Desempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmica

ilustraciones

Autores:
Acevedo Moreno, Yesid Fabian
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84004
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84004
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Ingeniería sísmica
Diseño sismorresistente
Prevención y protección ante los sismos
Earthquake engineering
Earthquake resistant design
Earthquakes - prevention and protection
Desempeño sísmico
Acelerogramas sintéticos
Daño sísmico
Colapso
Seismic performance
Synthetic accelerograms
Seismic damage
Collapse
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_34bd167480627c80c348676386752d21
oai_identifier_str oai:repositorio.unal.edu.co:unal/84004
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmica
dc.title.translated.eng.fl_str_mv Performance of buildings in reinforced concrete frames based on their non-linear dynamic response, before representative synthetic accelerograms of the seismic threat
title Desempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmica
spellingShingle Desempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmica
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Ingeniería sísmica
Diseño sismorresistente
Prevención y protección ante los sismos
Earthquake engineering
Earthquake resistant design
Earthquakes - prevention and protection
Desempeño sísmico
Acelerogramas sintéticos
Daño sísmico
Colapso
Seismic performance
Synthetic accelerograms
Seismic damage
Collapse
title_short Desempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmica
title_full Desempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmica
title_fullStr Desempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmica
title_full_unstemmed Desempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmica
title_sort Desempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmica
dc.creator.fl_str_mv Acevedo Moreno, Yesid Fabian
dc.contributor.advisor.none.fl_str_mv Bernal Granados, Gabriel Andrés
Molina Herrera, Maritzabel
dc.contributor.author.none.fl_str_mv Acevedo Moreno, Yesid Fabian
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Ingeniería sísmica
Diseño sismorresistente
Prevención y protección ante los sismos
Earthquake engineering
Earthquake resistant design
Earthquakes - prevention and protection
Desempeño sísmico
Acelerogramas sintéticos
Daño sísmico
Colapso
Seismic performance
Synthetic accelerograms
Seismic damage
Collapse
dc.subject.lemb.spa.fl_str_mv Ingeniería sísmica
Diseño sismorresistente
Prevención y protección ante los sismos
dc.subject.lemb.eng.fl_str_mv Earthquake engineering
Earthquake resistant design
Earthquakes - prevention and protection
dc.subject.proposal.spa.fl_str_mv Desempeño sísmico
Acelerogramas sintéticos
Daño sísmico
Colapso
dc.subject.proposal.eng.fl_str_mv Seismic performance
Synthetic accelerograms
Seismic damage
Collapse
description ilustraciones
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-13T16:46:05Z
dc.date.available.none.fl_str_mv 2023-06-13T16:46:05Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84004
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84004
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ABAQUS Inc. (2007). ABAQUS Analysis User’s Manual.
ACI. (2008). Requisitos de reglamento para concreto estructural (ACI 318S-08) y comentario. In American Concrete Institute.
AIS. (2010). Reglamento Colombiano de construcción Sismo Resistente (NSR-10).
Aki, K., & Richards, P. G. (2002). Quantitative seismology, Second Ed. University Science Books.
Anderson, J. G., & Hought, S. E. (1984). A model for the shape of Fourier Amplitude Spectrum of Acceleration at High Frequencies. Bull. Seismol. Soc. Am. 74, 1969-1993.
Ang, A. H.-S., Kim, W. J., & Kim, S. B. (1933). Damage estimation of existing bridge structures.
ASCE, A. S. of C. E., & SEI, S. E. I. (2010). Minimum Design Loads for Buildings and Other Structures, ISBN 978-0-7844-1085-1.
ASCE/SEI 41-13. (2014). Seismic evaluation and retrofit of existing building. American Society of Civil Engineers, Structural Engineering Institute.
ATC. (1996). Seismic evaluation and retrofit of concrete buildings. Technical report. ATC-40.
Bernal, G. A. (2014). Strong Motion Analyst. Programa de computador para el procesamiento de información sismológica.
Bernal, G. A., & Cardona, O. D. (2017). Modelo de atenuación sísmica de fuente híbrida para Colombia. VIII Congreso Nacional de Ingeniería Sísmica.
Bernal, G. A., Zuloaga, D., & Cardona, O. D. (2017). Modelo probabilista de respuesta sísmica de los suelos de Bogotá. VII Congreso Nacional de Ingeniería Sísmica, Barranquilla.
Bernal, G., & Cardona, O. D. (2019). Ajuste de un Modelo de Espectro de Fuente y sus Aplicaciones en la Modelación de la Amenaza Sísmica y el Campo Cercano en Colombia. IX Congreso Nacional de Ingeniería Sísmica.
Bertero, V. (2019). Performance-based seismic engineering: A critical review of proposed guidelines. Seismic Design Methodologies for the next Generation of Codes, 1–31.
Blume, J. A., & Newmark, N. M. (1961). Design of multistorey reinforced concrete building of earthquake motions. Portland Cement Association, Chicago.
Bonett Díaz, R. L. (2003). Vulnerabilidad y riesgo sísmico de edificios. Aplicación a entornos urbanos de zonas de amenaza alta y moderada. Universidad Politécnica de Cataluña.
Boore, D. M. (1983). Stochastic simulation of high - frequency ground motions based on seismological models of the radiated spectra. Bull. Seism. Soc. Am. 73.
Boore, D. M. (2003). Simulation of ground motion using the stochastic method. Applied Geophysics 160, 635-676.
Boore, D. M., & Boatwright, J. (1984). Average Body-wave Radiation Coefficients. Bull. Seismol. Soc. Am. 71, 959-971.
Bozorgnia, Y., & Bertero, V. V. (2006). Earthquake engineering: from engineering seismology to performance - based engineering. Taylor & Francis e-Library. International Code Council (ICC).
Bracci, J. M., Reinhorn, A. M., Mander, J. B., & Kunnath, S. K. (1989). Deterministic model for seismic damage of RC structures.
Brune, J. N. (1970). Tectonic Stress and the Spectra of Seismic Shear Waves from Earth-quakes. J. Geophys. Res. 75, 4997-5009.
Chadwell C, & Imbsen R. (2004). XTRACT: A tool for axial force-ultimate curvature interactions. In Structures.
Chai, Y. H., Romstad, K. M., & Bird, S. M. (1995). Energy-Based Linear Damage Model for High-Intensity Seismic Loading. Journal of Structural Engineering, 121(5), 857–864.
Chan, W. L. (1955). The ultimate strength and deformation of plastic hinges in reinforced concrete frameworks. Magazine of Concrete Research, 7(21), 121–132.
Chen, C., & Ricles, J. (2008). Development of direct integration algorithms for structural dynamics using discrete control theory. Journal of Engineering Mechanics, 134(8), 676–583.
Chen, LZ., Lu, XL., Jiang, HJ., & Zheng, JB. (2009). Experimental investigation of damage behavior of RC frame members including non-seismically designed columns. Earthquake Engineering Vibration, 8(2), 301–311.
Chung, J., & Hulbert, G. M. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation. Journal of Applied Mechanics, 60, 371–374.
Chung, Y. S., Meyer, C., & Shinozuka, M. (1988). A new damage model for reinforced concrete structures. Proceedings of Ninth World Conference on Earthquake Engineering, 205–210.
Clough, R. W., & Johnston, S. B. (1966). Effect of stiffness degradation on earthquake ductility requirements. In Proceedings of the Japan Earthquake Engineering Symposium.
Computers & Structures Inc. (2017). SAP 2000 (No. 20). Programa de análisis estructural. C.S.I. Educational Services.
Cornell, C. A., & Vanmarcke, E. (1969). The major influences on seismic risk. Proc. 4th CWEE: Vol. Vol. I.
Fajfar, P., & Gaspersic, P. (1996). The n2 method for the seismic damage analysis of rc buildings. Earthquake Engineering and Structural Dynamics, 25, 31–46.
FEMA 273, & FEMA 274. (1996). NEHRP Guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency (FEMA), Washington, D.C.
FOPAE. (2010). Zonificación de la respuesta sísmica de Bogotá para el diseño Sismo Resistente de edificaciones.
Freeman, S. A. (1975). Evaluation of existing buildings for seismic risk - A case study of puget sound naval shipyard. Proceedings of the U.S. National Conference on Earthquake Engineers, EERI, (pp. 113-122).
Gallego, M., & Sarria, A. (2015). El concreto y los terremotos. Conceptos, comportamientos, patología y rehabilitación (Segunda Edición). Asocreto. Asociación Colombiana de Productores de Concreto.
Haskell, N. A. (1953). The dispersion of surface waves in multilayered media. In Bulletin of the Seismological Society of America. Vol 43, pp. 17-34.
Hilber, H. M., Hughes, T. J. R., & Taylor, R. L. (1977). Improved numerical dissipation for time integration algorithms in structural mechanics. Earthquake Engineering and Structural Dynamics, 5, 283–292.
Ishibashi, I., & Zhang, X. (1993). Unified dynamic shear moduli and damping ratios of sand and clay. In Japanese Society of Soil Mechanics and Foundation Engineering. Vol 33, N° 1, pp. 182-191.
Jiang, H. J., Chen, L. Z., & Chen, Q. (2011). Seismic damage assessment and performance levels of reinforced concrete members. Procedia Engineering, 14, 939–945.
Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. Proceedings ASCE, 97(ST7), 1969–1990.
Knopoff, L. (1964). “Q.” Review of Geophysics, Vol. 2, 625–660.
Komeili, M., & Tesfamariam, S. (2012). Performance-based earthquake engineering design of reinforced concrete structures using black-box optimisation. International Journal of Materials and Structural Integrity, Vol. 6, No. 1.
Kramer, S. L. (1996). Geotechnical Earthquake Engineering (W. J. Hall, Ed.). University of Washington.
Kunnath, S. K., Reinhorn, A. M., & Abel, J. F. (1991). A computational tool for evaluation of seismic performance of reinforced concrete buildings. Computer Structures, 41(1), 157–173.
Kunnath, S. K., Reinhorn, A. M., & Lobo, R. F. (1992). IDARC Version 3.0: A program for the inelastic damage analysis of reinforced concrete structures. In Department of Civil engineering. State University of New York at Buffalo and Department of Civil and Environmental engineering. University of Central Florida. National center for earthquake engineering research.
Mander, J., Priestley, M., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering.
Mehanny, S. S., & Deierlein, G. G. (2001). Seismic Damage and Collapse Assessment of Composite Moment Frames. Journal of Structural Engineering, 127(9), 1045–1053.
Moehle, J. (2015). Seismic Design of Reinforced Concrete Buildings (Versión 1). McGraw Hill Education.
Newmark, N. M. (1959). A method of computation for structural dynamics. Journal of Engineering Mechanics, 85, 67–94.
Ordaz, M., Aguilar, A., & Arboleda, J. (2007). CRISIS2007: Program for computing seismic hazard [Computer software].]. Instituto de ingeniería. Universidad Nacional Autónoma de México.
Ordaz, M., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., & D’Amico, V. (2017). R-CRISIS. Program and platform for computing seismic hazard.
Otani, S. (1974). Inelastic analysis of R/C frame structures. Journal of Structural Division, ASCE, 100(ST7), 1433–1449.
Otarola, C. Leonardo. (2015). Generación de acelerogramas artificiales usando un método estocástico de falla finita, aplicado a terremotos de subducción. Universidad de Chile.
Park, R., & Paulay, T. (1994). Estructuras de concreto reforzado. LIMUSA. Noriega editores.
Park, Y., & Ang, A. (1985). Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering. 111(4), Pp. 722-739.
Park, Y. J., Ang, A. H.-S., & Wenn, Y. K. (1987). Damage limiting aseismic design of buildings. Earthquake Spectra, 3(1), 1–26.
PEER. (2004). PEER structural performance database. Disponible en: http://nisee.berkey.edu/spd/.
Priestley, M. J. N., & Park, R. (1987). Strength and Ductility of Concrete Bridge Columns under Seismic Loading. ACI Structural Journal, 84(1), 61–76.
Roy, H. E. H., & Sozen, M. A. (1964). Ductility of concrete. Proceedings of the International Symposium on Flexural Mechanics of Reinforced Concrete, ASCE-ACI, 213–224.
Salgado, M., Ordaz, M., Singh, K. S., Cardona, O. D., Reinoso, E., Aguado, A., Zuloaga, D., Huerta, B., & Bernal, G. (2018). Homogeneous and Continuous Probabilistic Seismic Hazard Model for Latin America and The Caribbean. 16th European Conference on Earthquake Engineering. Tessalonniki.
Sargin, M., Ghosh, S. K., & Handa, V. K. (1971). Effects of lateral reinforcement upon the strength and deformation properties of concrete. Magazine of Concrete Research, 23(75–76), 99–110.
SEAOC. (1995). Framework for Performance Based Design.
Seed, H. B., & Idriss, M. I. (1970). Soil moduli and damping factor for dynamic response analysis.
Sheikh, S. A., & Uzumeri, S. M. (1980). Strength and ductility of confined concrete columns. Proceedings ASCE, 106(ST5), 1079–1102.
Singh, S. K., Bazan, E., & Esteva, L. (1980). Expected earthquake magnitude from a fault. Bulletin of the seismological Society of America. 70, 903-914.
Singh, S. K., Ordaz, M., Anderson, J. G., Rodríguez, M., Quaas, R., Mena, E., Ottaviani, M., & Almora, D. (1989). Analysis of near source strong ground motion recordings along the Mexican subduction zone. Bull. Seism. Soc. Am., 70, 903–914.
Soliman, M. T. M., & Yu, C. W. (1967). The flexural stress-strain relationship of concrete confined by rectangular transverse reinforcement. Magazine of Concrete Research, 19(61), 223–238.
Stone, W. C., & Taylor, A. W. (1993). Seismic performance of circular bridge columns designed in accordance with AASHTO/CALTRANS standards.
Su, J., Liu, B., Xing, G., Ma, Y., & Huang, J. (2019). Seismic damage and collapse assessment of reinforced concrete frame structures using a component - classification weighted algorithm. Hindawi. Mathematical Problems in Engineering.
Takeda, T., Sozen, M. A., & Nielsen, N. N. (1970). R/C response to simulated earthquakes. Journal of Structural Division, ASCE., 96 (ST12), 2557–2573.
Thompson, W. T. (1950). Transmission of elastic waves through a stratified solid. Journal of Applied Physics, 21, 89–93.
Universidad de Los Andes. (2004). Microzonificación sísmica y estudios generales de riesgo en las ciudades de Palmira, Tuluá y Buga. In Centro de estudios sobre desastres y riesgos - CEDERI, Centro de Investigación en Materiales y Obras Civiles - CIMOC.
Valdebenito, G. (2009). Passive Seismic Protection of Cable-Stayed Bridges Applying Viscous Dampers under Strong Motion. Universidad Politécnica de Catalunya.
Verdugo, R. (2014). Apuntes Charla Respuesta sísmica en superficie - efecto sitio. 27 de Agosto de 2014 En UTFSM.
Vulinovic, M., Milicevic, I., & Ignjatovic, I. (2019). The design of local ductility for reinforced concrete elements by Eurocode 8. Confinement effectiveness factor. Society for Materials and Structures Testing of Serbia. Journal for Research in the Field of Materials and Structures, 3(ISSN 2334-0229), 3–17.
Wilson, E. L. (1968). A computer program for the dynamic stress analysis of underground structures. SEAM Report 68-1.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 260 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84004/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84004/2/1116789378.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84004/3/1116789378.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
02417ec3c1c43a18d3a93534b7e0c65d
ebce4b82983e05271a8aad18891ed0d0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089669720145920
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bernal Granados, Gabriel Andrés30867610a373cbc4c2cd8149b48bbc59Molina Herrera, Maritzabel14233208c489a98ba0f0225ef4ae6d9aAcevedo Moreno, Yesid Fabian7ae928d910f78177e33a657d9e00b05d2023-06-13T16:46:05Z2023-06-13T16:46:05Z2023https://repositorio.unal.edu.co/handle/unal/84004Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEn el presente trabajo se propone una metodología elaborada con base en la recopilación de técnicas existentes, que permite determinar el desempeño sísmico de edificaciones en términos de daño y probabilidad de colapso, con aplicabilidad en estructuras de pórticos resistentes a momentos en concreto reforzado. El procedimiento parte de representar a la acción sísmica mediante acelerogramas sintéticos simulados empleando un método estocástico de falla finita, que son utilizados para evaluar la respuesta cronológica no lineal de las edificaciones requerida en el cálculo del daño sísmico total, estimado por medio de la ponderación de un índice de daño local de tipo acumulativo. Con este trabajo se busca verificar el cumplimiento del objetivo implícito de desempeño del reglamento NSR-10, establecido como la protección a la vida de los ocupantes, proyectada a través de la prevención del colapso estructural. (Texto tomado de la fuente)In the present work, a methodology elaborated based on the compilation of existing techniques is proposed, which allows determining the seismic performance of buildings in terms of damage and probability of collapse, with applicability in frame structures resistant to moments in reinforced concrete. The procedure starts from representing the seismic action through simulated synthetic accelerograms using a finite failure stochastic method, which are used to evaluate the non-linear chronological response of the buildings required in the calculation of the total seismic damage, estimated by means of the weighting of a cumulative local damage index. This work seeks to verify compliance with the implicit performance objective of the NSR-10 regulation, established as the protection of the life of the occupants, projected through the prevention of structural collapse.MaestríaAnálisis estructuralxiv, 260 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - EstructurasFacultad de IngenieríaBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilIngeniería sísmicaDiseño sismorresistentePrevención y protección ante los sismosEarthquake engineeringEarthquake resistant designEarthquakes - prevention and protectionDesempeño sísmicoAcelerogramas sintéticosDaño sísmicoColapsoSeismic performanceSynthetic accelerogramsSeismic damageCollapseDesempeño de edificaciones en pórticos de concreto reforzado con base en su respuesta dinámica no lineal, ante acelerogramas sintéticos representativos de la amenaza sísmicaPerformance of buildings in reinforced concrete frames based on their non-linear dynamic response, before representative synthetic accelerograms of the seismic threatTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMABAQUS Inc. (2007). ABAQUS Analysis User’s Manual.ACI. (2008). Requisitos de reglamento para concreto estructural (ACI 318S-08) y comentario. In American Concrete Institute.AIS. (2010). Reglamento Colombiano de construcción Sismo Resistente (NSR-10).Aki, K., & Richards, P. G. (2002). Quantitative seismology, Second Ed. University Science Books.Anderson, J. G., & Hought, S. E. (1984). A model for the shape of Fourier Amplitude Spectrum of Acceleration at High Frequencies. Bull. Seismol. Soc. Am. 74, 1969-1993.Ang, A. H.-S., Kim, W. J., & Kim, S. B. (1933). Damage estimation of existing bridge structures.ASCE, A. S. of C. E., & SEI, S. E. I. (2010). Minimum Design Loads for Buildings and Other Structures, ISBN 978-0-7844-1085-1.ASCE/SEI 41-13. (2014). Seismic evaluation and retrofit of existing building. American Society of Civil Engineers, Structural Engineering Institute.ATC. (1996). Seismic evaluation and retrofit of concrete buildings. Technical report. ATC-40.Bernal, G. A. (2014). Strong Motion Analyst. Programa de computador para el procesamiento de información sismológica.Bernal, G. A., & Cardona, O. D. (2017). Modelo de atenuación sísmica de fuente híbrida para Colombia. VIII Congreso Nacional de Ingeniería Sísmica.Bernal, G. A., Zuloaga, D., & Cardona, O. D. (2017). Modelo probabilista de respuesta sísmica de los suelos de Bogotá. VII Congreso Nacional de Ingeniería Sísmica, Barranquilla.Bernal, G., & Cardona, O. D. (2019). Ajuste de un Modelo de Espectro de Fuente y sus Aplicaciones en la Modelación de la Amenaza Sísmica y el Campo Cercano en Colombia. IX Congreso Nacional de Ingeniería Sísmica.Bertero, V. (2019). Performance-based seismic engineering: A critical review of proposed guidelines. Seismic Design Methodologies for the next Generation of Codes, 1–31.Blume, J. A., & Newmark, N. M. (1961). Design of multistorey reinforced concrete building of earthquake motions. Portland Cement Association, Chicago.Bonett Díaz, R. L. (2003). Vulnerabilidad y riesgo sísmico de edificios. Aplicación a entornos urbanos de zonas de amenaza alta y moderada. Universidad Politécnica de Cataluña.Boore, D. M. (1983). Stochastic simulation of high - frequency ground motions based on seismological models of the radiated spectra. Bull. Seism. Soc. Am. 73.Boore, D. M. (2003). Simulation of ground motion using the stochastic method. Applied Geophysics 160, 635-676.Boore, D. M., & Boatwright, J. (1984). Average Body-wave Radiation Coefficients. Bull. Seismol. Soc. Am. 71, 959-971.Bozorgnia, Y., & Bertero, V. V. (2006). Earthquake engineering: from engineering seismology to performance - based engineering. Taylor & Francis e-Library. International Code Council (ICC).Bracci, J. M., Reinhorn, A. M., Mander, J. B., & Kunnath, S. K. (1989). Deterministic model for seismic damage of RC structures.Brune, J. N. (1970). Tectonic Stress and the Spectra of Seismic Shear Waves from Earth-quakes. J. Geophys. Res. 75, 4997-5009.Chadwell C, & Imbsen R. (2004). XTRACT: A tool for axial force-ultimate curvature interactions. In Structures.Chai, Y. H., Romstad, K. M., & Bird, S. M. (1995). Energy-Based Linear Damage Model for High-Intensity Seismic Loading. Journal of Structural Engineering, 121(5), 857–864.Chan, W. L. (1955). The ultimate strength and deformation of plastic hinges in reinforced concrete frameworks. Magazine of Concrete Research, 7(21), 121–132.Chen, C., & Ricles, J. (2008). Development of direct integration algorithms for structural dynamics using discrete control theory. Journal of Engineering Mechanics, 134(8), 676–583.Chen, LZ., Lu, XL., Jiang, HJ., & Zheng, JB. (2009). Experimental investigation of damage behavior of RC frame members including non-seismically designed columns. Earthquake Engineering Vibration, 8(2), 301–311.Chung, J., & Hulbert, G. M. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation. Journal of Applied Mechanics, 60, 371–374.Chung, Y. S., Meyer, C., & Shinozuka, M. (1988). A new damage model for reinforced concrete structures. Proceedings of Ninth World Conference on Earthquake Engineering, 205–210.Clough, R. W., & Johnston, S. B. (1966). Effect of stiffness degradation on earthquake ductility requirements. In Proceedings of the Japan Earthquake Engineering Symposium.Computers & Structures Inc. (2017). SAP 2000 (No. 20). Programa de análisis estructural. C.S.I. Educational Services.Cornell, C. A., & Vanmarcke, E. (1969). The major influences on seismic risk. Proc. 4th CWEE: Vol. Vol. I.Fajfar, P., & Gaspersic, P. (1996). The n2 method for the seismic damage analysis of rc buildings. Earthquake Engineering and Structural Dynamics, 25, 31–46.FEMA 273, & FEMA 274. (1996). NEHRP Guidelines for the seismic rehabilitation of buildings. Federal Emergency Management Agency (FEMA), Washington, D.C.FOPAE. (2010). Zonificación de la respuesta sísmica de Bogotá para el diseño Sismo Resistente de edificaciones.Freeman, S. A. (1975). Evaluation of existing buildings for seismic risk - A case study of puget sound naval shipyard. Proceedings of the U.S. National Conference on Earthquake Engineers, EERI, (pp. 113-122).Gallego, M., & Sarria, A. (2015). El concreto y los terremotos. Conceptos, comportamientos, patología y rehabilitación (Segunda Edición). Asocreto. Asociación Colombiana de Productores de Concreto.Haskell, N. A. (1953). The dispersion of surface waves in multilayered media. In Bulletin of the Seismological Society of America. Vol 43, pp. 17-34.Hilber, H. M., Hughes, T. J. R., & Taylor, R. L. (1977). Improved numerical dissipation for time integration algorithms in structural mechanics. Earthquake Engineering and Structural Dynamics, 5, 283–292.Ishibashi, I., & Zhang, X. (1993). Unified dynamic shear moduli and damping ratios of sand and clay. In Japanese Society of Soil Mechanics and Foundation Engineering. Vol 33, N° 1, pp. 182-191.Jiang, H. J., Chen, L. Z., & Chen, Q. (2011). Seismic damage assessment and performance levels of reinforced concrete members. Procedia Engineering, 14, 939–945.Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. Proceedings ASCE, 97(ST7), 1969–1990.Knopoff, L. (1964). “Q.” Review of Geophysics, Vol. 2, 625–660.Komeili, M., & Tesfamariam, S. (2012). Performance-based earthquake engineering design of reinforced concrete structures using black-box optimisation. International Journal of Materials and Structural Integrity, Vol. 6, No. 1.Kramer, S. L. (1996). Geotechnical Earthquake Engineering (W. J. Hall, Ed.). University of Washington.Kunnath, S. K., Reinhorn, A. M., & Abel, J. F. (1991). A computational tool for evaluation of seismic performance of reinforced concrete buildings. Computer Structures, 41(1), 157–173.Kunnath, S. K., Reinhorn, A. M., & Lobo, R. F. (1992). IDARC Version 3.0: A program for the inelastic damage analysis of reinforced concrete structures. In Department of Civil engineering. State University of New York at Buffalo and Department of Civil and Environmental engineering. University of Central Florida. National center for earthquake engineering research.Mander, J., Priestley, M., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering.Mehanny, S. S., & Deierlein, G. G. (2001). Seismic Damage and Collapse Assessment of Composite Moment Frames. Journal of Structural Engineering, 127(9), 1045–1053.Moehle, J. (2015). Seismic Design of Reinforced Concrete Buildings (Versión 1). McGraw Hill Education.Newmark, N. M. (1959). A method of computation for structural dynamics. Journal of Engineering Mechanics, 85, 67–94.Ordaz, M., Aguilar, A., & Arboleda, J. (2007). CRISIS2007: Program for computing seismic hazard [Computer software].]. Instituto de ingeniería. Universidad Nacional Autónoma de México.Ordaz, M., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., & D’Amico, V. (2017). R-CRISIS. Program and platform for computing seismic hazard.Otani, S. (1974). Inelastic analysis of R/C frame structures. Journal of Structural Division, ASCE, 100(ST7), 1433–1449.Otarola, C. Leonardo. (2015). Generación de acelerogramas artificiales usando un método estocástico de falla finita, aplicado a terremotos de subducción. Universidad de Chile.Park, R., & Paulay, T. (1994). Estructuras de concreto reforzado. LIMUSA. Noriega editores.Park, Y., & Ang, A. (1985). Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering. 111(4), Pp. 722-739.Park, Y. J., Ang, A. H.-S., & Wenn, Y. K. (1987). Damage limiting aseismic design of buildings. Earthquake Spectra, 3(1), 1–26.PEER. (2004). PEER structural performance database. Disponible en: http://nisee.berkey.edu/spd/.Priestley, M. J. N., & Park, R. (1987). Strength and Ductility of Concrete Bridge Columns under Seismic Loading. ACI Structural Journal, 84(1), 61–76.Roy, H. E. H., & Sozen, M. A. (1964). Ductility of concrete. Proceedings of the International Symposium on Flexural Mechanics of Reinforced Concrete, ASCE-ACI, 213–224.Salgado, M., Ordaz, M., Singh, K. S., Cardona, O. D., Reinoso, E., Aguado, A., Zuloaga, D., Huerta, B., & Bernal, G. (2018). Homogeneous and Continuous Probabilistic Seismic Hazard Model for Latin America and The Caribbean. 16th European Conference on Earthquake Engineering. Tessalonniki.Sargin, M., Ghosh, S. K., & Handa, V. K. (1971). Effects of lateral reinforcement upon the strength and deformation properties of concrete. Magazine of Concrete Research, 23(75–76), 99–110.SEAOC. (1995). Framework for Performance Based Design.Seed, H. B., & Idriss, M. I. (1970). Soil moduli and damping factor for dynamic response analysis.Sheikh, S. A., & Uzumeri, S. M. (1980). Strength and ductility of confined concrete columns. Proceedings ASCE, 106(ST5), 1079–1102.Singh, S. K., Bazan, E., & Esteva, L. (1980). Expected earthquake magnitude from a fault. Bulletin of the seismological Society of America. 70, 903-914.Singh, S. K., Ordaz, M., Anderson, J. G., Rodríguez, M., Quaas, R., Mena, E., Ottaviani, M., & Almora, D. (1989). Analysis of near source strong ground motion recordings along the Mexican subduction zone. Bull. Seism. Soc. Am., 70, 903–914.Soliman, M. T. M., & Yu, C. W. (1967). The flexural stress-strain relationship of concrete confined by rectangular transverse reinforcement. Magazine of Concrete Research, 19(61), 223–238.Stone, W. C., & Taylor, A. W. (1993). Seismic performance of circular bridge columns designed in accordance with AASHTO/CALTRANS standards.Su, J., Liu, B., Xing, G., Ma, Y., & Huang, J. (2019). Seismic damage and collapse assessment of reinforced concrete frame structures using a component - classification weighted algorithm. Hindawi. Mathematical Problems in Engineering.Takeda, T., Sozen, M. A., & Nielsen, N. N. (1970). R/C response to simulated earthquakes. Journal of Structural Division, ASCE., 96 (ST12), 2557–2573.Thompson, W. T. (1950). Transmission of elastic waves through a stratified solid. Journal of Applied Physics, 21, 89–93.Universidad de Los Andes. (2004). Microzonificación sísmica y estudios generales de riesgo en las ciudades de Palmira, Tuluá y Buga. In Centro de estudios sobre desastres y riesgos - CEDERI, Centro de Investigación en Materiales y Obras Civiles - CIMOC.Valdebenito, G. (2009). Passive Seismic Protection of Cable-Stayed Bridges Applying Viscous Dampers under Strong Motion. Universidad Politécnica de Catalunya.Verdugo, R. (2014). Apuntes Charla Respuesta sísmica en superficie - efecto sitio. 27 de Agosto de 2014 En UTFSM.Vulinovic, M., Milicevic, I., & Ignjatovic, I. (2019). The design of local ductility for reinforced concrete elements by Eurocode 8. Confinement effectiveness factor. Society for Materials and Structures Testing of Serbia. Journal for Research in the Field of Materials and Structures, 3(ISSN 2334-0229), 3–17.Wilson, E. L. (1968). A computer program for the dynamic stress analysis of underground structures. SEAM Report 68-1.AdministradoresBibliotecariosConsejerosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPersonal de apoyo escolarPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84004/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1116789378.2023.pdf1116789378.2023.pdfTesis de Maestría en Ingeniería - Estructurasapplication/pdf17512525https://repositorio.unal.edu.co/bitstream/unal/84004/2/1116789378.2023.pdf02417ec3c1c43a18d3a93534b7e0c65dMD52THUMBNAIL1116789378.2023.pdf.jpg1116789378.2023.pdf.jpgGenerated Thumbnailimage/jpeg5205https://repositorio.unal.edu.co/bitstream/unal/84004/3/1116789378.2023.pdf.jpgebce4b82983e05271a8aad18891ed0d0MD53unal/84004oai:repositorio.unal.edu.co:unal/840042024-08-11 01:12:39.264Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=