Síntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónica
ilustraciones, gráficas, fotografías
- Autores:
-
González Rojas, William Iván
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80284
- Palabra clave:
- 530 - Física
Espintrónica
Difractograma
Difracción de rayos X
Pulverización catódica por magnetrón
Spintronics
X-ray diffraction
Diffractogram
Magnetron sputtering
Rayos X
Electromagnetismo
Ciencias físicas
X-rays
Electromagnetism
Physical sciences
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_34bf5f9deed31b3d4cad82f464e50b2f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80284 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Síntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónica |
dc.title.translated.eng.fl_str_mv |
Synthesis and study of the structural and morphological properties of GaSb/Mn multilayers for applications in spintronics |
title |
Síntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónica |
spellingShingle |
Síntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónica 530 - Física Espintrónica Difractograma Difracción de rayos X Pulverización catódica por magnetrón Spintronics X-ray diffraction Diffractogram Magnetron sputtering Rayos X Electromagnetismo Ciencias físicas X-rays Electromagnetism Physical sciences |
title_short |
Síntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónica |
title_full |
Síntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónica |
title_fullStr |
Síntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónica |
title_full_unstemmed |
Síntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónica |
title_sort |
Síntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónica |
dc.creator.fl_str_mv |
González Rojas, William Iván |
dc.contributor.advisor.none.fl_str_mv |
Dussan Cuenca, Anderson |
dc.contributor.author.none.fl_str_mv |
González Rojas, William Iván |
dc.contributor.researchgroup.spa.fl_str_mv |
Materiales Nanoestructurados y sus Aplicaciones |
dc.subject.ddc.spa.fl_str_mv |
530 - Física |
topic |
530 - Física Espintrónica Difractograma Difracción de rayos X Pulverización catódica por magnetrón Spintronics X-ray diffraction Diffractogram Magnetron sputtering Rayos X Electromagnetismo Ciencias físicas X-rays Electromagnetism Physical sciences |
dc.subject.proposal.spa.fl_str_mv |
Espintrónica Difractograma Difracción de rayos X Pulverización catódica por magnetrón |
dc.subject.proposal.eng.fl_str_mv |
Spintronics X-ray diffraction Diffractogram Magnetron sputtering |
dc.subject.unesco.spa.fl_str_mv |
Rayos X Electromagnetismo Ciencias físicas |
dc.subject.unesco.eng.fl_str_mv |
X-rays Electromagnetism Physical sciences |
description |
ilustraciones, gráficas, fotografías |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-23T21:54:45Z |
dc.date.available.none.fl_str_mv |
2021-09-23T21:54:45Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80284 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80284 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] A. Dussán, H. Quiroz, and J. Calderon, Nanomateriales que revolucionan la tecnología Perspectivas y aplicaciones en espintrónica, UN Ciencia. 2020. [2] D. S. L. Mui, Z. Wang, and H. Morkoç, “A review of III-V semiconductor based metal-insulator-semiconductor structures and devices,” Thin Solid Films, vol. 231, no. 1–2, pp. 107–124, 1993, doi: 10.1016/0040-6090(93)90707-V. [3] E. Monteblanco, C. Ortiz Pauyac, W. Savero, J. C. RojasSanchez, and A. Schuhl, “Espintrónica, La Electronica Del Espín Spintronics, Spin Electronics,” Rev. Cient. Tec., vol. 23, no. 1, p. 5, 2017, doi: 10.21754/tecnia.v23i1.62. [4] S. Ornes, “Giant magnetoresistance,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 10, p. 3710, 2013, doi: 10.1073/pnas.1302494110. [5] C. Heiliger, M. Gradhand, P. Zahn, and I. Mertig, “Tunneling magnetoresistance on the subnanometer scale,” Phys. Rev. Lett., vol. 99, no. 6, pp. 1–4, 2007, doi: 10.1103/PhysRevLett.99.066804. [6] M. Eginligil, G. Kim, Y. Yoon, J. P. Bird, H. Luo, and B. D. McCombe, “Manipulation of an unusual anomalous Hall effect in Ga1-xMnxSb random alloys,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 40, no. 6, pp. 2104–2106, 2008, doi: 10.1016/j.physe.2007.09.158. [7] J. A. Calderón Cómbita, “Estudio de las propiedades Ópticas y eléctricas del compuesto Ga1-xMnxSb usado para aplicaciones en espintrónica,” p. 134, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/55516/. [8] S. A. Khandy and D. C. Gupta, “Intrinsic magnetism and thermoelectric applicability of novel halide perovskites Cs2GeMnX6 (X = Cl, Br): Route towards spintronics and energy harvesting technologies,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 265. 2021, doi: 10.1016/j.mseb.2020.114985. [9] A. Eljarrat, S. Estradé, and F. Peiró, “Er-doped Si-nc/SiO 2 multilayer,” Adv. Imaging Electron Phys., vol. 209, pp. 159–173, 2019, doi: 10.1016/bs.aiep.2018.10.004. [10] I. Alkorta and A. C. Legon, “Non-covalent interactions involving alkaline-earth atoms and lewis bases B: An ab initio investigation of beryllium and magnesium bonds, B...MR2(M = Be or Mg, and R = H, F or CH3),” Inorganics, vol. 7, no. 3, 2019, doi: 10.3390/INORGANICS7030035. [11] M. De La Mata et al., “The Role of Polarity in Nonplanar Semiconductor Nanostructures,” Nano Lett., vol. 19, no. 6, pp. 3396–3408, 2019, doi: 10.1021/acs.nanolett.9b00459. [12] C. Holtmann and S. Klaka, “Generaciones de semiconductores,” Rev. ABB, vol. 3, no. 1013–3135, pp. 84–90, 2014, [Online]. Available: https://library.e.abb.com/public/aee130e9abe4b42883257daf00478a45/84-90 3m460_ES_72dpi.pdf. [13] J. Bak-Misiuk et al., “Structural properties of (Ga,Mn)Sb thin films on GaAs(111)A substrate,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 6, no. 12, pp. 2792–2794, 2009, doi: 10.1002/pssc.200982568. [14] R. Han, M. Qi, S. Dong, Z. Mao, X. Lin, and P. Wu, “Electronic and magnetic properties of X-doped (X=V, Cr, Mn, and Fe) tellurene for the 2D spintronic device: Insights from the first-principles calculations,” Phys. E Low-dimensional Syst. Nanostructures, vol. 129, no. February, p. 114667, 2021, doi: 10.1016/j.physe.2021.114667. [15] F. D. E. C. Físicas and A. H. Grande, Director : Sistemas Magnéticos Artificiales obtenidos mediante Pulverización Catódica : Películas Delgadas Amorfas de TbFe y Multicapas de Ni / Co memoria presentada par. 2002. [16] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, pp. 1113–1118, 2017, doi: 10.1016/j.apsusc.2016.11.096. [17] J. Fernando and J. Morales, “Experimental study of multilayers magnetic behavior Cr/Gd/Cr non-homogeneous,” Universidad Nacional de Colombia, 2014. [18] D. Pacifici, A. Irrera, G. Franzò, M. Miritello, F. Iacona, and F. Priolo, “Erbium-doped Si nanocrystals: Optical properties and electroluminescent devices,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 16, no. 3–4, pp. 331–340, 2003, doi: 10.1016/S1386-9477(02)00615-X. [19] Z. X. Song, J. A. Wang, Y. H. Li, F. Ma, K. W. Xu, and S. W. Guo, “The self-formation graded diffusion barrier of Zr/ZrN,” Microelectron. Eng., vol. 87, no. 3, pp. 391–393, 2010, doi: 10.1016/j.mee.2009.07.028. [20] M. Lindorf, H. Rohrmann, G. Span, and M. Albrecht, “Effect of Percolation on Structural and Electrical Properties of MIC Processed SiGe/Al Multilayers,” J. Electron. Mater., vol. 45, no. 3, pp. 1730–1733, 2016, doi: 10.1007/s11664-015-4190-x. [21] P. Grunberg, R. Schreiber, Y. Pang~’ Kernforschungsanlage, M. B. Brodsky, and H. Sowers, “PHYSICAL REVIEW LETTERS Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers,” 1986. [22] A. Fert and F. N. Van Dau, “Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators,” Comptes Rendus Phys., vol. 20, no. 7–8, pp. 817–831, 2019, doi: 10.1016/j.crhy.2019.05.020. [23] X. Cai, J. Yang, P. Zhang, and S. H. Wei, “Origin of Deep Be Acceptor Levels in Nitride Semiconductors: The Roles of Chemical and Strain Effects,” Phys. Rev. Appl., vol. 11, no. 3, p. 1, 2019, doi: 10.1103/PhysRevApplied.11.034019. [24] M. K. Lui and C. C. Ling, “Liquid encapsulated Czochralski grown undoped p-type gallium antimonide studied by temperature-dependent Hall measurement,” Semicond. Sci. Technol., vol. 20, no. 12, pp. 1157–1161, 2005, doi: 10.1088/0268-1242/20/12/002. [25] B. Martinez et al., “Standardizing large format 5" GaSb and InSb substrate production,” Infrared Technol. Appl. XLIII, vol. 10177, no. c, p. 101772L, 2017, doi: 10.1117/12.2263961. [26] Y. Wang, S. Hu, Y. Lv, and N. Dai, “Surface morphology of LPE-growth GaSb quantum dots,” Sel. Pap. from Conf. Photoelectron. Technol. Comm. Chinese Soc. Astronaut. 2014, Part II, vol. 9522, p. 95222X, 2015, doi: 10.1117/12.2182638. [27] S. Niu et al., “Brief Review of Epitaxy and Emission Properties of GaSb and Related Semiconductors,” Crystals, vol. 7, no. 11, p. 337, 2017, doi: 10.3390/cryst7110337. [28] P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys., vol. 81, no. 9, pp. 5821–5870, 1997, doi: 10.1063/1.365356. [29] E. Casta, “Estudio teórico de las propiedades estructurales , electrónicas y magnéticas del compuesto semiconductor GaSb dopado con,” 2017. [30] A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys., vol. 105, no. 9, 2009, doi: 10.1063/1.3099572. [31] J. O. Kim, T. D. Nguyen, Z. Ku, A. Urbas, S.-W. Kang, and S. J. Lee, “Short wavelength infrared photodetector and light emitting diode based on InGaAsSb,” Infrared Technol. Appl. XLIII, vol. 10177, p. 101772M, 2017, doi: 10.1117/12.2264969. [32] F. Karouta, A. Marbeuf, A. Joullié, and J. H. Fan, “Low temperature phase diagram of the Ga1-xInxAsySb1-y system,” J. Cryst. Growth, vol. 79, no. 1–3, pp. 445–450, 1986, doi: 10.1016/0022-0248(86)90475-6. [33] S. Franchi, Molecular beam epitaxy: fundamentals, historical background and future prospects. Elsevier Inc., 2013. [34] S. Basu and T. Adhikari, “Variation of band gap with Mn concentration in Ga1-xMnxSb - A new III-V diluted magnetic semiconductor,” Solid State Commun., vol. 95, no. 1, pp. 53–55, 1995, doi: 10.1016/0038-1098(95)00160-3. [35] C. Subramanian and K. N. Strafford, “Review of multicomponent and multilayer coatings for tribological applications,” Wear, vol. 165, no. 1, pp. 85–95, 1993, doi: 10.1016/0043-1648(93)90376-W. [36] D. M. Marulanda Cardona, “Multicapas nanoestructuradas de Cr/CrNx como barrera de difusión entre Cu y Si,” vol. 3, no. d, p. 235, 2011, [Online]. Available: http://www.bdigital.unal.edu.co/4805/. [37] E. Nieto, P. Durán, C. Moure, and J. Fernández, “Películas delgadas: fabricación y aplicaciones.,” Boletín la Soc. Española Cerámica y Vidr., vol. 33, no. 5, pp. 245–258, 1994. [38] M. C. Martos, “Premios Nóbel 2000 : Kilby , Alferov y Kroemer ( Física ), Heeger , Mcdiarmid , Shirakawa ( Química ),” LLULL, pp. 754–759, 2000. [39] L. Karmakar and D. Das, “Prominent c-axis oriented Si-doped ZnO thin film prepared at low substrate temperature in RF magnetron sputtering and its UV sensing in p-Si/n-SZO heterojunction structures,” J. Phys. Chem. Solids, vol. 151, no. March 2020, p. 109907, 2021, doi: 10.1016/j.jpcs.2020.109907. [40] M. Henini, “Molecular beam epitaxy,” Mol. Beam Ep., 2013, doi: 10.1016/C2010-0-68986-3. [41] K. College and L. England, “Molecular beam epitaxy,” p. 157, 1986. [42] P. Vogt et al., “Adsorption-controlled growth of Ga2O3by suboxide molecular-beam epitaxy,” APL Mater., vol. 9, no. 3, 2021, doi: 10.1063/5.0035469. [43] J. E. Greene, “Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 35, no. 5, p. 05C204, 2017, doi: 10.1116/1.4998940. [44] E. Gerstner, “Answers on a postcard,” Nat. Phys., vol. 4, no. S1, pp. S6–S6, 2008, doi: 10.1038/nphys857. [45] J. E. Brittain, “The magnetron and the beginnings of the microwave age,” Phys. Today, vol. 38, no. 7, pp. 60–67, 1985, doi: 10.1063/1.880982. [46] T. B. Coatings and E. Components, “on Gas Flow Sputtered 61ST SVC TECHNICAL CONFERENCE The Tailoring of Interfaces,” 2018. [47] D. M. Mattox and M. Plus, “History Corner A Short History : Magnetron Sputter Deposition,” 2015. [48] C. E. Prados, Sistemas Magnéticos Artificiales obtenidos mediante Pulverización Catódica: películas Delgadas Amorfas de TbFe y Multicapas de Ni/Co. 1995. [49] T. G. Source, “diagram-dc-magnatron,” Magnetron Sputtering, 2019. http://www.semicore.com/news/94-what-is-dc-sputtering. [50] “diagram-sputtering-process,” Magnetron Sputtering, 2019. https://www.google.com/search?q=plasma+sputtering&source=lnms&tbm=isch&sa=X&ved=0ahUKEwj059Gcj67jAhWC1lkKHV47CPwQ_AUIECgB&biw=1600&bih=789#imgrc=cRiyWOFw5V3GbM: [51] Semicore, “The Global Source,” 2020. http://www.semicore.com/news/92-what-is-rf-sputtering. [52] J. Smith, William & Hashemi, Fundamentos de la ciencia e ingeniería de materiales. 2006. [53] D. M. Mattox, Atomistic Film Growth and Some Growth-Related Film Properties. 2010. [54] D. M. M. Mattox, Handbook of Physical Vapor Deposition ( PVD ) Processig Film Formation , Adhesion , Surface Preparation and Contamination Control. 1998. [55] D. M. Mattox, Film Characterization and Some Basic Film Properties. 2010. [56] S. V. Borisov and N. V. Podberezskaya, “X-ray diffraction analysis: A brief history and achievements of the first century,” J. Struct. Chem., vol. 53, pp. 1–3, 2012, doi: 10.1134/S0022476612070013. [57] D. Schwarzenbach, “The success story of crystallography,” Acta Crystallogr. Sect. A Found. Crystallogr., vol. 68, no. 1, pp. 57–67, 2012, doi: 10.1107/S0108767311030303. [58] W. A. De Morais, M. T. Vasques, R. D. M. Nobre, F. José, and G. Landgraf, “Proposta de Procedimento para Estimar a Rigidez em Metais Texturizados pela Análise dos Dados de EBSD Proposal of a Procedure to Estimate the Stiffness in Textured Metals through EBSD Data Analysis,” vol. 9, no. August, 2020. [59] H. Quiroz, “Preparación y estudio de las propiedades estructurales, opticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos,” Universidad Nacional de Colombia, 2014. [60] H. P. Rooksby, “The powder method in X-ray crystallography by L. V. Azaroff and J. Buerger ,” Acta Crystallogr., vol. 11, no. 10, pp. 753–754, 1958, doi: 10.1107/s0365110x58002097. [61] B. He, “Recent advances in two-dimensional X-ray diffraction,” Acta Crystallogr. Sect. A Found. Crystallogr., vol. 67, no. a1, pp. C670–C670, 2011, doi: 10.1107/s0108767311083048. [62] A. Leineweber and E. J. Mittemeijer, “Notes on the order-of-reflection dependence of microstrain broadening,” J. Appl. Crystallogr., vol. 43, no. 5 PART 1, pp. 981–989, 2010, doi: 10.1107/S0021889810030451. [63] H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr., vol. 2, no. 2, pp. 65–71, 1969, doi: 10.1107/s0021889869006558. [64] J. M. Albella, Láminas Delgadas y Recubrimientos: preparación, propiedades y aplicaciones, CSIC Solan. Madrid, 2003. [65] P. Stanford and P. Pte, Biomaterials for MEMS. Singapour: 2011. [66] K. Hassani, X-ray Microdiffracion Techniques to Study the Microstructure of Materials, no. July. 2006. [67] (2014). Publishing, p.p 55-65, “Oliver H. Seeck, Bridget M. Murphy, X-ray Diffraction Modern Experimental Techniques, Stanford.” [68] R. A Young, “The Reitveld Method,” Journal of Applied Physics, vol. 8, no. 4. 1993, Oxford: Oxford University, pp. 143–147, 1989. [69] D. J. Raquejo, “Desarrollo de un Protocolo para la Aplicación del Método Rietveld y del Estádar Interno en la Caracterización de Materiales Cerámicos con Contenido de Amorfos,” EAFIT, 2015. [70] A. Albinati and B. T. M. Willis, “The Rietveld method in neutron and X-ray powder diffraction,” J. Appl. Crystallogr., vol. 15, no. 4, pp. 361–374, 1982, doi: 10.1107/s0021889882012187. [71] D. Marulanda, “Unbalanced Magnetron Sputtering System for Producyg Corrosion Resistance Multilayer Coatings - Sistema de Sputtering con Magnetron Multicapas Resistentes a la Corrosión.,” Dyna, pp. 74–79, 2012. [72] H. P. Quiroz, J. A. Calderón, and A. Dussán, Nanomateriales que revolucionan la tecnología Perspectivas y aplicaciones en espintrónica. 2020. [73] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, “Scanning electron microscopy and x-ray microanalysis,” in Scanning Electron Microscopy and X-ray Microanalysis, 4 edition., Springer, Ed. 2017, pp. 1–550. [74] H. Technology, “Miradas tecnológicas: Historical Technology, Materials and Conservation (Sem and Microanalysis),” Conserv. Sience, pp. 72–76, 2013. [75] Microscopiooptico.org, “Partes Del Microscopio Y Sus Funciones,” pp. 1–7, 2021, [Online]. Available: https://www.microscopioelectronico.top/. [76] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Microscopy and X-Ray Microanalysis. 2018. [77] G. Q. M. Marticorena, S. M. Duhalde, “Aplicaciones de láseres pulsados al procesamiento de biomateriales,” UBA, p. 358, 2017. [78] M. Urbanek et al., “Focused ion beam fabrication of spintronic nanostructures: An optimization of the milling process,” Nanotechnology, vol. 21, no. 14, 2010, doi: 10.1088/0957-4484/21/14/145304. [79] J. Zemann, “Crystal structures, 2 nd edition. Vol. 1 by R. W. G. Wyckoff ,” Acta Crystallogr., vol. 18, no. 1, pp. 139–139, 1965, doi: 10.1107/s0365110x65000361. [80] X. Marti, I. Fina, and T. Jungwirth, “Prospect for antiferromagnetic spintronics,” IEEE Trans. Magn., vol. 51, no. 4, pp. 5–8, 2015, doi: 10.1109/TMAG.2014.2358939. [81] L. Urías and D. Ortiz, “Magnetismo en nanopartículas de manganeso,” TIP Rev. Espec. en Ciencias Químico-Biológicas, vol. 7, no. 2, pp. 83–92, 2004, doi: https://www.redalyc.org/articulo.oa?id=43270204. [82] C. Chen et al., “Magnetic properties and magneto-optical Kerr effect of Mn/Sb multilayer films on various substrates,” J. Appl. Phys., vol. 89, no. 12, pp. 8035–8037, 2001, doi: 10.1063/1.1370112. [83] N. D. Sarmiento Cruz, I. F. Rodríguez Ballesteros, H. P. Quiroz Gaitán, A. D. Cuenca, and X. A. Velásquez Moya, “Artículo en prensa / Article in press Physical Properties of GaSb Nanostructures for Spintronic Applications,” pp. 89–97, 2019. [84] Elementos.org.es/galio, “Elementos.” pp. 1–6, 2021, [Online]. Available: elementos.org.es/galio. [85] A. Fert, “The origin, development and future of spintronics,” Uspekhi Fiz. Nauk, vol. 178, no. 12, p. 1336, 2008, doi: 10.3367/ufnr.0178.200812f.1336. [86] M. Salamanca, “Propiedades ópticas-estructurales y morfológicas de aleaciones ternarias de GaAsMn crecidas por sputtering.,” Universidad Nacional de Colombia, 2010. [87] A. Anders, L. Berkeley, and C. Road, “A structure zone diagram including plasma based deposition and ion etching,” pp. 1–15, 2009, doi: https://doi.org/10.1016/j.tsf.2009.10.145. [88] L. Angarita, “Síntesis de películas delgadas por la técnica de magnetrón sputtering a partir de blancos de RENIO y BORO,” EAFIT, 2017. [89] A. Aguilar and J. León, “Estudio de la aplicación del plasma frío de baja presión para limpieza y esterilización de equipo médico de acero inoxidable de grado quirúrgico,” U. Poitécnica Salesiana, 2014. [90] P. A. Scherer and H. P. Bochem, “Energy-dispersive X-ray microanalysis of the methanogen Methanosarcina barkeri ‘Fusaro’ grown on methanol and in the presence of heavy metals,” Curr. Microbiol., vol. 9, no. 4, pp. 187–193, 1983, doi: 10.1007/BF01567579. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 62 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.department.spa.fl_str_mv |
Departamento de Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia Bogotá - Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80284/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/80284/4/1053326850.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80284/5/1053326850.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 de7496547716f3596a307bfe0158a400 715871aa699dc747a45bc5245ea047e2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090227383271424 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dussan Cuenca, Anderson135bf825d04add451570b1d3cb9250f1600González Rojas, William Ivánafc536a7b85a15256614e5640efedcf5Materiales Nanoestructurados y sus Aplicaciones2021-09-23T21:54:45Z2021-09-23T21:54:45Z2021https://repositorio.unal.edu.co/handle/unal/80284Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, fotografíasEn esta tesis se estudiaron las propiedades estructurales y morfológicas de multicapas de antimoniuro de galio con manganeso ( [GaSb/Mn]3), construidas por medio de la técnica de “DC Magnetron Sputtering”. Se establecieron las condiciones óptimas para la construcción de las multicapas, las cuales se analizaron por medio de medidas de difracción de rayos X usando los modelos, configuración bragg brentano, micro difracción y haz rasante, identificando las fases cristalinas y su correlación con las condiciones de síntesis del material. Adicional se realizó un estudio de la morfología por medio de las medidas de microscopia electrónica de barrido convencional (SEM, por sus siglas en inglés) y de alta resolución (HRSEM, por sus siglas en inglés), con el fin de establecer los mecanismos de crecimiento y el tipo de formación que caracteriza el crecimiento de nanoestructuras en el material. Para esto se realizó el depósito de [GaSb/Mn]3, en sustratos de vidrio, Si, GaSb y ITO haciendo uso del equipo del laboratorio de Materiales Nanoestructurados y sus Aplicaciones (MNYSA). En la caracterización del sistema de multicapas, pueden encontrar las fases correspondientes al material depositado, ∝ y , así como también la conformación de otras estructuras cristalinas como son 22, 42 y 44 los cuales tienen características interesantes, para futuras aplicaciones en espintrónica. Adicional en esta tesis encontraran la forma óptima para establecer el sistema de crecimiento de este compuesto [GaSb/Mn]3, a partir del estudio de la superficie en relación con el método de fabricación y la temperatura del sustrato. En las micrografías se da evidencia del sistema multicapa con los diferentes espesores de cada una de las capas y de todo el compuesto. (Texto tomado de la fuente).In this project, the structural and morphological properties of gallium antimonide with manganese ([GaSb/Mn]3), multilayers, built using the Magnetron Sputtering DC technique, were studied. Where the optimal conditions for the construction of the multilayers were established, which were analyzed by means of X-ray diffraction measurements using the models, bragg brentane, micro diffraction and grazing beam, identifying the crystalline phases and their correlation with the conditions of synthesis of the material. Additionally, a morphology study was carried out by means of conventional scanning electron microscopy (SEM) and high resolution (HRSEM) measurements, in order to establish the growth mechanisms and the formation of nanostructures in the material. For this, the deposition of [GaSb/Mn]3 was carried out on glass substrates, GaSb and ITO using the equipment present in the Laboratory of Nanostructured Materials and their Applications (MNYSA). In the characterization of the multilayer system, they can find the phases corresponding to the deposited material, ∝ and , as well as the conformation of other crystalline structures such as 22, 42 y 44, which have interesting characteristics, for future applications in spintronics. Additional in this thesis they will find the optimal way to establish the growth system of this compound [GaSb/Mn]3, from the study of the surface in relation to the manufacturing method and the substrate temperature. In the micrographs there is evidence of the multilayer system with the different thicknesses of each of the layers and of the entire compound.MaestríaMagíster en Ciencias - FísicaFabricación de dispositivos nanoestructurados con aplicaciones tecnológicasxvii, 62 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaBogotá - ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaEspintrónicaDifractogramaDifracción de rayos XPulverización catódica por magnetrónSpintronicsX-ray diffractionDiffractogramMagnetron sputteringRayos XElectromagnetismoCiencias físicasX-raysElectromagnetismPhysical sciencesSíntesis y estudio de la propiedades estructurales y morfológicas de multicapas de GaSb/Mn para aplicaciones en espintrónicaSynthesis and study of the structural and morphological properties of GaSb/Mn multilayers for applications in spintronicsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] A. Dussán, H. Quiroz, and J. Calderon, Nanomateriales que revolucionan la tecnología Perspectivas y aplicaciones en espintrónica, UN Ciencia. 2020.[2] D. S. L. Mui, Z. Wang, and H. Morkoç, “A review of III-V semiconductor based metal-insulator-semiconductor structures and devices,” Thin Solid Films, vol. 231, no. 1–2, pp. 107–124, 1993, doi: 10.1016/0040-6090(93)90707-V.[3] E. Monteblanco, C. Ortiz Pauyac, W. Savero, J. C. RojasSanchez, and A. Schuhl, “Espintrónica, La Electronica Del Espín Spintronics, Spin Electronics,” Rev. Cient. Tec., vol. 23, no. 1, p. 5, 2017, doi: 10.21754/tecnia.v23i1.62.[4] S. Ornes, “Giant magnetoresistance,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 10, p. 3710, 2013, doi: 10.1073/pnas.1302494110.[5] C. Heiliger, M. Gradhand, P. Zahn, and I. Mertig, “Tunneling magnetoresistance on the subnanometer scale,” Phys. Rev. Lett., vol. 99, no. 6, pp. 1–4, 2007, doi: 10.1103/PhysRevLett.99.066804.[6] M. Eginligil, G. Kim, Y. Yoon, J. P. Bird, H. Luo, and B. D. McCombe, “Manipulation of an unusual anomalous Hall effect in Ga1-xMnxSb random alloys,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 40, no. 6, pp. 2104–2106, 2008, doi: 10.1016/j.physe.2007.09.158.[7] J. A. Calderón Cómbita, “Estudio de las propiedades Ópticas y eléctricas del compuesto Ga1-xMnxSb usado para aplicaciones en espintrónica,” p. 134, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/55516/.[8] S. A. Khandy and D. C. Gupta, “Intrinsic magnetism and thermoelectric applicability of novel halide perovskites Cs2GeMnX6 (X = Cl, Br): Route towards spintronics and energy harvesting technologies,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 265. 2021, doi: 10.1016/j.mseb.2020.114985.[9] A. Eljarrat, S. Estradé, and F. Peiró, “Er-doped Si-nc/SiO 2 multilayer,” Adv. Imaging Electron Phys., vol. 209, pp. 159–173, 2019, doi: 10.1016/bs.aiep.2018.10.004.[10] I. Alkorta and A. C. Legon, “Non-covalent interactions involving alkaline-earth atoms and lewis bases B: An ab initio investigation of beryllium and magnesium bonds, B...MR2(M = Be or Mg, and R = H, F or CH3),” Inorganics, vol. 7, no. 3, 2019, doi: 10.3390/INORGANICS7030035.[11] M. De La Mata et al., “The Role of Polarity in Nonplanar Semiconductor Nanostructures,” Nano Lett., vol. 19, no. 6, pp. 3396–3408, 2019, doi: 10.1021/acs.nanolett.9b00459.[12] C. Holtmann and S. Klaka, “Generaciones de semiconductores,” Rev. ABB, vol. 3, no. 1013–3135, pp. 84–90, 2014, [Online]. Available: https://library.e.abb.com/public/aee130e9abe4b42883257daf00478a45/84-90 3m460_ES_72dpi.pdf.[13] J. Bak-Misiuk et al., “Structural properties of (Ga,Mn)Sb thin films on GaAs(111)A substrate,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 6, no. 12, pp. 2792–2794, 2009, doi: 10.1002/pssc.200982568.[14] R. Han, M. Qi, S. Dong, Z. Mao, X. Lin, and P. Wu, “Electronic and magnetic properties of X-doped (X=V, Cr, Mn, and Fe) tellurene for the 2D spintronic device: Insights from the first-principles calculations,” Phys. E Low-dimensional Syst. Nanostructures, vol. 129, no. February, p. 114667, 2021, doi: 10.1016/j.physe.2021.114667.[15] F. D. E. C. Físicas and A. H. Grande, Director : Sistemas Magnéticos Artificiales obtenidos mediante Pulverización Catódica : Películas Delgadas Amorfas de TbFe y Multicapas de Ni / Co memoria presentada par. 2002.[16] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, pp. 1113–1118, 2017, doi: 10.1016/j.apsusc.2016.11.096.[17] J. Fernando and J. Morales, “Experimental study of multilayers magnetic behavior Cr/Gd/Cr non-homogeneous,” Universidad Nacional de Colombia, 2014.[18] D. Pacifici, A. Irrera, G. Franzò, M. Miritello, F. Iacona, and F. Priolo, “Erbium-doped Si nanocrystals: Optical properties and electroluminescent devices,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 16, no. 3–4, pp. 331–340, 2003, doi: 10.1016/S1386-9477(02)00615-X.[19] Z. X. Song, J. A. Wang, Y. H. Li, F. Ma, K. W. Xu, and S. W. Guo, “The self-formation graded diffusion barrier of Zr/ZrN,” Microelectron. Eng., vol. 87, no. 3, pp. 391–393, 2010, doi: 10.1016/j.mee.2009.07.028.[20] M. Lindorf, H. Rohrmann, G. Span, and M. Albrecht, “Effect of Percolation on Structural and Electrical Properties of MIC Processed SiGe/Al Multilayers,” J. Electron. Mater., vol. 45, no. 3, pp. 1730–1733, 2016, doi: 10.1007/s11664-015-4190-x.[21] P. Grunberg, R. Schreiber, Y. Pang~’ Kernforschungsanlage, M. B. Brodsky, and H. Sowers, “PHYSICAL REVIEW LETTERS Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers,” 1986.[22] A. Fert and F. N. Van Dau, “Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators,” Comptes Rendus Phys., vol. 20, no. 7–8, pp. 817–831, 2019, doi: 10.1016/j.crhy.2019.05.020.[23] X. Cai, J. Yang, P. Zhang, and S. H. Wei, “Origin of Deep Be Acceptor Levels in Nitride Semiconductors: The Roles of Chemical and Strain Effects,” Phys. Rev. Appl., vol. 11, no. 3, p. 1, 2019, doi: 10.1103/PhysRevApplied.11.034019.[24] M. K. Lui and C. C. Ling, “Liquid encapsulated Czochralski grown undoped p-type gallium antimonide studied by temperature-dependent Hall measurement,” Semicond. Sci. Technol., vol. 20, no. 12, pp. 1157–1161, 2005, doi: 10.1088/0268-1242/20/12/002.[25] B. Martinez et al., “Standardizing large format 5" GaSb and InSb substrate production,” Infrared Technol. Appl. XLIII, vol. 10177, no. c, p. 101772L, 2017, doi: 10.1117/12.2263961.[26] Y. Wang, S. Hu, Y. Lv, and N. Dai, “Surface morphology of LPE-growth GaSb quantum dots,” Sel. Pap. from Conf. Photoelectron. Technol. Comm. Chinese Soc. Astronaut. 2014, Part II, vol. 9522, p. 95222X, 2015, doi: 10.1117/12.2182638.[27] S. Niu et al., “Brief Review of Epitaxy and Emission Properties of GaSb and Related Semiconductors,” Crystals, vol. 7, no. 11, p. 337, 2017, doi: 10.3390/cryst7110337.[28] P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys., vol. 81, no. 9, pp. 5821–5870, 1997, doi: 10.1063/1.365356.[29] E. Casta, “Estudio teórico de las propiedades estructurales , electrónicas y magnéticas del compuesto semiconductor GaSb dopado con,” 2017.[30] A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys., vol. 105, no. 9, 2009, doi: 10.1063/1.3099572.[31] J. O. Kim, T. D. Nguyen, Z. Ku, A. Urbas, S.-W. Kang, and S. J. Lee, “Short wavelength infrared photodetector and light emitting diode based on InGaAsSb,” Infrared Technol. Appl. XLIII, vol. 10177, p. 101772M, 2017, doi: 10.1117/12.2264969.[32] F. Karouta, A. Marbeuf, A. Joullié, and J. H. Fan, “Low temperature phase diagram of the Ga1-xInxAsySb1-y system,” J. Cryst. Growth, vol. 79, no. 1–3, pp. 445–450, 1986, doi: 10.1016/0022-0248(86)90475-6.[33] S. Franchi, Molecular beam epitaxy: fundamentals, historical background and future prospects. Elsevier Inc., 2013.[34] S. Basu and T. Adhikari, “Variation of band gap with Mn concentration in Ga1-xMnxSb - A new III-V diluted magnetic semiconductor,” Solid State Commun., vol. 95, no. 1, pp. 53–55, 1995, doi: 10.1016/0038-1098(95)00160-3.[35] C. Subramanian and K. N. Strafford, “Review of multicomponent and multilayer coatings for tribological applications,” Wear, vol. 165, no. 1, pp. 85–95, 1993, doi: 10.1016/0043-1648(93)90376-W.[36] D. M. Marulanda Cardona, “Multicapas nanoestructuradas de Cr/CrNx como barrera de difusión entre Cu y Si,” vol. 3, no. d, p. 235, 2011, [Online]. Available: http://www.bdigital.unal.edu.co/4805/.[37] E. Nieto, P. Durán, C. Moure, and J. Fernández, “Películas delgadas: fabricación y aplicaciones.,” Boletín la Soc. Española Cerámica y Vidr., vol. 33, no. 5, pp. 245–258, 1994.[38] M. C. Martos, “Premios Nóbel 2000 : Kilby , Alferov y Kroemer ( Física ), Heeger , Mcdiarmid , Shirakawa ( Química ),” LLULL, pp. 754–759, 2000.[39] L. Karmakar and D. Das, “Prominent c-axis oriented Si-doped ZnO thin film prepared at low substrate temperature in RF magnetron sputtering and its UV sensing in p-Si/n-SZO heterojunction structures,” J. Phys. Chem. Solids, vol. 151, no. March 2020, p. 109907, 2021, doi: 10.1016/j.jpcs.2020.109907.[40] M. Henini, “Molecular beam epitaxy,” Mol. Beam Ep., 2013, doi: 10.1016/C2010-0-68986-3.[41] K. College and L. England, “Molecular beam epitaxy,” p. 157, 1986.[42] P. Vogt et al., “Adsorption-controlled growth of Ga2O3by suboxide molecular-beam epitaxy,” APL Mater., vol. 9, no. 3, 2021, doi: 10.1063/5.0035469.[43] J. E. Greene, “Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 35, no. 5, p. 05C204, 2017, doi: 10.1116/1.4998940.[44] E. Gerstner, “Answers on a postcard,” Nat. Phys., vol. 4, no. S1, pp. S6–S6, 2008, doi: 10.1038/nphys857.[45] J. E. Brittain, “The magnetron and the beginnings of the microwave age,” Phys. Today, vol. 38, no. 7, pp. 60–67, 1985, doi: 10.1063/1.880982.[46] T. B. Coatings and E. Components, “on Gas Flow Sputtered 61ST SVC TECHNICAL CONFERENCE The Tailoring of Interfaces,” 2018.[47] D. M. Mattox and M. Plus, “History Corner A Short History : Magnetron Sputter Deposition,” 2015.[48] C. E. Prados, Sistemas Magnéticos Artificiales obtenidos mediante Pulverización Catódica: películas Delgadas Amorfas de TbFe y Multicapas de Ni/Co. 1995.[49] T. G. Source, “diagram-dc-magnatron,” Magnetron Sputtering, 2019. http://www.semicore.com/news/94-what-is-dc-sputtering.[50] “diagram-sputtering-process,” Magnetron Sputtering, 2019. https://www.google.com/search?q=plasma+sputtering&source=lnms&tbm=isch&sa=X&ved=0ahUKEwj059Gcj67jAhWC1lkKHV47CPwQ_AUIECgB&biw=1600&bih=789#imgrc=cRiyWOFw5V3GbM:[51] Semicore, “The Global Source,” 2020. http://www.semicore.com/news/92-what-is-rf-sputtering.[52] J. Smith, William & Hashemi, Fundamentos de la ciencia e ingeniería de materiales. 2006.[53] D. M. Mattox, Atomistic Film Growth and Some Growth-Related Film Properties. 2010.[54] D. M. M. Mattox, Handbook of Physical Vapor Deposition ( PVD ) Processig Film Formation , Adhesion , Surface Preparation and Contamination Control. 1998.[55] D. M. Mattox, Film Characterization and Some Basic Film Properties. 2010.[56] S. V. Borisov and N. V. Podberezskaya, “X-ray diffraction analysis: A brief history and achievements of the first century,” J. Struct. Chem., vol. 53, pp. 1–3, 2012, doi: 10.1134/S0022476612070013.[57] D. Schwarzenbach, “The success story of crystallography,” Acta Crystallogr. Sect. A Found. Crystallogr., vol. 68, no. 1, pp. 57–67, 2012, doi: 10.1107/S0108767311030303.[58] W. A. De Morais, M. T. Vasques, R. D. M. Nobre, F. José, and G. Landgraf, “Proposta de Procedimento para Estimar a Rigidez em Metais Texturizados pela Análise dos Dados de EBSD Proposal of a Procedure to Estimate the Stiffness in Textured Metals through EBSD Data Analysis,” vol. 9, no. August, 2020.[59] H. Quiroz, “Preparación y estudio de las propiedades estructurales, opticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos,” Universidad Nacional de Colombia, 2014.[60] H. P. Rooksby, “The powder method in X-ray crystallography by L. V. Azaroff and J. Buerger ,” Acta Crystallogr., vol. 11, no. 10, pp. 753–754, 1958, doi: 10.1107/s0365110x58002097.[61] B. He, “Recent advances in two-dimensional X-ray diffraction,” Acta Crystallogr. Sect. A Found. Crystallogr., vol. 67, no. a1, pp. C670–C670, 2011, doi: 10.1107/s0108767311083048.[62] A. Leineweber and E. J. Mittemeijer, “Notes on the order-of-reflection dependence of microstrain broadening,” J. Appl. Crystallogr., vol. 43, no. 5 PART 1, pp. 981–989, 2010, doi: 10.1107/S0021889810030451.[63] H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr., vol. 2, no. 2, pp. 65–71, 1969, doi: 10.1107/s0021889869006558.[64] J. M. Albella, Láminas Delgadas y Recubrimientos: preparación, propiedades y aplicaciones, CSIC Solan. Madrid, 2003.[65] P. Stanford and P. Pte, Biomaterials for MEMS. Singapour: 2011.[66] K. Hassani, X-ray Microdiffracion Techniques to Study the Microstructure of Materials, no. July. 2006.[67] (2014). Publishing, p.p 55-65, “Oliver H. Seeck, Bridget M. Murphy, X-ray Diffraction Modern Experimental Techniques, Stanford.”[68] R. A Young, “The Reitveld Method,” Journal of Applied Physics, vol. 8, no. 4. 1993, Oxford: Oxford University, pp. 143–147, 1989.[69] D. J. Raquejo, “Desarrollo de un Protocolo para la Aplicación del Método Rietveld y del Estádar Interno en la Caracterización de Materiales Cerámicos con Contenido de Amorfos,” EAFIT, 2015.[70] A. Albinati and B. T. M. Willis, “The Rietveld method in neutron and X-ray powder diffraction,” J. Appl. Crystallogr., vol. 15, no. 4, pp. 361–374, 1982, doi: 10.1107/s0021889882012187.[71] D. Marulanda, “Unbalanced Magnetron Sputtering System for Producyg Corrosion Resistance Multilayer Coatings - Sistema de Sputtering con Magnetron Multicapas Resistentes a la Corrosión.,” Dyna, pp. 74–79, 2012.[72] H. P. Quiroz, J. A. Calderón, and A. Dussán, Nanomateriales que revolucionan la tecnología Perspectivas y aplicaciones en espintrónica. 2020.[73] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, “Scanning electron microscopy and x-ray microanalysis,” in Scanning Electron Microscopy and X-ray Microanalysis, 4 edition., Springer, Ed. 2017, pp. 1–550.[74] H. Technology, “Miradas tecnológicas: Historical Technology, Materials and Conservation (Sem and Microanalysis),” Conserv. Sience, pp. 72–76, 2013.[75] Microscopiooptico.org, “Partes Del Microscopio Y Sus Funciones,” pp. 1–7, 2021, [Online]. Available: https://www.microscopioelectronico.top/.[76] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Microscopy and X-Ray Microanalysis. 2018.[77] G. Q. M. Marticorena, S. M. Duhalde, “Aplicaciones de láseres pulsados al procesamiento de biomateriales,” UBA, p. 358, 2017.[78] M. Urbanek et al., “Focused ion beam fabrication of spintronic nanostructures: An optimization of the milling process,” Nanotechnology, vol. 21, no. 14, 2010, doi: 10.1088/0957-4484/21/14/145304.[79] J. Zemann, “Crystal structures, 2 nd edition. Vol. 1 by R. W. G. Wyckoff ,” Acta Crystallogr., vol. 18, no. 1, pp. 139–139, 1965, doi: 10.1107/s0365110x65000361.[80] X. Marti, I. Fina, and T. Jungwirth, “Prospect for antiferromagnetic spintronics,” IEEE Trans. Magn., vol. 51, no. 4, pp. 5–8, 2015, doi: 10.1109/TMAG.2014.2358939.[81] L. Urías and D. Ortiz, “Magnetismo en nanopartículas de manganeso,” TIP Rev. Espec. en Ciencias Químico-Biológicas, vol. 7, no. 2, pp. 83–92, 2004, doi: https://www.redalyc.org/articulo.oa?id=43270204.[82] C. Chen et al., “Magnetic properties and magneto-optical Kerr effect of Mn/Sb multilayer films on various substrates,” J. Appl. Phys., vol. 89, no. 12, pp. 8035–8037, 2001, doi: 10.1063/1.1370112.[83] N. D. Sarmiento Cruz, I. F. Rodríguez Ballesteros, H. P. Quiroz Gaitán, A. D. Cuenca, and X. A. Velásquez Moya, “Artículo en prensa / Article in press Physical Properties of GaSb Nanostructures for Spintronic Applications,” pp. 89–97, 2019.[84] Elementos.org.es/galio, “Elementos.” pp. 1–6, 2021, [Online]. Available: elementos.org.es/galio.[85] A. Fert, “The origin, development and future of spintronics,” Uspekhi Fiz. Nauk, vol. 178, no. 12, p. 1336, 2008, doi: 10.3367/ufnr.0178.200812f.1336.[86] M. Salamanca, “Propiedades ópticas-estructurales y morfológicas de aleaciones ternarias de GaAsMn crecidas por sputtering.,” Universidad Nacional de Colombia, 2010.[87] A. Anders, L. Berkeley, and C. Road, “A structure zone diagram including plasma based deposition and ion etching,” pp. 1–15, 2009, doi: https://doi.org/10.1016/j.tsf.2009.10.145.[88] L. Angarita, “Síntesis de películas delgadas por la técnica de magnetrón sputtering a partir de blancos de RENIO y BORO,” EAFIT, 2017.[89] A. Aguilar and J. León, “Estudio de la aplicación del plasma frío de baja presión para limpieza y esterilización de equipo médico de acero inoxidable de grado quirúrgico,” U. Poitécnica Salesiana, 2014.[90] P. A. Scherer and H. P. Bochem, “Energy-dispersive X-ray microanalysis of the methanogen Methanosarcina barkeri ‘Fusaro’ grown on methanol and in the presence of heavy metals,” Curr. Microbiol., vol. 9, no. 4, pp. 187–193, 1983, doi: 10.1007/BF01567579.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80284/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53ORIGINAL1053326850.2021.pdf1053326850.2021.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf2871592https://repositorio.unal.edu.co/bitstream/unal/80284/4/1053326850.2021.pdfde7496547716f3596a307bfe0158a400MD54THUMBNAIL1053326850.2021.pdf.jpg1053326850.2021.pdf.jpgGenerated Thumbnailimage/jpeg5109https://repositorio.unal.edu.co/bitstream/unal/80284/5/1053326850.2021.pdf.jpg715871aa699dc747a45bc5245ea047e2MD55unal/80284oai:repositorio.unal.edu.co:unal/802842023-07-28 23:03:35.962Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |