Una investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financieras
Contexto: La combinación de pronósticos es un importante método que se usa cuando están disponibles los pronósticos de varios modelos alternativos, con el objetivo de mejorar la precisión del pronóstico. El ensamble mediante el promedio es un método de inteligencia computacional bien conocido para a...
- Autores:
-
Rodríguez Muñoz, Luisa Fernanda
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/9636
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
s/Assembly methods
Computational intelligence
Time series economic and financial
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_34d526be1911e33fd08921cededcbb91 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/9636 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Una investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financieras |
title |
Una investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financieras |
spellingShingle |
Una investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financieras 0 Generalidades / Computer science, information and general works s/Assembly methods Computational intelligence Time series economic and financial |
title_short |
Una investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financieras |
title_full |
Una investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financieras |
title_fullStr |
Una investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financieras |
title_full_unstemmed |
Una investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financieras |
title_sort |
Una investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financieras |
dc.creator.fl_str_mv |
Rodríguez Muñoz, Luisa Fernanda |
dc.contributor.advisor.spa.fl_str_mv |
Velásquez Henao, Juan David (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Rodríguez Muñoz, Luisa Fernanda |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works |
topic |
0 Generalidades / Computer science, information and general works s/Assembly methods Computational intelligence Time series economic and financial |
dc.subject.proposal.spa.fl_str_mv |
s/Assembly methods Computational intelligence Time series economic and financial |
description |
Contexto: La combinación de pronósticos es un importante método que se usa cuando están disponibles los pronósticos de varios modelos alternativos, con el objetivo de mejorar la precisión del pronóstico. El ensamble mediante el promedio es un método de inteligencia computacional bien conocido para agregar los pronósticos de varios expertos. Ambas metodologías comparten principios y técnicas similares en un grado importante; sin embargo, no hay estudios orientados a determinar el estado actual de las investigaciones y las prácticas en dicha área común. Objetivo: Este trabajo pretende establecer el estado actual de las investigaciones sobre las metodologías de combinación de pronósticos cuando, al menos, uno de los expertos o modelos de pronóstico o cuando el método de combinación, son herramientas de inteligencia artificial como redes neuronales artificiales, sistemas difusos o neuro-difusos. Método: Se realizó el mapeo sistemático de 70 estudios usando ocho preguntas de investigación (los artículos seleccionados en el mapeo sistemática, se pueden encontrar comentados en el Apéndice A). Resultados: La mayoría de los trabajos están orientados a proponer nuevas metodologías para desarrollar ensambles o combinación de pronósticos, y la diversificación es usualmente alcanzada variando un aspecto en los datos o en los expertos; sin embargo, hay preguntas muy importantes que no han sido contestadas: ¿Cuál método es mejor?, ¿Para cuáles casos?, ¿Cómo se deben seleccionar los expertos? Conclusión: Conclusión: Es necesario realizar estudios posteriores para responder las preguntas anteriores y para ganar una mejor comprensión de estas metodologías./Abstract. Context: Forecast combination is an important and well-known method used when the forecasts of different alterative models are available, with the aim of improving the forecast accuracy. Ensemble–averaging is a well-known computational intelligence method for aggregate the forecasts of several experts. Both methodologies share similar principles and techniques in an important degree; however, there are not studies focused on determinate the current state of the research and practice in the common area. Objective: This work is focused on determining the state–of–the–art about the methodologies of forecast combination when, at least, one of the experts or forecasting models or when the combiner are computational intelligence tools as artificial neural networks, fuzzy or neuro-fuzzy systems. Method: We realize a systematic mapping of 70 studies using eight research questions. Results: Most of the work is devoted to propose new methodologies for developing ensembles or combining forecasts and diversification is usually achieved by varying one aspect in the data or in the experts; however, important questions are not answered: which method is better? For which cases? How the experts must be selected?. Conclusion: It is necessary to conduct studies for solving the previous questions and for gaining a better comprehension of these methodologies. |
publishDate |
2012 |
dc.date.issued.spa.fl_str_mv |
2012 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-24T21:03:29Z |
dc.date.available.spa.fl_str_mv |
2019-06-24T21:03:29Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/9636 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/6578/ |
url |
https://repositorio.unal.edu.co/handle/unal/9636 http://bdigital.unal.edu.co/6578/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Sistemas Escuela de Sistemas |
dc.relation.references.spa.fl_str_mv |
Rodríguez Muñoz, Luisa Fernanda (2012) Una investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financieras. Maestría thesis, Universidad Nacional de Colombia, Sede Medellín. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/9636/1/43925897.2012.pdf https://repositorio.unal.edu.co/bitstream/unal/9636/2/43925897.2012.pdf.jpg |
bitstream.checksum.fl_str_mv |
a50e9f0d950769a47b56415020881859 39e79257c10776dbda91b60f45c15fe0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089780726595584 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velásquez Henao, Juan David (Thesis advisor)97c5eef3-0c5a-431e-af52-19251f9e98e1-1Rodríguez Muñoz, Luisa Fernanda132a3f23-ad32-4448-ba22-da50e5ad9cdc3002019-06-24T21:03:29Z2019-06-24T21:03:29Z2012https://repositorio.unal.edu.co/handle/unal/9636http://bdigital.unal.edu.co/6578/Contexto: La combinación de pronósticos es un importante método que se usa cuando están disponibles los pronósticos de varios modelos alternativos, con el objetivo de mejorar la precisión del pronóstico. El ensamble mediante el promedio es un método de inteligencia computacional bien conocido para agregar los pronósticos de varios expertos. Ambas metodologías comparten principios y técnicas similares en un grado importante; sin embargo, no hay estudios orientados a determinar el estado actual de las investigaciones y las prácticas en dicha área común. Objetivo: Este trabajo pretende establecer el estado actual de las investigaciones sobre las metodologías de combinación de pronósticos cuando, al menos, uno de los expertos o modelos de pronóstico o cuando el método de combinación, son herramientas de inteligencia artificial como redes neuronales artificiales, sistemas difusos o neuro-difusos. Método: Se realizó el mapeo sistemático de 70 estudios usando ocho preguntas de investigación (los artículos seleccionados en el mapeo sistemática, se pueden encontrar comentados en el Apéndice A). Resultados: La mayoría de los trabajos están orientados a proponer nuevas metodologías para desarrollar ensambles o combinación de pronósticos, y la diversificación es usualmente alcanzada variando un aspecto en los datos o en los expertos; sin embargo, hay preguntas muy importantes que no han sido contestadas: ¿Cuál método es mejor?, ¿Para cuáles casos?, ¿Cómo se deben seleccionar los expertos? Conclusión: Conclusión: Es necesario realizar estudios posteriores para responder las preguntas anteriores y para ganar una mejor comprensión de estas metodologías./Abstract. Context: Forecast combination is an important and well-known method used when the forecasts of different alterative models are available, with the aim of improving the forecast accuracy. Ensemble–averaging is a well-known computational intelligence method for aggregate the forecasts of several experts. Both methodologies share similar principles and techniques in an important degree; however, there are not studies focused on determinate the current state of the research and practice in the common area. Objective: This work is focused on determining the state–of–the–art about the methodologies of forecast combination when, at least, one of the experts or forecasting models or when the combiner are computational intelligence tools as artificial neural networks, fuzzy or neuro-fuzzy systems. Method: We realize a systematic mapping of 70 studies using eight research questions. Results: Most of the work is devoted to propose new methodologies for developing ensembles or combining forecasts and diversification is usually achieved by varying one aspect in the data or in the experts; however, important questions are not answered: which method is better? For which cases? How the experts must be selected?. Conclusion: It is necessary to conduct studies for solving the previous questions and for gaining a better comprehension of these methodologies.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de SistemasEscuela de SistemasRodríguez Muñoz, Luisa Fernanda (2012) Una investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financieras. Maestría thesis, Universidad Nacional de Colombia, Sede Medellín.0 Generalidades / Computer science, information and general workss/Assembly methodsComputational intelligenceTime series economic and financialUna investigación científica acerca del progreso de métodos de ensamble basados en inteligencia computacional para predicción de series de tiempo económicas y financierasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL43925897.2012.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemasapplication/pdf862389https://repositorio.unal.edu.co/bitstream/unal/9636/1/43925897.2012.pdfa50e9f0d950769a47b56415020881859MD51THUMBNAIL43925897.2012.pdf.jpg43925897.2012.pdf.jpgGenerated Thumbnailimage/jpeg5148https://repositorio.unal.edu.co/bitstream/unal/9636/2/43925897.2012.pdf.jpg39e79257c10776dbda91b60f45c15fe0MD52unal/9636oai:repositorio.unal.edu.co:unal/96362023-09-14 10:43:01.478Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |