reinhoudt, D. N. (1998). Neutral anion receptors: design and application. Chemical communications, (4), 443-448. Armas, M. A., María-Hormigos, R., Cantalapiedra, A., Gismera, M. J., Sevilla, M. T., & Procopio, J. R. (2016). Multiparametric optimization of a new high-sensitive and disposable mercury (II) electrochemical sensor. Analytica chimica acta, 904, 76-82. Arshad, M., Naqvi, N., Gul, I., Yaqoob, K., Bilal, M., & Kallerhoff, J. (2020). Lead phytoextraction by Pelargonium hortorum: Comparative assessment of EDTA and DIPA for Pb mobility and toxicity. Science of The Total Environment, 748, 141496. Baird, C. (2001). Química ambiental. Reverté. S.A, México. Balderas-Hernández, P., Rojas-Hernández, A., Galván, M., Romo, M. R., Palomar-Pardavé, M., & Ramírez-Silva, M. T. (2007). Determination of the complexation constants of Pb (II) and Cd (II) with thymol blue using spectrophotometry, SQUAD and the HSAB principle. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(1), 68-73. Beklova, M., Vrba, R., & Kizek, R. (2011). Electrochemical analysis of lead toxicosis in vultures. Int. J. Electrochem. Sci, 6, 5980-6010. Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40(12), 1335-1351. Borges, F., Roleira, F., Milhazes, N., Santana, L., & Uriarte, E. (2005). Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Current medicinal chemistry, 12(8), 887-916. Bowman-James, K. (2005). Alfred Werner revisited: the coordination chemistry of anions. Accounts of chemical research, 38(8), 671-678. Brewin, C. R., & Burgess, N. (2014). Contextualisation in the revised dual representation theory of PTSD: A response to Pearson and colleagues. Journal of Behavior Therapy and Experimental Psychiatry, 45(1), 217-219. Castañeda Briones M, (2017). Sistemas de iluminación y adquisición de imágenes digitales para aplicaciones médicas. (Tesis de maestría). Instituto politécnico nacional, México, Ciudad de México. Cha, S., Hwang, J., Choi, M. G., & Chang, S. K. (2010). Dual signaling of m-chloroperbenzoic acid by desulfurization of thiocoumarin. Tetrahedron Letters, 51(50), 6663-6665. Chen, C. S., Ogawa, S., Imura, Y., Suzuki, M., & Yoshimura, E. (2020). Post-column detection of cadmium chelators by high-performance liquid chromatography using 5, 10, 15, 20-tetraphenyl-21H, 23H-porphinetetrasulfonic acid. Journal of Chromatography B, 1141, 122025. Chen, C. T., & Huang, W. P. (2002). A highly selective fluorescent chemosensor for lead ions. Journal of the American Chemical Society, 124(22), 6246-6247. Chen, W., Xu, H., Ju, L., & Lu, H. (2021). A highly sensitive fluorogenic “turn-on” chemosensor for the recognition of Cd2+ based on a hybrid purine-quinoline Schiff base. Tetrahedron, 132123. Cho, H., Chae, J. B., & Kim, C. (2018). A thiophene-based blue-fluorescent emitting chemosensor for detecting indium (III) ion. Inorganic Chemistry Communications, 97, 171-175. Choi, M. G., Kim, Y. H., Namgoong, J. E., & Chang, S. K. (2009). Hg 2+-selective chromogenic and fluorogenic chemodosimeter based on thiocoumarins. Chemical communications, (24), 3560-3562. Christus, A. A. B., Panneerselvam, P., Ravikumar, A., Morad, N., & Sivanesan, S. (2018). Colorimetric determination of Hg (II) sensor based on magnetic nanocomposite (Fe3O4@ ZIF-67) acting as peroxidase mimics. Journal of Photochemistry and Photobiology A: Chemistry, 364, 715-724. Costa-Malaquias, A., Almeida, M. B., Monteiro, J. R. S., de Matos Macchi, B., do Nascimento, J. L. M., & Crespo-Lopez, M. E. (2014). Morphine protects against methylmercury intoxication: a role for opioid receptors in oxidative stress? PloS one, 9(10), e110815. Dapul, H., & Laraque, D. (2014). Lead poisoning in children. Advances in pediatrics,61(1), 313-333. Delogu, G., Picciau, C., Ferino, G., Quezada, E., Podda, G., Uriarte, E., & Viña, D. (2011). Synthesis, human monoamine oxidase inhibitory activity and molecular docking studies of 3-heteroarylcoumarin derivatives. European journal of medicinal chemistry, 46(4), 1147-1152. Díaz, N. A., Ruiz, J. A. B., Reyes, E. F., Cejudo, A. G., Novo, J. J., Peinado, J. P., ... & Fiñana, I. T. (2000). Espectrofometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas. sf http://www. uco. es/dptos/bioquimica-biolmol/pdfs/08_ESPECTROFOTOMETR% C3% 8DA. pdf (último acceso: 9 de febrero de 2016). Díaz-Uribe, C. E., Vallejo-Lozada, W. A., & Alvarado-Rueda, L. J. (2014). The Hydroxyl Radical (ΦOH) Productions Quantic Yield, by Fluorosconco in the TcPPFe/H2O2/UV-VIS System. Revista Facultad de Ingeniería, 23(36), 85-90. Ding, H., Liang, C., Sun, K., Wang, H., Hiltunen, J. K., Chen, Z., & Shen, J. (2014). Dithiothreitol-capped fluorescent gold nanoclusters: an efficient probe for detection of copper (II) ions in aqueous solution. Biosensors and Bioelectronics, 59, 216-220. Ding, Y., Zhao, C., Zhang, P., Chen, Y., Song, W., Liu, G., ... & Han, R. (2021). A novel quinoline derivative as dual chemosensor for selective sensing of Al3+ by fluorescent and Fe2+ by colorimetric methods. Journal of Molecular Structure, 1231, 129965. Eisler, R. (2006). Mercury hazards to living organisms. CRC Press Ellenhorn, M. J., & Barceloux, D. G. (1997). Diagnosis and treatment of human poisoning. Medical toxicology, 609-610. Epstein, D. M., Choudhary, S., Churchill, M. R., Keil, K. M., Eliseev, A. V., & Morrow, J. R. (2001). Chloroform-soluble Schiff-base Zn (II) or Cd (II) complexes from a dynamic combinatorial library. Inorganic chemistry, 40(7), 1591-1596. Eren, Z., & Acar, F. N. (2006). Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination, 194(1-3), 1-10. Escolar González, A. Plomo, arsénico, cadmio y mercurio: efectos y estudios en Colombia (Bachelors thesis, Uniandes). Esteban-Gómez, D. (2002). Complejación de plomo (II) y cadmio (II) con nuevos receptores macrocíclicos derivados de azacronandos. Universidad da coruña, Coruña, España. Expósito Monar, A., Fanjul Vélez, F., & Arce Diego, J. L. (2018). Análisis de propiedades espectroscópicas de fluoróforos utilizados en el diagnóstico clínico. Fabbrizzi, L., Licchelli, M., Pallavicini, P., Parodi, L., & Taglietti, A. (1999). Fluorescent sensors for and with transition metals. Transition Metals in Supramolecular Chemistry, 5, 93-134. Formica, M., Fusi, V., Giorgi, L., & Micheloni, M. (2012). New fluorescent chemosensors for metal ions in solution. Coordination Chemistry Reviews, 256(1-2), 170-192. Fu, X. W., Feng, X., Dong, Z. Q., Yin, R. S., Wang, J. X., Yang, Z. R., & Zhang, H. (2010). Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry & Physics, 10(5). Gaioli, M., Amoedo, D., & González, D. (2012). Impacto del mercurio sobre la salud humana y el ambiente. Archivos argentinos de pediatría, 110(3), 259-264. Gálvez Buerba, E. M. (2004). Nuevas sondas moleculares fluorescentes basadas en cambios de la intensidad de emisión debidas a interacciones dipolares inducidas. García Brieva, R. (2011). Determinación del rendimiento cuántico y tiempos de vida media de fluorescencia en sustancia colorantes con aplicaciones como fuentes de láser. (Tesis de pregrado). Universidad industrial de Santander, Bucaramanga, Colombia. García Suárez, A. (2015). Determinación de rendimientos cuánticos de fluorescencia por métodos indirectos. (Tesis de maestría), Universidad de Oviedo, Austrias, España. García-Beltrán, O., Mena, N., Berríos, T. A., Castro, E. A., Cassels, B. K., Núñez, M. T., & Aliaga, M. E. (2012). A selective fluorescent probe for the detection of mercury (II) in aqueous media and its applications in living cells. Tetrahedron Letters, 53(48), 6598-6601. García-Beltrán, O., Rodríguez, A., Trujillo, A., Cañete, A., Aguirre, P., Gallego-Quintero, S., ... & Aliaga, M. E. (2015). Synthesis and characterization of a novel fluorescent and colorimetric probe for the detection of mercury (II) even in the presence of relevant biothiols. Tetrahedron Letters, 56(42), 5761-5766. García-Beltrán, O., Santos, J. G., Fuentealba, S., De la Torre, P., Pavez, P., Mena, N., ... & Aliaga, M. E. (2015). Mechanism study of the thiol-addition reaction to benzothiazole derivative for sensing endogenous thiols. Tetrahedron Letters, 56(19), 2437-2440. Gharami, S., Sarkar, D., Ghosh, P., Acharyya, S., Aich, K., Murmu, N., & Mondal, T. K. (2017). A coumarin based azo-phenol ligand as efficient fluorescent “OFF-ON-OFF” chemosensor for sequential detection of Mg2+ and F−: Application in live cell imaging and as molecular logic gate. Sensors and Actuators B: Chemical, 253, 317-325. Giri, R., Rathi, S. S., Machwe, M. K., & Murti, V. V. S. (1988). Effect of substituents on the fluorescence and absorption spectra of coumarins. Spectrochimica Acta Part A: Molecular Spectroscopy, 44(8), 805-807. Giri, R., Rathi, S. S., Machwe, M. K., & Murti, V. V. S. (1988). Effect of substituents on the fluorescence and absorption spectra of coumarins. Spectrochimica Acta Part A: Molecular Spectroscopy, 44(8), 805-807. Gómez Aguirre, D. (2009). Señora Jefa de Área de Medio Ambiente y Desarrollo Sustentable. González-Morales, D., Valencia, A., Díaz-Núñez, A., Fuentes-Estrada, M., López-Santos, O., & García-Beltrán, O. (2020). Development of a low-cost UV-vis spectrophotometer and its application for the detection of mercuric ions assisted by chemosensors. Sensors, 20(3), 906.Gu, L., Zheng, T., Xu, Z., Song, Y., Li, H., Xia, S., & Shen, L. (2019). A novel bifunctional fluorescent and colorimetric probe for detection of mercury and fluoride ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 207, 88-95. Gutiérrez, A. R., Vázquez, R. A., Coreño, O., Coreño, J., Castruita, G., Moggio, I., ... & Martínez, M. (2010). Síntesis y mecanosíntesis de fenilendivinilenbisquinolinas para la optoelectrónica. Superficies y vacío, 23, 73-79. Hamisu, A. M., Ariffin, A., & Wibowo, A. C. (2020). Cation Exchange in Metal-Organic Frameworks (MOFs): The Hard-Soft Acid-Base (HSAB) Principle Appraisal. Inorganica Chimica Acta, 119801. Hammerl, M., & Fund, P. D. G. N. (2008). La Agencia de Protección Ambiental de los Estados Unidos, EPA, reclasificó los plaguicidas que contienen glifosato como clase II, es decir altamente tóxicos. Herramientas, 13, 07. Han, L., Wu, H., Cui, Y., Zu, X., Ye, Q., & Gao, J. (2014). Synthesis and density functional theory study of novel coumarin-type dyes for dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 290, 54-62. Huang, S. H. (2014). Fractional distribution and risk assessment of heavy metal contaminated soil in vicinity of a lead/zinc mine. Transactions of Nonferrous Metals Society of China, 24(10), 3324-3331. Jeong, H. Y., Lee, S. Y., Han, J., Lim, M. H., & Kim, C. (2017). Thiophene and diethylaminophenol-based “turn-on” fluorescence chemosensor for detection of Al3+ and F− in a near-perfect aqueous solution. Tetrahedron, 73(18), 2690-2697. Jiao, Y., Zhou, L., He, H., Yin, J., & Duan, C. (2017). A new fluorescent chemosensor for recognition of Hg2+ ions based on a coumarin derivative. Talanta, 162, 403-407. Jiao, Y., Zhou, L., He, H., Yin, J., & Duan, C. (2017). A new fluorescent chemosensor for recognition of Hg2+ ions based on a coumarin derivative. Talanta, 162, 403-407. Joao Matos, M., Vazquez-Rodriguez, S., Santana, L., Uriarte, E., Fuentes-Edfuf, C., Santos, Y., & Munoz-Crego, A. (2012). Looking for new targets: simple coumarins as antibacterial agents. Medicinal chemistry, 8(6), 1140-1145 Jonaghani, Z., Mohammad y ZALI-BOEINI, Hassan. Highly selective fluorescent and colorimetric chemosensor for detection of Hg2 + ion in aqueous media. En: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Mayo, 2017, vol. 178, p. 66-70 Kadhum, A. A. H., Mohamad, A. B., Al-Amiery, A. A., & Takriff, M. S. (2011). Antimicrobial and antioxidant activities of new metal complexes derived from 3-aminocoumarin. Molecules, 16(8), 6969-6984. Karachi, N., Azadi, O., Razavi, R., Tahvili, A., & Parsaee, Z. (2018). Combinatorial experimental and DFT theoretical evaluation of a nano novel thio-dicarboxaldehyde based Schiff base supported on a thin polymer film as a chemosensor for Pb2+ detection. Journal of Photochemistry and Photobiology A: Chemistry, 360, 152-165. Kaur, M., Cho, M. J., & Choi, D. H. (2016). A phenothiazine-based “naked-eye” fluorescent probe for the dual detection of Hg2+ and Cu2+: Application as a solid state sensor. Dyes and Pigments, 125, 1-7. Kaur, N., & Kaur, B. (2020). Colorimetric and fluorescent multi-ion recognition by Anthracene appended di-Schiff base chemosensor. Inorganic Chemistry Communications, 121, 108239. Kehrig, H. D. A., Seixas, T. G., Palermo, E. A., Baêta, A. P., Castelo-Branco, C. W., Malm, O., & Moreira, I. (2009). The relationships between mercury and selenium in plankton and fish from a tropical food web. Environmental Science and Pollution Research, 16(1), 10-24. Kim, J. S., & Quang, D. T. (2007). Calixarene-derived fluorescent probes. Chemical Reviews, 107(9), 3780-3799. Kolcu, F., Erdener, D., & Kaya, İ. (2021). Synthesis and characterization of a highly selective turn-on fluorescent chemosensor for Sn2+ derived from diimine Schiff base. Synthetic Metals, 272, 116668. Lee, C. G., Kang, S., Oh, J., Eom, M. S., Oh, J., Kim, M. G., ... & Han, M. S. (2017). A colorimetric and fluorescent chemosensor for detection of Hg2+ using counterion exchange of cationic polydiacetylene. Tetrahedron Letters, 58(46), 4340-4343. Lehn, J. M., & Sanders, J. K. (1995). Supramolecular chemistry. Concepts and perspectives. Angewandte Chemie-English Edition, 34(22), 2563. Leray, I., Lefevre, J. P., Delouis, J. F., Delaire, J., & Valeur, B. (2001). Synthesis and photophysical and cation‐binding properties of mono‐and tetranaphthylcalix [4] arenes as highly sensitive and selective fluorescent sensors for sodium. Chemistry–A European Journal, 7(21), 4590-4598. Li, H. Y., Gao, S., & Xi, Z. (2009). A colorimetric and “turn-on” fluorescent chemosensor for Zn (II) based on coumarin Shiff-base derivative. Inorganic Chemistry Communications, 12(4), 300-303. Li, J., Yim, D., Jang, W. D., & Yoon, J. (2017). Recent progress in the design and applications of fluorescence probes containing crown ethers. Chemical Society Reviews, 46(9), 2437-2458. Liang, X. C., Chen, S., Gao, J., Zhang, H., Wang, Y., Wang, J. H., & Feng, L. (2018). A versatile fluorimetric chemosensor for mercury (II) assay based on carbon nanodots. Sensors and Actuators B: Chemical, 265, 293-301. Liu, T., Wan, X., & Yao, Y. (2018). Dual sensitive and selective sensor for Pb2+ and Al3+ with distinctive fluorescence response. Sensors and Actuators B: Chemical, 254, 1094-1100. Lobera, M. R., & Merino, E. (2009). Fotoisomerización de azobencenos: movimientos moleculares a la carta. In Anales de la Real Sociedad Española de Química (No. 4, pp. 290-299). Real Sociedad Española de Química. Lorente, C. (2003). Fotofísica y propiedades fotosensibilizadoras de pterinas en solución acuosa (Doctoral dissertation, Universidad Nacional de La Plata). Ma, W., Xu, Q., Du, J., Song, B., Peng, X., Wang, Z., ... & Wang, X. (2010). A Hg2+-selective chemodosimeter based on desulfurization of coumarin thiosemicarbazide in aqueous media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76(2), 248-252. Mahbub, K. R., Bahar, M. M., Megharaj, M., & Labbate, M. (2018). Are the existing guideline values adequate to protect soil health from inorganic mercury contamination? Environment international, 117, 10-15. Maikala, R. V. (2010). Modified Beers Law–historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue. International Journal of Industrial Ergonomics, 40(2), 125-134. Martin, S., & Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology briefs for citizens, 15, 1-6. Matarazzo, A., & Hudson, R. H. (2015). Fluorescent adenosine analogs: a comprehensive survey. Tetrahedron, 11(71), 1627-1657. Mejri, A., Fliss, O., & Alouani, K. (2017). Bis (aminophosphine) diselenides as chemosensors for heavy metal cations: An electrochemical, spectroscopic and theoretical study. Journal of Electroanalytical Chemistry, 787, 163-171. Melnikov, F., Geohagen, B. C., Gavin, T., LoPachin, R. M., Anastas, P. T., Coish, P., & Herr, D. W. (2020). Application of the hard and soft, acids and bases (HSAB) theory as a method to predict cumulative neurotoxicity. Neurotoxicology, 79, 95-103. Méndez_Delgado, J. (2018). Modelización molecular mediante cálculos mecanocuánticos de un nuevo BODIPY fluorescente para la determinación de cisteína y homocisteína. Meng, X., Cao, D., Hu, Z., Han, X., Li, Z., & Ma, W. (2018). A highly sensitive and selective chemosensor for Pb 2+ based on quinoline–coumarin. RSC advances, 8(59), 33947-33951. Mercury, W. I. (1991). Environmental Health Criteria 118. Geneva: World Health Organization, 107. Miranda, R., Noguez, O., Velasco, B., Arroyo, G., Penieres, G., Martínez, J. O., & Delgado, F. (2009). Irradiación infrarroja: una alternativa para la activación de reacciones y su contribución a la química verde. Educación química, 20(4), 421-425. Mondal, D., Pal, P., & Baitalik, S. (2017). Anthraquinone-biimidazole based ruthenium (II) complexes as selective multichannel anion sensors and multi-readout molecular logic gates and memory devices: Combined experimental and DFT/TD-DFT study. Sensors and Actuators B: Chemical, 242, 746-759. Naik, L., Maridevarmath, C. V., Thippeswamy, M. S., Savanur, H. M., Khazi, I. A. M., & Malimath, G. H. (2021). A highly selective and sensitive thiophene substituted 1, 3, 4-oxadiazole based turn-off fluorescence chemosensor for Fe2+ and turn on fluorescence chemosensor for Ni2+ and Cu2+ detection. Materials Chemistry and Physics, 260, 124063. Nguyen, V. N., Heo, S., Kim, S., Swamy, K. M. K., Ha, J., Park, S., & Yoon, J. (2020). A thiocoumarin-based turn-on fluorescent probe for hypochlorite detection and its application to live-cell imaging. Sensors and Actuators B: Chemical, 317, 128213. Nolan, E. M., & Lippard, S. J. (2008). Tools and tactics for the optical detection of mercuric ion. Chemical reviews, 108(9), 3443-3480. Oneill, P. (1998). Environmental chemistry. CRC Press. Osweiler, G. D., Van Gelder, G. A., & Buck, W. B. (1978). Toxicity of Heavy Metals in the Environment. vol. 1, FW Oehme, ed. Ozdemir, M. (2016). A rhodamine-based colorimetric and fluorescent probe for dual sensing of Cu2+ and Hg2+ ions. Journal of Photochemistry and Photobiology A: Chemistry, 318, 7-13. Palacios-Torres, Y., Caballero-Gallardo, K., & Olivero-Verbel, J. (2018). Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere, 193, 421-430. Patil, A., & Salunke-Gawali, S. (2018). Overview of the chemosensor ligands used for selective detection of anions and metal ions (Zn2+, Cu2+, Ni2+, Co2+, Fe2+, Hg2+). Inorganica Chimica Acta, 482, 99-112. Qin, S., Chen, B., Huang, J., & Han, Y. (2018). A thiocoumarin-based colorimetric and ratiometric fluorescent probe for Hg 2+ in aqueous solution and its application in live-cell imaging. New Journal of Chemistry, 42(15), 12766-12772. Rahimi, H., Hosseinzadeh, R., & Tajbakhsh, M. (2021). A new and efficient pyridine-2 6-dicarboxamide-based fluorescent and colorimetric chemosensor for sensitive and selective recognition of Pb2+ and Cu2+. Journal of Photochemistry and Photobiology A: Chemistry, 407, 113049. Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental monitoring and assessment, 191(7), 419. Ramírez, A. V. (2005, March). El cuadro clínico de la intoxicación ocupacional por plomo. In Anales de la Facultad de Medicina (Vol. 66, No. 1, pp. 57-70). UNMSM. Facultad de Medicina. Rani, B. K., & John, S. A. (2018). Fluorogenic mercury ion sensor based on pyrene-amino mercapto thiadiazole unit. Journal of hazardous materials, 343, 98-106. Ray, D., Nag, A., Jana, A., Goswami, D., & Bharadwaj, P. K. (2010). Coumarin derived chromophores in the donor–acceptor–donor format that gives fluorescence enhancement and large two-photon activity in presence of specific metal ions. Inorganica Chimica Acta, 363(12), 2824-2832. Roussakis, E., Pergantis, S. A., & Katerinopoulos, H. E. (2008). Coumarin-based ratiometric fluorescent indicators with high specificity for lead ions. Chemical communications, (46), 6221-6223. Rubio, C., Gutiérrez, A. J., Izquierdo, R. M., Revert, C., Lozano, G., & Hardisson, A. (2004). El plomo como contaminante alimentario. Revista de toxicología, 21(2-3), 72-80. Rui, Q. Q., Zhou, Y., Fang, Y., & Yao, C. (2016). Spirolactone and spirothiolactone rhodamine-pyrene probes for detection of Hg2+ with different sensing properties and its application in living cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 159, 209-218. S. Warrier and P. S. Kharkar, “Highly selective on-off fluorescence recognition of Fe3+based on a coumarin derivative and its application in live-cell imaging,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 188, pp. 659–665, 2018. Sahana, A., Banerjee, A., Lohar, S., Sarkar, B., Mukhopadhyay, S. K., & Das, D. (2013). Rhodamine-based fluorescent probe for Al3+ through time-dependent PET–CHEF–FRET processes and its cell staining application. Inorganic chemistry, 52(7), 3627-3633. Salmon, L., Thuéry, P., Rivière, E., & Ephritikhine, M. (2006). Synthesis, structure, and magnetic behavior of a series of trinuclear Schiff base complexes of 5f (UIV, ThIV) and 3d (CuII, ZnII) ions. Inorganic chemistry, 45(1), 83-93. Seiler, H. G., Sigel, H., & Sigel, A. (1988). Handbook on toxicity of inorganic compounds. Seoane-Rivero, R., Ruiz-Bilbao, E., Navarro, R., Laza, J. M., Cuevas, J. M., Artetxe, B., ... & Marcos-Fernandez, Á. (2020). Structural Characterization of Mono and Dihydroxylated Umbelliferone Derivatives. Molecules, 25(15), 3497. Shyamal, M., Mazumdar, P., Maity, S., Samanta, S., Sahoo, G. P., & Misra, A. (2016). Highly selective turn-on fluorogenic chemosensor for robust quantification of Zn (II) based on aggregation induced emission enhancement feature. ACS Sensors, 1(6), 739-747. Soria, M. L., y Repetto, M. (1995). Estado actual de la toxicolo-gía del mercurio.Toxicología Avanzada, Ma-drid. Suzuki, T., Imura, N., & Clarkson, T. W. (Eds.). (2013). Advances in mercury toxicology. Springer Science & Business Media. Tahmasebi, E., Masoomi, M. Y., Yamini, Y., & Morsali, A. (2015). Application of mechanosynthesized azine-decorated zinc (II) metal–organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study. Inorganic chemistry, 54(2), 425-433. Tang, J., Robichaux, M. A., Wu, K. L., Pei, J., Nguyen, N. T., Zhou, Y., ... & Xiao, H. (2019). Single-atom fluorescence switch: a general approach toward visible-light-activated dyes for biological imaging. Journal of the American Chemical Society, 141(37), 14699-14706. Tárraga, A. T. (2012). Sensores moleculares: Un reto para el químico, una demanda social. Murcia, España, Compobell S.L. Tasior, M., Kim, D., Singha, S., Krzeszewski, M., Ahn, K. H., & Gryko, D. T. (2015). π-Expanded coumarins: synthesis, optical properties and applications. Journal of Materials Chemistry C, 3(7), 1421-1446. Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., & Sutton, D. (2003). Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology: An International Journal, 18(3), 149-175. Velmurugan, K., Vickram, R., Jipsa, C. V., Karthick, R., Prabakaran, G., Suresh, S., ... & Nandhakumar, R. (2021). Quinoline based reversible fluorescent probe for Pb2+; applications in milk, bioimaging and INHIBIT molecular logic gate. Food Chemistry, 348, 129098. Vijayakumar, P., Dhineshkumar, E., Negar, S. N., & Renganathan, R. (2021). Novel schiff base synthesis of EN-(1-(1H-phenothiazin-2yl)-ethylidene)-3-((E)-(2-phenylhydrazono) methyl) aniline “Turn-on” fluorescent chemosensor for sensitivity and selectivity of detection of Cr3+ and Pb2+ ions. Materials Today: Proceedings. Vilar, S., Quezada, E., Santana, L., Uriarte, E., Yánez, M., Fraiz, N., ... & Orallo, F. (2006). Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin–resveratrol hybrids. Bioorganic & medicinal chemistry letters, 16(2), 257-261. Wang, D. F., Ke, Y. C., Guo, H. X., Chen, J., & Weng, W. (2014). A novel highly selective colorimetric sensor for aluminum (III) ion using Schiff base derivative. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122, 268-272. Wang, L., Li, W., Zhi, W., Huang, Y., Han, J., Wang, Y., ... & Ni, L. (2018). A new coumarin schiff based fluorescent-colorimetric chemosensor for dual monitoring of Zn2+ and Fe3+ in different solutions: An application to bio-imaging. Sensors and Actuators B: Chemical, 260, 243-254. Wang, L., Pan, Y. Q., Wang, J. F., Zhang, Y., & Ding, Y. J. (2020). A highly selective and sensitive half-salamo-based fluorescent chemosensor for sequential detection of Pb (II) ion and Cys. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112719. Wang, W., Wu, J., Liu, Q., Gao, Y., Liu, H., & Zhao, B. (2018). A highly selective coumarin-based chemosensor for the sequential detection of Fe3+ and pyrophosphate and its application in living cell imaging. Tetrahedron Letters, 59(19), 1860-1865. Warrier, S. B., & Kharkar, P. S. (2018). A coumarin based chemosensor for selective determination of Cu (II) ions based on fluorescence quenching. Journal of Luminescence, 199, 407-415. Warrier, S., & Kharkar, P. S. (2018). Highly selective on-off fluorescence recognition of Fe3+ based on a coumarin derivative and its application in live-cell imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 659-665. White, E. M., Vaughan, P. P., & Zepp, R. G. (2003). Role of the photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of colored dissolved organic matter in a coastal river of the southeastern United States. Aquatic Sciences, 65(4), 402-414. World Health Organization. (1990). IPCS Environmental Health Criteria 101: Methylmercury. International Programme of Chemical Safety. World Health Organization, Geneva, Switzerland. Xu, Y., Kong, L., Bai, L., Chen, A., Li, N., Cheng, L., ... & Li, G. (2021). A new water-soluble polymer fluorescent chemosensor with thiophene Schiff base site for selectively sensing Al3+ ions. Tetrahedron, 79, 131888. Xu, Y., Mao, S., Peng, H., Wang, F., Zhang, H., Aderinto, S. O., & Wu, H. (2017). A fluorescent sensor for selective recognition of Al3+ based on naphthalimide Schiff-base in aqueous media. Journal of Luminescence, 192, 56-63. Zhang, W., Feng, Y., Ma, L., An, J., Zhang, H., Cao, M., ... & Lian, K. (2019). A method for determining glyphosate and its metabolite aminomethyl phosphonic acid by gas chromatography-flame photometric detection. Journal of Chromatography A, 1589, 116-121. Zhang, Y., & Hu, W. (2017). Energy donor effect on the sensing performance for a series of FRET-based two-photon fluorescent Hg2+ probes. Materials, 10(2), 108. Zhang, Y., Cao, X., Zhen, L., & Wang, X. (2021). A mesoporous silica-based fluorescent chemosensor bearing bis-Schiff base for the sensitive detection of Cu2+ ions. Journal of Solid State Chemistry, 297, 122093. Zhong, C., Gao, J., Cui, Y., Li, T., & Han, L. (2015). Coumarin-bearing triarylamine sensitizers with high molar extinction coefficient for dye-sensitized solar cells. Journal of Power Sources, 273, 831-838. Zhou, Y., Chu, K., Zhen, H., Fang, Y., & Yao, C. (2013). Visualizing Hg2+ ions in living cells using a FRET-based fluorescent sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 106, 197-202. Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the total environment, 407(5), 1551-1556.EspecializadaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80057/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1117885446.pdf1117885446.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf3367212https://repositorio.unal.edu.co/bitstream/unal/80057/3/1117885446.pdfd164348a10ddc321e52815cb1a618122MD53THUMBNAIL1117885446.pdf.jpg1117885446.pdf.jpgGenerated Thumbnailimage/jpeg6260https://repositorio.unal.edu.co/bitstream/unal/80057/4/1117885446.pdf.jpg82980b3cfe9aaa0b3024428dbf1180d2MD54unal/80057oai:repositorio.unal.edu.co:unal/800572023-07-26 23:04:19.32Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==