Programa didáctico de análisis bidimensional estático no lineal mediante el método de los elementos finitos

ilustraciones

Autores:
Santamaría Reyes, Helbert Darío
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83111
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83111
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Guía a los lectores
Readers advising
Método de los elementos finitos
análisis no lineal
plasticidad de Von-Mises
código abierto
programa didáctico
finite element method
non-linear analysis
Von-Mises plasticity
open source
didactic program
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_3546a0320078315211eecb82e3e2990a
oai_identifier_str oai:repositorio.unal.edu.co:unal/83111
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Programa didáctico de análisis bidimensional estático no lineal mediante el método de los elementos finitos
dc.title.translated.eng.fl_str_mv Didactic program for nonlinear static two-dimensional analysis using the finite element method
title Programa didáctico de análisis bidimensional estático no lineal mediante el método de los elementos finitos
spellingShingle Programa didáctico de análisis bidimensional estático no lineal mediante el método de los elementos finitos
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Guía a los lectores
Readers advising
Método de los elementos finitos
análisis no lineal
plasticidad de Von-Mises
código abierto
programa didáctico
finite element method
non-linear analysis
Von-Mises plasticity
open source
didactic program
title_short Programa didáctico de análisis bidimensional estático no lineal mediante el método de los elementos finitos
title_full Programa didáctico de análisis bidimensional estático no lineal mediante el método de los elementos finitos
title_fullStr Programa didáctico de análisis bidimensional estático no lineal mediante el método de los elementos finitos
title_full_unstemmed Programa didáctico de análisis bidimensional estático no lineal mediante el método de los elementos finitos
title_sort Programa didáctico de análisis bidimensional estático no lineal mediante el método de los elementos finitos
dc.creator.fl_str_mv Santamaría Reyes, Helbert Darío
dc.contributor.advisor.none.fl_str_mv Linero Segrera, Dorian Luis
Estrada Mejía, Martín
dc.contributor.author.none.fl_str_mv Santamaría Reyes, Helbert Darío
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Guía a los lectores
Readers advising
Método de los elementos finitos
análisis no lineal
plasticidad de Von-Mises
código abierto
programa didáctico
finite element method
non-linear analysis
Von-Mises plasticity
open source
didactic program
dc.subject.lemb.spa.fl_str_mv Guía a los lectores
dc.subject.lemb.eng.fl_str_mv Readers advising
dc.subject.proposal.spa.fl_str_mv Método de los elementos finitos
análisis no lineal
plasticidad de Von-Mises
código abierto
programa didáctico
dc.subject.proposal.eng.fl_str_mv finite element method
non-linear analysis
Von-Mises plasticity
open source
didactic program
description ilustraciones
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-01-25T13:50:46Z
dc.date.available.none.fl_str_mv 2023-01-25T13:50:46Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83111
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83111
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abebe, M., Lee, K., & Kang, B. S. (2016). Surrogate-based multi-point forming process optimization for dimpling and wrinkling reduction. International Journal of Advanced Manufacturing Technology, 85.https://doi.org/10.1007/s00170-015-7897-1
Abreu, M. D., & Pertuz, A. (2014). Estimaci´on del ensayo de compresi´on con deformaci´on plana tipo ford utilizando el m´etodo de elementos finitos y utilizando curvas de comportamiento obtenidas en un ensayo de tracci´on. Revista de la Facultad de Ingenieria, 29.
ANSYS. (2013). ANSYS Mechanical APDL Theory Reference. ANSYS Inc, Release15.
Bazzano, J. B., & P´erez Zerpa, J. (2017). Introducci´on al an´alisis no lineal de estructuras. Udelar. FI.
Borja, R. I. (2013). J2 Plasticity.https://doi.org/10.1007/978-3-642-38547-6 3
Borst, R., Crisfield, M., Remmers, J., & Verhoosel, C. (2012). Non-Linear Finite Element Analysis of Solids and Structures: Second Edition.https : / / doi . org / 10 . 1002 / 9781118375938
Dahlblom, O., Peterson, A., & Petersson, H. (2004). CALFEM-A finite element toolbox. Version 3.4. Lund University.https://doi.org/10.1108/eb023653
D’Angelo, J., & West, D. (2000). Mathematical Thinking: Problem-solving and Proofs. Prentice Hall.https://books.google.com.co/books?id=fL6nQgAACAAJ
De Souza Neto, E. A., Peri´c, D., & Owen, D. R. (2008). Computational Methods for Plasticity: Theory and Applications.https://doi.org/10.1002/9780470694626
DIANA FEA BV. (2020). Diana User’s Manual, Release 10.4.https : / / dianafea . com / manuals/d104/Diana.html
Dumoulin, S., Engler, O., Hopperstad, O. S., & Lademo, O. G. (2012). Description of plastic anisotropy in AA6063-T6 using the crystal plasticity finite element method. Modelling and Simulation in Materials Science and Engineering, 20.https://doi. org/10.1088/0965-0393/20/5/055008
Fung, Y. C. (1965). Foundations of Solid Mechanics. Prentice-Hall.
Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities. International Journal for Numerical Methods in Engineering, 79, 1309-1331.https://doi.org/10.1002/nme.2579
Giner, J. (2008). Programaci´on estructurada en c. Pearson Educaci´on.https : / / books . google.com.co/books?id=F54cQwAACAAJ
Griffiths, D., & Higham, D. (2010). Numerical Methods for Ordinary Differential Equations: Initial Value Problems. Springer-Verlag.https://doi.org/10.1007/978-0-85729-1486
Guo, W. G., Zhang, X. Q., Su, J., Su, Y., Zeng, Z. Y., & Shao, X. J. (2011). The characteristics of plastic flow and a physically-based model for 3003 Al-Mn alloy upon a wide range of strain rates and temperatures. European Journal of Mechanics, A/Solids, 30.https://doi.org/10.1016/j.euromechsol.2010.09.001
Jia, J. (2018). Dynamic and Cyclic Properties of Soils.https://doi.org/10.1007/978-3319-40358-8 2
Jirasek, M., & Bazant, Z. P. (2001). Inelastic analysis of structures. John Wiley & Sons.
Kohar, C. P., Zhumagulov, A., Brahme, A., Worswick, M. J., Mishra, R. K., & Inal, K. (2016). Development of high crush efficient, extrudable aluminium front rails for vehicle lightweighting. International Journal of Impact Engineering, 95.https:// doi.org/10.1016/j.ijimpeng.2016.04.004
Lubliner, J. (2008). Plasticity Theory. University of California at Berkeley.
Luenberger, D. G., & Ye, Y. (2015). Linear and Nonlinear Programming. Springer Publishing Company, Incorporated.
MathWorks, T. (2020). MATLAB (R2020b). The MathWorks Inc.
Mises, R. v. (1913). Mechanik der festen K¨orper im plastisch- deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu G¨ottingen, MathematischPhysikalische Klasse, 1913, 582-592.http://eudml.org/doc/58894
Patzák, B., & Bittnar, Z. (2009). OOFEM: An Object Oriented Framework for Finite Element Analysis. Proceedings of the Fourth International Conference on Engineering Computational Technology.https://doi.org/10.4203/ccp.80.54
Peter, R., Mika, M., Juha, R., Antti, P., & Thomas, Z. (2016). Elmer Models Manual. Elmer Models Manual.
Prager, W. (1956). A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids. Journal of Applied Mechanics, 23, 493-496. - References - Scientific Research Publishing. Journal of Applied Mechanics, 23.
S., G. W., Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., & van der Vorst, H. (1995). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Mathematics of Computation, 64.https://doi.org/10.2307/2153507
S. Eaton, D. H., J. Batema. (2011). GNU Octave. Distribution. Simo, J., & Hughes, T. (1998). Computational Inelasticity. Springer.https://books.google. com.co/books?id=MNN3PwAACAAJ
Simulia. (2017). Abaqus 6.11 Theory Manual. Providence, RI, USA: DS SIMULIA Corp.
Smith, M. (2009). ABAQUS/Standard User’s Manual, Version 6.9. Dassault Syst`emes Simulia Corp.
Taylor, R. L. (2020). FEAP-A Finite Element Analysis Program - Theory Manual.
WelSimulation LLC. (2018). WELSIM Version 1.8 User Manual.
Willam, K. J. (2003). Constitutive Models for Engineering Materials.https://doi.org/10. 1016/b0-12-227410-5/00135-6
Z´arate, F. (2012). MAT-Fem. Learning the Finite Element Method with Matlab and GID [[Online; accessed 30-October-2022]].http://www.cimne.com/mat-fem/default.asp
Ziegler, H. (1959). A MODIFICATION OF PRAGER’S HARDENING RULE. Quarterly of Applied Mathematics, 17 (1), 55-65. Consultado el 9 de julio de 2022, desdehttp: //www.jstor.org/stable/43634629
Zienkiewicz, O. (1981). El m´etodo de los elementos finitos.https://books.google.com.co/ books?id=D-m0OmYSoIMC
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 227 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá - Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83111/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83111/4/1026586688.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83111/5/1026586688.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
cc77f97def07999798e84a020331c968
524d66aab20a16bd4cc3853c531b4469
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089262524530688
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Linero Segrera, Dorian Luis40b197f66d511582c15e27a27020afecEstrada Mejía, Martíndffc2a200585569b14d87891bb1c66c9Santamaría Reyes, Helbert Darío3657c19ec637ecc33c6dbca39bef44532023-01-25T13:50:46Z2023-01-25T13:50:46Z2023https://repositorio.unal.edu.co/handle/unal/83111Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEn este trabajo se desarrolla el programa de elementos finitos PEFiCA 2.3, contenido en el marco del proyecto PEFICA, de la Universidad Nacional de Colombia. El desarrollo es de código abierto y sirve para solucionar problemas no lineales estáticos bidimensionales con esquemas incrementales de acciones externas, considerando modelos constitutivos de plasticidad J2 de Von-Mises, en condiciones planas de esfuerzo y deformación. El código puede ejecutar análisis controlados por la evolución de desplazamientos o cargas y está escrito en lenguaje propio de las plataformas de cómputo numérico Matlab y Octave, es de tipo estructurado y se encuentra asociado a la herramienta gráfica GMSH para las etapas de pre y post-proceso. El programa PEFiCA 2.3 hace uso de rutinas previamente incluidas dentro del proyecto PEFICA, más específicamente, en su módulo PEFBID, que realiza análisis de problemas bidimensionales ante cargas estáticas y considerando materiales lineales elásticos. El producto de esta tesis se acompaña de un manual de usuario, ya que su objetivo es ser una herramienta didáctica, de construcción colaborativa y orientada al aprendizaje. (Texto tomado de la fuenteIn this thesis project, PEFiCA 2.3, finite element program is developed, which is open source and is used to solve problems of two-dimensional static nonlinear models with incremental schemes of external actions, considering J2 Von-Mises plasticity constitutive models in plane stress and strain conditions. The code can execute analysis controlled by the evolution of displacements or loads and is written in the language from Matlab and Octave numerical computation platforms. The program is structured type and is associated with the graphical tool GMSH for the pre- and post-processing stages. PEFiCA 2.3 makes use of routines previously included in PEFiCA 2.0, developed at the National University of Colombia and, more specifically, in its PEFBID module, which analyzes two-dimensional problems under static loads and considering perfectly elastic materials. The product of this thesis is accompanied by a user manual, since it is contained in the general project of PEFiCA, whose objective is to be a didactic tool, for constructive collaboration and learning-oriented.MaestríaMagíster en Ingeniería - Estructurasxxii, 227 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - EstructurasFacultad de IngenieríaBogotá - ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilGuía a los lectoresReaders advisingMétodo de los elementos finitosanálisis no linealplasticidad de Von-Misescódigo abiertoprograma didácticofinite element methodnon-linear analysisVon-Mises plasticityopen sourcedidactic programPrograma didáctico de análisis bidimensional estático no lineal mediante el método de los elementos finitosDidactic program for nonlinear static two-dimensional analysis using the finite element methodTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbebe, M., Lee, K., & Kang, B. S. (2016). Surrogate-based multi-point forming process optimization for dimpling and wrinkling reduction. International Journal of Advanced Manufacturing Technology, 85.https://doi.org/10.1007/s00170-015-7897-1Abreu, M. D., & Pertuz, A. (2014). Estimaci´on del ensayo de compresi´on con deformaci´on plana tipo ford utilizando el m´etodo de elementos finitos y utilizando curvas de comportamiento obtenidas en un ensayo de tracci´on. Revista de la Facultad de Ingenieria, 29.ANSYS. (2013). ANSYS Mechanical APDL Theory Reference. ANSYS Inc, Release15.Bazzano, J. B., & P´erez Zerpa, J. (2017). Introducci´on al an´alisis no lineal de estructuras. Udelar. FI.Borja, R. I. (2013). J2 Plasticity.https://doi.org/10.1007/978-3-642-38547-6 3Borst, R., Crisfield, M., Remmers, J., & Verhoosel, C. (2012). Non-Linear Finite Element Analysis of Solids and Structures: Second Edition.https : / / doi . org / 10 . 1002 / 9781118375938Dahlblom, O., Peterson, A., & Petersson, H. (2004). CALFEM-A finite element toolbox. Version 3.4. Lund University.https://doi.org/10.1108/eb023653D’Angelo, J., & West, D. (2000). Mathematical Thinking: Problem-solving and Proofs. Prentice Hall.https://books.google.com.co/books?id=fL6nQgAACAAJDe Souza Neto, E. A., Peri´c, D., & Owen, D. R. (2008). Computational Methods for Plasticity: Theory and Applications.https://doi.org/10.1002/9780470694626DIANA FEA BV. (2020). Diana User’s Manual, Release 10.4.https : / / dianafea . com / manuals/d104/Diana.htmlDumoulin, S., Engler, O., Hopperstad, O. S., & Lademo, O. G. (2012). Description of plastic anisotropy in AA6063-T6 using the crystal plasticity finite element method. Modelling and Simulation in Materials Science and Engineering, 20.https://doi. org/10.1088/0965-0393/20/5/055008Fung, Y. C. (1965). Foundations of Solid Mechanics. Prentice-Hall.Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities. International Journal for Numerical Methods in Engineering, 79, 1309-1331.https://doi.org/10.1002/nme.2579Giner, J. (2008). Programaci´on estructurada en c. Pearson Educaci´on.https : / / books . google.com.co/books?id=F54cQwAACAAJGriffiths, D., & Higham, D. (2010). Numerical Methods for Ordinary Differential Equations: Initial Value Problems. Springer-Verlag.https://doi.org/10.1007/978-0-85729-1486Guo, W. G., Zhang, X. Q., Su, J., Su, Y., Zeng, Z. Y., & Shao, X. J. (2011). The characteristics of plastic flow and a physically-based model for 3003 Al-Mn alloy upon a wide range of strain rates and temperatures. European Journal of Mechanics, A/Solids, 30.https://doi.org/10.1016/j.euromechsol.2010.09.001Jia, J. (2018). Dynamic and Cyclic Properties of Soils.https://doi.org/10.1007/978-3319-40358-8 2Jirasek, M., & Bazant, Z. P. (2001). Inelastic analysis of structures. John Wiley & Sons.Kohar, C. P., Zhumagulov, A., Brahme, A., Worswick, M. J., Mishra, R. K., & Inal, K. (2016). Development of high crush efficient, extrudable aluminium front rails for vehicle lightweighting. International Journal of Impact Engineering, 95.https:// doi.org/10.1016/j.ijimpeng.2016.04.004Lubliner, J. (2008). Plasticity Theory. University of California at Berkeley.Luenberger, D. G., & Ye, Y. (2015). Linear and Nonlinear Programming. Springer Publishing Company, Incorporated.MathWorks, T. (2020). MATLAB (R2020b). The MathWorks Inc.Mises, R. v. (1913). Mechanik der festen K¨orper im plastisch- deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu G¨ottingen, MathematischPhysikalische Klasse, 1913, 582-592.http://eudml.org/doc/58894Patzák, B., & Bittnar, Z. (2009). OOFEM: An Object Oriented Framework for Finite Element Analysis. Proceedings of the Fourth International Conference on Engineering Computational Technology.https://doi.org/10.4203/ccp.80.54Peter, R., Mika, M., Juha, R., Antti, P., & Thomas, Z. (2016). Elmer Models Manual. Elmer Models Manual.Prager, W. (1956). A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids. Journal of Applied Mechanics, 23, 493-496. - References - Scientific Research Publishing. Journal of Applied Mechanics, 23.S., G. W., Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., & van der Vorst, H. (1995). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Mathematics of Computation, 64.https://doi.org/10.2307/2153507S. Eaton, D. H., J. Batema. (2011). GNU Octave. Distribution. Simo, J., & Hughes, T. (1998). Computational Inelasticity. Springer.https://books.google. com.co/books?id=MNN3PwAACAAJSimulia. (2017). Abaqus 6.11 Theory Manual. Providence, RI, USA: DS SIMULIA Corp.Smith, M. (2009). ABAQUS/Standard User’s Manual, Version 6.9. Dassault Syst`emes Simulia Corp.Taylor, R. L. (2020). FEAP-A Finite Element Analysis Program - Theory Manual.WelSimulation LLC. (2018). WELSIM Version 1.8 User Manual.Willam, K. J. (2003). Constitutive Models for Engineering Materials.https://doi.org/10. 1016/b0-12-227410-5/00135-6Z´arate, F. (2012). MAT-Fem. Learning the Finite Element Method with Matlab and GID [[Online; accessed 30-October-2022]].http://www.cimne.com/mat-fem/default.aspZiegler, H. (1959). A MODIFICATION OF PRAGER’S HARDENING RULE. Quarterly of Applied Mathematics, 17 (1), 55-65. Consultado el 9 de julio de 2022, desdehttp: //www.jstor.org/stable/43634629Zienkiewicz, O. (1981). El m´etodo de los elementos finitos.https://books.google.com.co/ books?id=D-m0OmYSoIMCEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83111/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1026586688.2022.pdf1026586688.2022.pdfTesis de Maestría en Ingeniería - Estructurasapplication/pdf29550647https://repositorio.unal.edu.co/bitstream/unal/83111/4/1026586688.2022.pdfcc77f97def07999798e84a020331c968MD54THUMBNAIL1026586688.2022.pdf.jpg1026586688.2022.pdf.jpgGenerated Thumbnailimage/jpeg4026https://repositorio.unal.edu.co/bitstream/unal/83111/5/1026586688.2022.pdf.jpg524d66aab20a16bd4cc3853c531b4469MD55unal/83111oai:repositorio.unal.edu.co:unal/831112024-08-15 23:15:14.131Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=