Modelo de clasificación de egresados donantes de una universidad usando técnicas de aprendizaje de máquinas
ilustraciones, diagramas
- Autores:
-
Gómez Restrepo, Natalia
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82751
- Palabra clave:
- 370 - Educación::378 - Educación superior (Educación terciaria)
000 - Ciencias de la computación, información y obras generales
Aprendizaje automático (Inteligencia artificial)
Aprendizaje de máquinas
Filantropía
Captación de fondos
Egresados donantes
Regresión logística
K-vecinos más cercanos
Máquinas de soporte vectorial
Machine learning
Philanthropy
Fundraising
Alumni donor
Logistic regression
K-nearest neighbor
Support vector machine
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_34b999342556bd3c440fb6b092c66431 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82751 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelo de clasificación de egresados donantes de una universidad usando técnicas de aprendizaje de máquinas |
dc.title.translated.eng.fl_str_mv |
Classification model of alumni donor of a university using machine learning techniques |
title |
Modelo de clasificación de egresados donantes de una universidad usando técnicas de aprendizaje de máquinas |
spellingShingle |
Modelo de clasificación de egresados donantes de una universidad usando técnicas de aprendizaje de máquinas 370 - Educación::378 - Educación superior (Educación terciaria) 000 - Ciencias de la computación, información y obras generales Aprendizaje automático (Inteligencia artificial) Aprendizaje de máquinas Filantropía Captación de fondos Egresados donantes Regresión logística K-vecinos más cercanos Máquinas de soporte vectorial Machine learning Philanthropy Fundraising Alumni donor Logistic regression K-nearest neighbor Support vector machine |
title_short |
Modelo de clasificación de egresados donantes de una universidad usando técnicas de aprendizaje de máquinas |
title_full |
Modelo de clasificación de egresados donantes de una universidad usando técnicas de aprendizaje de máquinas |
title_fullStr |
Modelo de clasificación de egresados donantes de una universidad usando técnicas de aprendizaje de máquinas |
title_full_unstemmed |
Modelo de clasificación de egresados donantes de una universidad usando técnicas de aprendizaje de máquinas |
title_sort |
Modelo de clasificación de egresados donantes de una universidad usando técnicas de aprendizaje de máquinas |
dc.creator.fl_str_mv |
Gómez Restrepo, Natalia |
dc.contributor.advisor.none.fl_str_mv |
Villa Garzón, Fernán Alonso |
dc.contributor.author.none.fl_str_mv |
Gómez Restrepo, Natalia |
dc.subject.ddc.spa.fl_str_mv |
370 - Educación::378 - Educación superior (Educación terciaria) 000 - Ciencias de la computación, información y obras generales |
topic |
370 - Educación::378 - Educación superior (Educación terciaria) 000 - Ciencias de la computación, información y obras generales Aprendizaje automático (Inteligencia artificial) Aprendizaje de máquinas Filantropía Captación de fondos Egresados donantes Regresión logística K-vecinos más cercanos Máquinas de soporte vectorial Machine learning Philanthropy Fundraising Alumni donor Logistic regression K-nearest neighbor Support vector machine |
dc.subject.lemb.none.fl_str_mv |
Aprendizaje automático (Inteligencia artificial) |
dc.subject.proposal.spa.fl_str_mv |
Aprendizaje de máquinas Filantropía Captación de fondos Egresados donantes Regresión logística K-vecinos más cercanos Máquinas de soporte vectorial |
dc.subject.proposal.eng.fl_str_mv |
Machine learning Philanthropy Fundraising Alumni donor Logistic regression K-nearest neighbor Support vector machine |
description |
ilustraciones, diagramas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-11-24T16:21:29Z |
dc.date.available.none.fl_str_mv |
2022-11-24T16:21:29Z |
dc.date.issued.none.fl_str_mv |
2022-11-24 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82751 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82751 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Berrar, D. (2019). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology, 1, 542–545. Bonaccorso, G. (2017). Machine Learning Algorithms. Birmingham: Packt. Borja-Robalino, R., Monleón-Getino, A., y Rodellar, J. (2020). Estandarización de métricas de rendimiento para clasificadores Machine y Deep Learning. Revista Ibérica de Sistemas e Tecnologias de Informação, 30(6), 184-196. Camacho Parra, N. D., y Soaza Forero, D. L. (2016). Los beneficios que genera ser una empresa socialmente en Colombia. Revista de la Universidad de la Salle, 2016(70), 216. Centro de Pensamiento en Políticas Públicas de Educación Superior. (2020). Modelo alternativo para la financiación de la universidad pública en Colombia. Bogotá. Chen, X., Ding, H., Fang, S., y Chen, W. (2022). Predicting the Success of Internet Social Welfare Crowdfunding Based on Text Information. Applied Sciences, 12(3), 1-22. Cho, M., Lemon, L., Levenshus, A., y Childers, C. (2019). Current students as university donors?: determinants in college students’ intentions to donate and share information about university crowdfunding efforts. International Review on Public and Nonprofit Marketing, 16, 23-41. Diez, L. (2019). Mejores prácticas en fundraising universitario: el caso del Departamento de Desarrollo y Relaciones con Antiguos Alumnos de la Universidad de Miami. La Cuestión Universitaria(10), 129. Drezner, N., Pizmony-Levy, O., y Anderson-Long, M. (2020). In "Alma Mater" we trust? Exploring attitudes toward institutions and alumni giving. Teachers College Record, 122(9), 1-44. Harrison, V. (2018). Understanding the donor experience: Applying stewardship theory to higher education donors. Public Relations Review, 44, 533-548. Hossin, M., y Sulaiman, M. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining y Knowledge Management Process, 5(2), 1-12. Instituto Hauser de Sociedad Civil. (2015). De la prosperidad al propósito: Perspectivas sobre la filantropía y la inversión social entre las personas de alto nivel patrimonial en América Latina. Estados Unidos: UBS Philanthropy Advisory. Jalali, A., Nyman, J., y Hamelin-Mitchell, E. (2022). Fundraisign in Education: Road Map to Involving Medical Educators in Fundraising. JMIR Medical Education, 8(2), 1-4. Johnson, P. D. (2018). Global Philanthropy Report: Perspectives on the global foundation sector. Estados Unidos: John F. Kennedy School of Government. Jung, Y., y Min-Young, L. (2019). Exploring departamental-level fundraising: Relationship-based factors affecting giving intention in arts higher education. International Journal of Higher Education, 8(3), 235-246. Lee, S., Lee, K., y Kim, H.-c. (2018). Content-based success prediction of crowdfunding campaigns: A deep learning approach. Conference on Computer-Supported Cooperative Work and Social Computing, (págs. 193-196). Jersey City. Lin, G., Lin, A., y Gu, D. (2022). Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient. Information Sciences, 517-531. Mahesh, B. (2018). Machine Learning Algorithms - A Review. International Journal of Science and Research, 381-386. Martínez-Plumed, F., et al. (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 33(8). McNamee, C. D., y Drezner, N. D. (2022). Breaking Stereotypes About Alumni Donors: Who Gives First? A Discrete-Time Hazard Model. Journal of Higher Education, 93(2), 220-247. Moine, J. M. (2013). Metodologías para el descubrimiento de conocimiento en bases de datos: un estudio comparativo. Nabar, R. (2020). A Comparative Study of Machine Learning Models for Fu ndraising Success. Organización de las Naciones Unidas. (2020). Objetivos de Desarrollo Sostenible. Obtenido de https://www.un.org/sustainabledevelopment/es/education/ Peng, N., Zhou, X., Niu, B., y Feng, Y. (2021). Predicting fundraising performance in medical crowdfunding campaigns using machine learning. Electronics, 10(2), 1-16. Pérez-Esparrells, C., y de la Torre, E. (2012). El fundraising como una herramienta complementaria de financiación pública de las universidades españolas. Investigaciones de Economía de la Educación, 867-888. Prieto, R., González, D., y Paz, A. (2015). Responsabilidad social universitaria: Estrategia para el desarrollo sostenible en América Latina. Jornadas Científicas Nacionales. Maracaibo. Ren, X., et al. (2022). Research on the Influencing Factors of Foundations' Fundraising Ability in Universities Based on Neural Network. IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers, (pp. 245-249). Dalian. Sarfaraz Ahmad, F., Tyagi, D., y Kaur, S. (2018). Predicting Crowdfunding Success with Optimally Weighted Random Forests. International Conference on Infocom Technologies and Unmanned Systems, (págs. 770-775). Dubai. Scikit-learn. (Julio de 2022). Scikit-learn. Obtenido de Scikit-learn: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html Scikit-learn. (Julio de 2022). Scikit-learn. Obtenido de Scikit-learn: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html Stankevicius, M., Marcinkevicius, V., y Rapsevicius, V. (2018). Comparison of Supervised Machine Learning Techniques for CERN CMS Offline Data Certification. Forum and Doctoral Consortium, (pp. 170-176). Sziegat, H., y Hong, C. (2020). University foundations and philanthropic fundraising in Chinese higher education: a promising trend with challenges. International Journal of Chinese Education, 9, 47-67. Tang, Z., et al. (2022). Deep Cross-Attention Network for Crowdfunding Success Prediction. IEEE Transactions on Multimedia, 1-14. Task Force on Voluntary Giving to Higher Education. (2004). Increasing voluntary giving to higher education. Torres Valdés, R. M. (2011). Relaciones Públicas y Fundraising en las Universidades. Una propuesta de modelo de gestión. Pensar la Publicidad, 5(1), 183-202. Umeki, A. (2022). Comparative Analysis of Machine Learning and Sequential Deep learning Models in Higher Education Fundraising. Villar Gómez, R. (2018). Las fundaciones en Colombia: Características, tendencias, desafíos. Bogotá D.C: Azoma Criterio Editorial. Wang, W., Zheng, H., y Wu, Y. J. (2020). Prediction of fundraising outcomes for crowdfunding projects based on deep learning: a multimodel comparative study. Soft Computing, 24(11), 8323-8341. Wirth, R., y Hipp, J. (2000). CRISP-DM: Towards a Standard Process Model for Data Mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining, 1. Wu, L., et al. (2020). Estimating early fundraising performance of innovations via graph-based market environment model. Conference on Artificial Intelligence, (pp. 6396-6403). New York. Ye, L. (2017). A Machine Learning Approach to Fundraising Success in Higher Education. Yu, P.-F., et al. (2018). Prediction of Crowdfunding Project Success with Deep Learning. International Conference on e-Business Engineering, (pp. 1-8). Xi'an. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
49 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Analítica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82751/7/license.txt https://repositorio.unal.edu.co/bitstream/unal/82751/8/1128394585.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82751/9/1128394585.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a ccb6866fe0e5f34a2f776e84034496bc 79011770df9f7a3f703fa59d56be01d8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089925673353216 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Villa Garzón, Fernán Alonso52f4ead43b7f03e5c6aead7f7bb44812600Gómez Restrepo, Nataliacf2cf23b6143343ef14838b29a91a21c2022-11-24T16:21:29Z2022-11-24T16:21:29Z2022-11-24https://repositorio.unal.edu.co/handle/unal/82751Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa sostenibilidad de las actividades filantrópicas y la capacidad de la recaudación de fondos en las universidades dependen, entre otros factores, de la vinculación permanente y de la búsqueda de nuevos donantes. La conexión entre la universidad y sus egresados propicia la vinculación de esta comunidad y los clasifica como potenciales donantes. Este trabajo presenta tres modelos de aprendizaje de máquinas que son adecuados para clasificar a los egresados como donantes potenciales. Las métricas utilizadas para evaluar el desempeño de los tres modelos son accuracy, recall, F1 score y precisión. El modelo óptimo se obtiene con el algoritmo de máquinas de soporte vectorial con mejores resultados respecto a los dos modelos adicionales en comparación. (Texto tomado de la fuente)The sustainability of philanthropic activities and the ability to raise funds in universities depends, among other factors, on permanent links and the search for new donors. The connection between the university and its graduates fosters the bonding of this community and classifies them as potential donors. This work presents three machine learning models that may be optimal for classifying graduates as potential donors. The metrics used to evaluate the performance of the three models are accuracy, recall, F1 score and precision. The optimal model is obtained with the algorithm of support vector machines with better results with respect to the two additional models in comparison.MaestríaÁrea Curricular de Ingeniería de Sistemas e Informática49 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - AnalíticaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín370 - Educación::378 - Educación superior (Educación terciaria)000 - Ciencias de la computación, información y obras generalesAprendizaje automático (Inteligencia artificial)Aprendizaje de máquinasFilantropíaCaptación de fondosEgresados donantesRegresión logísticaK-vecinos más cercanosMáquinas de soporte vectorialMachine learningPhilanthropyFundraisingAlumni donorLogistic regressionK-nearest neighborSupport vector machineModelo de clasificación de egresados donantes de una universidad usando técnicas de aprendizaje de máquinasClassification model of alumni donor of a university using machine learning techniquesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaBerrar, D. (2019). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology, 1, 542–545.Bonaccorso, G. (2017). Machine Learning Algorithms. Birmingham: Packt.Borja-Robalino, R., Monleón-Getino, A., y Rodellar, J. (2020). Estandarización de métricas de rendimiento para clasificadores Machine y Deep Learning. Revista Ibérica de Sistemas e Tecnologias de Informação, 30(6), 184-196.Camacho Parra, N. D., y Soaza Forero, D. L. (2016). Los beneficios que genera ser una empresa socialmente en Colombia. Revista de la Universidad de la Salle, 2016(70), 216.Centro de Pensamiento en Políticas Públicas de Educación Superior. (2020). Modelo alternativo para la financiación de la universidad pública en Colombia. Bogotá.Chen, X., Ding, H., Fang, S., y Chen, W. (2022). Predicting the Success of Internet Social Welfare Crowdfunding Based on Text Information. Applied Sciences, 12(3), 1-22.Cho, M., Lemon, L., Levenshus, A., y Childers, C. (2019). Current students as university donors?: determinants in college students’ intentions to donate and share information about university crowdfunding efforts. International Review on Public and Nonprofit Marketing, 16, 23-41.Diez, L. (2019). Mejores prácticas en fundraising universitario: el caso del Departamento de Desarrollo y Relaciones con Antiguos Alumnos de la Universidad de Miami. La Cuestión Universitaria(10), 129.Drezner, N., Pizmony-Levy, O., y Anderson-Long, M. (2020). In "Alma Mater" we trust? Exploring attitudes toward institutions and alumni giving. Teachers College Record, 122(9), 1-44.Harrison, V. (2018). Understanding the donor experience: Applying stewardship theory to higher education donors. Public Relations Review, 44, 533-548.Hossin, M., y Sulaiman, M. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining y Knowledge Management Process, 5(2), 1-12.Instituto Hauser de Sociedad Civil. (2015). De la prosperidad al propósito: Perspectivas sobre la filantropía y la inversión social entre las personas de alto nivel patrimonial en América Latina. Estados Unidos: UBS Philanthropy Advisory.Jalali, A., Nyman, J., y Hamelin-Mitchell, E. (2022). Fundraisign in Education: Road Map to Involving Medical Educators in Fundraising. JMIR Medical Education, 8(2), 1-4.Johnson, P. D. (2018). Global Philanthropy Report: Perspectives on the global foundation sector. Estados Unidos: John F. Kennedy School of Government.Jung, Y., y Min-Young, L. (2019). Exploring departamental-level fundraising: Relationship-based factors affecting giving intention in arts higher education. International Journal of Higher Education, 8(3), 235-246.Lee, S., Lee, K., y Kim, H.-c. (2018). Content-based success prediction of crowdfunding campaigns: A deep learning approach. Conference on Computer-Supported Cooperative Work and Social Computing, (págs. 193-196). Jersey City.Lin, G., Lin, A., y Gu, D. (2022). Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient. Information Sciences, 517-531.Mahesh, B. (2018). Machine Learning Algorithms - A Review. International Journal of Science and Research, 381-386.Martínez-Plumed, F., et al. (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 33(8).McNamee, C. D., y Drezner, N. D. (2022). Breaking Stereotypes About Alumni Donors: Who Gives First? A Discrete-Time Hazard Model. Journal of Higher Education, 93(2), 220-247.Moine, J. M. (2013). Metodologías para el descubrimiento de conocimiento en bases de datos: un estudio comparativo.Nabar, R. (2020). A Comparative Study of Machine Learning Models for Fu ndraising Success.Organización de las Naciones Unidas. (2020). Objetivos de Desarrollo Sostenible. Obtenido de https://www.un.org/sustainabledevelopment/es/education/Peng, N., Zhou, X., Niu, B., y Feng, Y. (2021). Predicting fundraising performance in medical crowdfunding campaigns using machine learning. Electronics, 10(2), 1-16.Pérez-Esparrells, C., y de la Torre, E. (2012). El fundraising como una herramienta complementaria de financiación pública de las universidades españolas. Investigaciones de Economía de la Educación, 867-888.Prieto, R., González, D., y Paz, A. (2015). Responsabilidad social universitaria: Estrategia para el desarrollo sostenible en América Latina. Jornadas Científicas Nacionales. Maracaibo.Ren, X., et al. (2022). Research on the Influencing Factors of Foundations' Fundraising Ability in Universities Based on Neural Network. IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers, (pp. 245-249). Dalian.Sarfaraz Ahmad, F., Tyagi, D., y Kaur, S. (2018). Predicting Crowdfunding Success with Optimally Weighted Random Forests. International Conference on Infocom Technologies and Unmanned Systems, (págs. 770-775). Dubai.Scikit-learn. (Julio de 2022). Scikit-learn. Obtenido de Scikit-learn: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.htmlScikit-learn. (Julio de 2022). Scikit-learn. Obtenido de Scikit-learn: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.htmlStankevicius, M., Marcinkevicius, V., y Rapsevicius, V. (2018). Comparison of Supervised Machine Learning Techniques for CERN CMS Offline Data Certification. Forum and Doctoral Consortium, (pp. 170-176).Sziegat, H., y Hong, C. (2020). University foundations and philanthropic fundraising in Chinese higher education: a promising trend with challenges. International Journal of Chinese Education, 9, 47-67.Tang, Z., et al. (2022). Deep Cross-Attention Network for Crowdfunding Success Prediction. IEEE Transactions on Multimedia, 1-14.Task Force on Voluntary Giving to Higher Education. (2004). Increasing voluntary giving to higher education.Torres Valdés, R. M. (2011). Relaciones Públicas y Fundraising en las Universidades. Una propuesta de modelo de gestión. Pensar la Publicidad, 5(1), 183-202.Umeki, A. (2022). Comparative Analysis of Machine Learning and Sequential Deep learning Models in Higher Education Fundraising.Villar Gómez, R. (2018). Las fundaciones en Colombia: Características, tendencias, desafíos. Bogotá D.C: Azoma Criterio Editorial.Wang, W., Zheng, H., y Wu, Y. J. (2020). Prediction of fundraising outcomes for crowdfunding projects based on deep learning: a multimodel comparative study. Soft Computing, 24(11), 8323-8341.Wirth, R., y Hipp, J. (2000). CRISP-DM: Towards a Standard Process Model for Data Mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining, 1.Wu, L., et al. (2020). Estimating early fundraising performance of innovations via graph-based market environment model. Conference on Artificial Intelligence, (pp. 6396-6403). New York.Ye, L. (2017). A Machine Learning Approach to Fundraising Success in Higher Education.Yu, P.-F., et al. (2018). Prediction of Crowdfunding Project Success with Deep Learning. International Conference on e-Business Engineering, (pp. 1-8). Xi'an.AdministradoresEstudiantesInvestigadoresMaestrosPersonal de apoyo escolarProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82751/7/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD57ORIGINAL1128394585.2022.pdf1128394585.2022.pdfTesis de Maestría Ingeniería - Analíticaapplication/pdf1142123https://repositorio.unal.edu.co/bitstream/unal/82751/8/1128394585.2022.pdfccb6866fe0e5f34a2f776e84034496bcMD58THUMBNAIL1128394585.2022.pdf.jpg1128394585.2022.pdf.jpgGenerated Thumbnailimage/jpeg5147https://repositorio.unal.edu.co/bitstream/unal/82751/9/1128394585.2022.pdf.jpg79011770df9f7a3f703fa59d56be01d8MD59unal/82751oai:repositorio.unal.edu.co:unal/827512023-08-10 23:04:16.582Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |