¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográfico
ilustraciones, fotografías, graficas, mapas
- Autores:
-
Briceño Zea, Jhon Sebastian
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82229
- Palabra clave:
- 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
CARACTERISTICAS DEMOGRAFICAS
Demographic characteristics
Filogenética
Filogeografía
Tortugas continentales
mtDNA
nuDNA
Complejo de especies
Especiación críptica
Phylogenetics
Phylogeography
Continental turtles
mtDNA
nuDNA
Species complex
Cryptic speciation
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_3482f070c2aacd68c495246441de705f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82229 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográfico |
dc.title.translated.eng.fl_str_mv |
Are Kinosternon scorpioides and Kinosternon leucostomum (Testudines: Kinosternidae) species complexes? Evaluation using mitochondrial and nuclear markers and wide geographic sampling |
title |
¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográfico |
spellingShingle |
¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográfico 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales CARACTERISTICAS DEMOGRAFICAS Demographic characteristics Filogenética Filogeografía Tortugas continentales mtDNA nuDNA Complejo de especies Especiación críptica Phylogenetics Phylogeography Continental turtles mtDNA nuDNA Species complex Cryptic speciation |
title_short |
¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográfico |
title_full |
¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográfico |
title_fullStr |
¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográfico |
title_full_unstemmed |
¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográfico |
title_sort |
¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográfico |
dc.creator.fl_str_mv |
Briceño Zea, Jhon Sebastian |
dc.contributor.advisor.none.fl_str_mv |
Vargas-Ramírez, Mario |
dc.contributor.author.none.fl_str_mv |
Briceño Zea, Jhon Sebastian |
dc.contributor.researchgroup.spa.fl_str_mv |
Biodiversidad y Conservación Genética |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales |
topic |
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales CARACTERISTICAS DEMOGRAFICAS Demographic characteristics Filogenética Filogeografía Tortugas continentales mtDNA nuDNA Complejo de especies Especiación críptica Phylogenetics Phylogeography Continental turtles mtDNA nuDNA Species complex Cryptic speciation |
dc.subject.lemb.spa.fl_str_mv |
CARACTERISTICAS DEMOGRAFICAS |
dc.subject.lemb.eng.fl_str_mv |
Demographic characteristics |
dc.subject.proposal.spa.fl_str_mv |
Filogenética Filogeografía Tortugas continentales mtDNA nuDNA Complejo de especies Especiación críptica |
dc.subject.proposal.eng.fl_str_mv |
Phylogenetics Phylogeography Continental turtles mtDNA nuDNA Species complex Cryptic speciation |
description |
ilustraciones, fotografías, graficas, mapas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-31T20:54:03Z |
dc.date.available.none.fl_str_mv |
2022-08-31T20:54:03Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82229 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82229 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Acuña Mesen, R., Marquez B., C., 1993. El dimorfismo sexual de Kinosternon scorpioides (Testudines: Kinosternidae) en Palo Verde, Costa Rica. Rev. Biol. Trop. 41, 261–265. https://doi.org/10.15517/rbt.v41i2.23360 Ardila-Marulanda, M., De La Ossa V., J., De La Ossa-Lacayo, A., 2016. Uso de quelonios continentales en el golfo de Morrosquillo, Sucre, Colombia. Rev. Colomb. Cienc. Anim. - RECIA 8, 361. https://doi.org/10.24188/recia.v8.n0.2016.392 Avendaño, J.E., Cortés-Herrera, J.O., Briceño-Lara, E.R., Rincón-Guarín, D.A., 2013. Crossing or bypassing the Andes: a commentary on recent range extensions of cis-Andean birds to the West of the Andes of Colombia. Orinoquia 17, 207–214 Backström, N., Fagerberg, S., Ellegren, H., 2008. Genomics of natural bird populations: A gene-based set of reference markers evenly spread across the avian genome. Mol. Ecol. 17, 964–980. https://doi.org/10.1111/j.1365- 294X.2007.03551.x Baker, P.A.; Sherilyn, C.F.; Battisti, D.S.; Dick, C.W.; Vargas, O.M., Asner, G.P., Matin, R.E., Wheatley, A., Prates, I., 2020. Beyond Refugia: New Insights on Quaternary Climate Variation and the Evolution of Biotic Diversity in Tropical South America. In V. Rull, A. C. Carnaval (eds.), Neotropical Diversification: Patterns and Processes, Fascinating Life Sciences (1st ed., pp. 54-71). Springer, Cham. Barley, A.J., Spinks, P.Q., Thomson, R.C., Shaffer, H.B., 2010. Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life. Mol. Phylogenet. Evol. 55, 1189–1194. https://doi.org/10.1016/j.ympev.2009.11.005 Battey, C.J., Klicka, J., 2017. Cryptic speciation and gene flow in a migratory songbird Species Complex: Insights from the Red-Eyed Vireo (Vireo olivaceus). Mol. Phylogenet. Evol. 113, 67–75. https://doi.org/10.1016/j.ympev.2017.05.006 Berger, W.H., 1990. The younger dryas cold spell - a quest for causes. Global and Planetary Change, 3(3), 219–237. doi:10.1016/0921-8181(90)90018-8 Berriozabal-Islas, C., Ramírez-Bautista, A., Torres-Ángeles, F., Mota Rodrigues, J.F., Macip-Ríos, R., Octavio-Aguilar, P., 2020. Climate change effects on turtles of the genus Kinosternon (Testudines: Kinosternidae): an assessment of habitat suitability and climate niche conservatism. Hydrobiologia 847, 4091–4110. https://doi.org/10.1007/s10750-020-04402-y Berry J, F., 1978. Variation and systematics in the Kinosternon scorpioides and K. leucostomum complexes (Reptilia: Testudines: Kinosternidae) of Mexico and Central. University of Utah. Berry, J.F., Iverson, J.B., 2001a. Kinosternon scorpioides. Cat. Am. Amphib. Reptil. doi:10.15781/T2GB1XN2W Berry, J.F., Iverson, J.B., 2001b. Kinosternon leucostomum. Cat. Am. Amphib. Reptil. doi:10.15781/T2M32NF5J Berry, J. F., J. B. Iverson y G. Forero-Medina. 2012. Kinosternon scorpioides (Linnaeus 1766). Pp. 340-348. En: Páez-Nieto V. P., Morales-Betacourt M. A., Lasso C. A., Castaño-Mora O.V., B.B. (1ª Ed.), 2012. Biología y Conservación de Las Tortugas Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bhaskar, R., Mohindra, V., 2019. Phylogenetic relationships among Indian freshwater turtles (family Trionychidae and Geoemydidae) with special reference to Lissemys punctata, inferred from mitochondrial cytochrome b gene sequences. Meta Gene 22, 100610. https://doi.org/10.1016/j.mgene.2019.100610 Brumfield, R.T., Capparella, A.P., 1996. Historical diversification of birds in Northwestern South America: A molecular perspective on the role of vicariant events. Evolution (N. Y). 50, 1607–1624. https://doi.org/10.1111/j.1558- 5646.1996.tb03933.x Brusquetti, F., Netto, F., Baldo, D., Haddad, C., 2019. The influence of Pleistocene glaciations on Chacoan fauna: genetic structure and historical demography of an endemic frog of the South American Gran Chaco. Biological Journal of the Linnean Society, 126(3), 404-616. https://doi.org/10.1093/biolinnean/bly203 Bryson, R.W., García-Vázquez, U.O., Riddle, B.R., 2012. Diversification in the Mexican horned lizard Phrynosoma orbiculare across a dynamic landscape. Mol. Phylogenet. Evol. 62, 87–96. https://doi.org/10.1016/j.ympev.2011.09.007 Bush, M.B., Oliveira, P.E. 2006. The rise and fall of the Refugial Hypothesis of Amazonian speciation: a paleoecological perspective. Biota Neotropica, 6(1). doi:10.1590/S1676-06032006000100002 Butler, C.J., 2019. A review of the effects of climate change on chelonians. Diversity 11. https://doi.org/10.3390/d11080138 Cabrera, M.R., Colantonio, S.E., 1997. Taxonomic Revision of the South American Subspecies of the Turtle Kinosternon scorpioides. Soc. Study Amphib. Reptil. 31, 507–513. Cáceres-Martínez, C.H., Acevedo Rincón, A.A., Sierra Leal, J.A., González-Maya, J.F., 2017. Kinosternon scorpioides scorpioides (Testudines: kinosternidae): nuevo reporte en el Nororiente de Colombia. Acta Biol. Colomb. 22, 242–245. https://doi.org/10.15446/abc.v22n2.59804 Cadena, C.D., Pedraza, C.A., Brumfield, R.T., 2016. Climate, habitat associations and the potential distributions of Neotropical birds: Implications for diversification across the Andes. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 40, 275. https://doi.org/10.18257/raccefyn.280 Carter, A.L., Janzen, F.J., 2021. Predicting the effects of climate change on incubation in reptiles : methodological advances and new directions 1–10. https://doi.org/10.1242/jeb.236018 Ceballos, C.P., Zapata, D., Alvarado, C., Rincón, E., 2016. Morphology, Diet, and Population Structure of the Southern White-lipped Mud Turtle Kinosternon leucostomum postinguinale (Testudines: Kinosternidae) in the Nus River Drainage, Colombia. J. Herpetol. 50, 374–380. https://doi.org/10.1670/15-035 Chiari, Y., Vences, M., Vieites, D.R., Rabemananjara, F., Bora, P., Ramilijaona Ravoahangimalala, O., Meyer, A., 2004. New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Mol. Ecol. 13, 3763–3774. https://doi.org/10.1111/j.1365-294X.2004.02367.x Chiari, Y., Vences, M., Vieites, D.R., Rabemananjara, F., Bora, P., Ramilijaona Ravoahangimalala, O., Meyer, A., 2004. New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Mol. Ecol. 13, 3763–3774. https://doi.org/10.1111/j.1365-294X.2004.02367.x Cooper, M.A., Addison, F.T., Alvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martinez, J., Naar, J., Peñas, R., Pulham, A.J., Taborda, A., 1995. Basin development and tectonic history of the Llano Basin, Eastern Cordillera, and middle Magdalena Valley, Colombia. AAPG Bull. 79, 1421–1444 Cordero, G.A., Reeves, R., Swarth, C.W., 2012. Long distance aquatic movement and home-range size of an eastern mud turtle, Kinosternon Subrubrum, population in the Mid-Atlantic Region of the United States. Chelonian Conserv. Biol. 11, 121– 124. https://doi.org/10.2744/CCB-0874.1 Corredor-Londoño, G.A., Kattan, G., Galvis-Rizo, C.A., Amorocho, D., 2007. Tortugas del Valle del Cauca. Corporación Autónoma Regional del Valle del Cauca, Cali Crawford, N.G., Parham, J.F., Sellas, A.B., Faircloth, B.C., Glenn, T.C., Papenfuss, T.J., Henderson, J.B., Hansen, M.H., Simison, W.B., 2015. A phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257. https://doi.org/10.1016/j.ympev.2014.10.021 D'Apolito, C., Absy, M.L., Latrubesse, E.M. 2013. The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quaternary Science Reviews, 76, 140–155. doi:10.1016/j.quascirev.2013.07.013 Davis, M.A., Douglas, M.R., Collyer, M.L., Douglas, M.E., 2016. Deconstructing a species-complex: Geometric morphometric and molecular analyses define species in the Western Rattlesnake (Crotalus viridis). PLoS One 11, 1–21. https://doi.org/10.1371/journal.pone.0146166 Dias, R.M., Lima, S.M.Q., Mendes, L.F., Almeida, D.F., Paiva, P.C., Britto, M.R., 2019. Different speciation processes in a cryptobenthic reef fish from the Western Tropical Atlantic. Hydrobiologia 837, 133–147. https://doi.org/10.1007/s10750- 019-3966-z Dutcher, K.E., Vandergast, A.G., Esque, T.C., Mitelberg, A., Matocq, M.D., Heaton, J.S., Nussear, K.E., 2020. Genes in space: what Mojave desert tortoise genetics can tell us about landscape connectivity. Conserv. Genet. 21, 289–303. https://doi.org/10.1007/s10592-020-01251-z Ennen, J.R., Kalis, M.E., Patterson, A.L., Kreiser, B.R., Lovich, J.E., Godwin, J., Qualls, C.P., 2014. Clinal variation or validation of a subspecies? A case study of the graptemys nigrinoda complex (testudines: Emydidae). Biol. J. Linn. Soc. 111, 810–822. https://doi.org/10.1111/bij.12234 Fritz, U., Fattizzo, T., Guicking, D., Tripepi, S., Pennisi, M.G., Lenk, P., Joger, U., Wink, M., 2005. A new cryptic species of pond turtle from southern Italy, the hottest spot in the range of the genus Emys (Reptilia, Testudines, Emydidae). Zool. Scr. 34, 351–371. https://doi.org/10.1111/j.1463-6409.2005.00188.x Fritz, U., Gong, S., Auer, M., Kuchling, G., Schneewei, N., Hundsdörfer, A.K., 2010. The world’s economically most important chelonians represent a diverse species complex (Testudines: Trionychidae: Pelodiscus). Org. Divers. Evol. 10, 227–242. https://doi.org/10.1007/s13127-010-0007-1 Fritz, U., Guicking, D., Auer, M., Sommer, R.S., Wink, M., Hundsdörfer, A.K., 2008. Diversity of the Southeast Asian leaf turtle genus Cyclemys: How many leaves on its tree of life? Zool. Scr. 37, 367–390. https://doi.org/10.1111/j.1463- 6409.2008.00332.x Frost, D.R., Rodrigues, M.T., Grant, T., Titus, T.A., 2001. Phylogenetics of the lizard genus Tropidurus (Squamata: Tropiduridae: Tropidurinae): Direct optimization, descriptive efficiency, and sensitivity analysis of congruence between molecular data and morphology. Mol. Phylogenet. Evol. 21, 352–371. https://doi.org/10.1006/mpev.2001.1015 Fujita, M.K., Engstrom, T.N., Starkey, D.E., Shaffer, H.B., 2004. Turtle phylogeny: Insights from a novel nuclear intron. Mol. Phylogenet. Evol. 31, 1031–1040. https://doi.org/10.1016/j.ympev.2003.09.016 Giraldo, F., Garcés-Restrepo, F.M., Carr, J.L., 2012. Kinosternon scorpioides, in: Páez-Nieto V. P., Morales-Betacourt M. A., Lasso C. A., Castaño-Mora O.V., B.B. (Ed.), Biología y Conservación de Las Tortugas Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Haffer, J. 1969. Speciation in Amazonian Forest Birds. Science, 165(3889), 131– 137. doi:10.1126/science.165.3889.131 Hall, T., 1999. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. Hernández Morales, C., Sturaro, M.J., Nunes, P.M.S., Lotzkat, S., Peloso, P.L.V., 2020. A species-level total evidence phylogeny of the microteiid lizard family Alopoglossidae (Squamata: Gymnophthalmoidea). Cladistics 36, 301–321. https://doi.org/10.1111/cla.12407 Hillis, D.M., 2019. Species delimitation in herpetology. J. Herpetol. 53, 3–12. https://doi.org/10.1670/18-123 Hu, Y., Thapa, A., Fan, H., Ma, T., Wu, Q., Ma, S., Zhang, D., Wang, B., Li, M., Yan, L., Wei, F., 2020. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6, 1–11. https://doi.org/10.1126/sciadv.aax5751 Iverson, J.B., 1991. Phylogenetic hypotheses for the evolution of modern kinosternine turtles. Herpetol. Monogr. 5, 1–27. https://doi.org/10.2307/1466974 Iverson, J.B., 2010. Reproduction in the red-cheeked mud turtle (Kinosternon scorpioides cruentatum) in Southeastern Mexico and Belize, with comparisons across the species range. Chelonian Conserv. Biol. 9, 250–261. https://doi.org/10.2744/CCB-0827.1 Iverson, J.B., Brown, R.M., Akre, T.S., Near, T.J., Le, M., Thomson, R.C., Starkey, D.E., 2007. In Search of the Tree of Life for Turtles. Defin. Turt. Divers. Proc. a Work. Genet. Ethics, Taxon. Freshw. Turtles Tortoises 85–106. Iverson, J.B., Le, M., Ingram, C., 2013. Molecular phylogenetics of the mud and musk turtle family Kinosternidae. Mol. Phylogenet. Evol. 69, 929–939. https://doi.org/10.1016/j.ympev.2013.06.011 Iverson, J.D., Mata-Silva, V., García, E., Wilson, L.D., 2015. The herpetofauna of Chiapas , Mexico : composition , distribution , and conservation 271–329. Johnson, J.D., 1990. Biogeographic Aspects of the Herpetofauna of the Central Depression of Chiapas, México, with Comments on Surrounding Areas 35, 268– 278 Jombart, T., 2015. An introduction to adegenet 2.0.0. R Package. Juste, J., Ruedi, M., Puechmaille, S.J., Salicini, I., Ibáñez, C., 2018. Two New Cryptic Bat Species within the Myotis nattereri Species Complex (Vespertilionidae, Chiroptera) from the Western Palaearctic. Acta Chiropterologica 20, 285–300. https://doi.org/10.3161/15081109ACC2018.20.2.001 Kartavtsev, Y.P., 2011. Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochondrial DNA 22, 55– 65. https://doi.org/10.3109/19401736.2011.588215 Kieswetter, C.M., Schneider, C.J., 2013. Phylogeography in the northern Andes: Complex history and cryptic diversity in a cloud forest frog, Pristimantis w-nigrum (Craugastoridae). Mol. Phylogenet. Evol. 69, 462–468. https://doi.org/10.1016/j.ympev.2013.08.007 Knaus, B., Winter, D., Paradis, E., Jombart, T., Kamvar, Z.N., Knaus, B., Schliep, K., Alastair, P., Winter, D., 2020. Package ‘ pegas .’ Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S. V., Paabo, S., Villablanca, F.X., Wilson, A.C., 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. U. S. A. 86, 6196–6200. https://doi.org/10.1073/pnas.86.16.6196 Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., Calcott, B., 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. https://doi.org/dx.doi.org/10.1093/molbev/msw260 Leaché, A.D., McGuire, J.A., 2006. Phylogenetic relationships of horned lizards (Phrynosoma) based on nuclear and mitochondrial data: Evidence for a misleading mitochondrial gene tree. Mol. Phylogenet. Evol. 39, 628–644. https://doi.org/10.1016/j.ympev.2005.12.016 Loc-Barragán, J.A., Reyes-Velasco, J., Woolrich-Piña, G.A., Grünwald, C.I., Venegas de Anaya, M., Rangel-Mendoza, J.A., López-Luna, M.A., 2020. A new species of mud turtle of genus kinosternon (Testudines: Kinosternidae) from the pacific coastal plain of northwestern Mexico. Zootaxa 4885, 509–529. https://doi.org/10.11646/zootaxa.4885.4.3 López-Luna, M.A., Cupul-Magaña, F.G., Escobedo-Galván, A.H., GonzálezHernández, A.J., Centenero-Alcalá, E., Rangel-Mendoza, J.A., Ramírez-Ramírez, M.M., Cazares-Hernández, E. 2018. A Distinctive New Species of Mud Turtle from Western México. Chelonian Conservation and Biology, 17(1), 2–13. doi:10.2744/CCB-1292.1 López-Luna, M.A., Venegas-Anaya, M., Cupul-Magaña, F.G., Rangel-Mendoza, J.A., Escobedo-Galván, A.H. 2021. Mitochondrial DNA data support the recognition of the mud turtle, Kinosternon vogti (Cryptodira: Kinosternidae). Chelonian Conservation and Biology, 20(1), 97-102. https://doi.org/ 10.2744/CCB1387.1 Maddison, W., Knowles, L., 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21–30. https://doi.org/10.1080/10635150500354928 Márquez, C., 1995. Historia natural y dimorfismo sexual de la tortuga Kinosternon scorpioides en Palo Verde Costa Rica. Rev. Ecol. Latino-Americana 2, 37–44 Mata-Silva, V., DeSantis, D.L., García-Padilla, E., Johnson, J.D., Wilson, L.D., 2019. The endemic herpetofauna of Central America: A casualty of anthropocentrism. Amphib. Reptil. Conserv. 13, 1–64 McCormack, J.E., Hird, S.M., Zellmer, A.J., Carstens, B.C., Brumfield, R.T., 2013. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenet. Evol. 66, 526–538. https://doi.org/10.1016/j.ympev.2011.12.007 McCranie, J.R. 2018. The Lizards, Crocodiles, and Turtles of Honduras. Systematics, Distribution, and Conservation. Bulletin of the Museum of Comparative Zoology, 1–129. doi:10.3099/0027-4100-15.1.1 Mendoza-Henao, A.M., Arias, E., Townsend, J.H., Parra-Olea, G., 2020. Phylogeny-based species delimitation and integrative taxonomic revision of the Hyalinobatrachium fleischmanni species complex, with resurrection of H. viridissimum (Taylor, 1942). Syst. Biodivers. 0, 1–21. https://doi.org/10.1080/14772000.2020.1776781 Morales-Betancourt, M.A., Lasso, C.A., Páez, V.P., Bock, B.C., 2015. Libro rojo de reptiles de Colombia., in: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt, p. 247 Morales-Martínez, D.M., Rodríguez-Posada, M.E., Ramírez-Chaves, H.E., 2021. Erratum to: A new cryptic species of yellow-eared bat Vampyressa melissa species complex (Chiroptera: Phyllostomidae) from Colombia. J. Mammal. https://doi.org/10.1093/jmammal/gyab016 Morales-Verdeja, S.A., Vogt, R.C., 1997. Terrestrial movements in relation to aestivation and the annual reproductive cycle of Kinosternon leucostomum. Copeia 1997, 123–130. https://doi.org/10.2307/1447847 Mothes, C.C., Howell, H.J., Searcy, C.A., 2020. Habitat suitability models for the imperiled wood turtle (Glyptemys insculpta) raise concerns for the species’ persistence under future climate change. Glob. Ecol. Conserv. 24, e01247. https://doi.org/10.1016/j.gecco.2020.e01247 Nascimento, F.F., Reis, M. Dos, Yang, Z., 2017. A biologist’s guide to Bayesian phylogenetic analysis. Nat. Ecol. Evol. 1, 1446–1454. https://doi.org/10.1038/s41559-017-0280-x Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300 Padial, J.M., De La Riva, I., 2009. Integrative taxonomy reveals cryptic Amazonian species of Pristimantis (Anura: Strabomantidae). Zool. J. Linn. Soc. 155, 97–122. https://doi.org/10.1111/j.1096-3642.2008.00424.x Páez-Nieto V. P., Morales-Betacourt M. A., Lasso C. A., Castaño-Mora O.V., B.B. (1ª Ed.), 2012. Biología y Conservación de Las Tortugas Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH) Pereira, L.A., Santos, E.M. Dos, Tchaicka, L., De Sousa, A.L., 2019. Population analysis of Kinosternon scorpioides using SSR markers. AIP Conf. Proc. 2186, 1– 5. https://doi.org/10.1063/1.5138059 Pérez-Pérez, A., López-Moreno, A.E., Suárez-Rodríguez, O., Rheubert, J.L., Hernández-Gallegos, O., 2017. How far do adult turtles move? Home range and dispersal of Kinosternon integrum. Ecol. Evol. 7, 8220–8231. https://doi.org/10.1002/ece3.3339 Petzold, A., Vargas-Ramírez, M., Kehlmaier, C., Vamberger, M., Branch, W.R., Du Preez, L., Hofmeyr, M.D., Meyer, L., Schleicher, A., Široký, P., Fritz, U., 2014. A revision of African helmeted terrapins (Testudines: Pelomedusidae: Pelomedusa), with descriptions of six new species. Zootaxa 3795, 523–548. https://doi.org/10.11646/zootaxa.3795.5.2 Phillips, J.G., Deitloff, J., Guyer, C., Huetteman, S., Nicholson, K.E., 2015. Biogeography and evolution of a widespread Central American lizard species complex: Norops humilis, (Squamata: Dactyloidae). BMC Evol. Biol. 15, 20–24. https://doi.org/10.1186/s12862-015-0391-4 Pine, R.H., Timm, R.M., Weksler, M., 2012. A newly recognized clade of transAndean Oryzomyini (Rodentia: Cricetidae), with description of a new genus. J. Mammal. 93, 851–870. https://doi.org/10.1644/11-MAMM-A-012.1 Praschag, P., Hundsdörfer, A.K., Fritz, U., 2007. Phylogeny and taxonomy of endangered South and South-east Asian freshwater turtles elucidated by mtDNA sequence variation (Testudines: Geoemydidae: Batagur, Callagur, Hardella, Kachuga, Pangshura). Zool. Scr. 36, 429–442. https://doi.org/10.1111/j.1463- 6409.2007.00293.x Pritchard, P.C., Trebbau, P., 1984. Turtles of Venezuela. Soc. Study Amphib. Reptil. 403. Quijada-Mascareñas, J, Ferguson, J.E., Pook, C.E., Salomão M.G., Thorpe, R.S., Wüster, W., 2007. Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex) as an example. 34(8), 1296–1312. https://doi.org/10.1111/j.1365- 2699.2007.01707.x Rambaut, A., 2018. FigTree. Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 Ramírez-Guerra, N., 2016. Caracterización filogenética de la tortuga Tapaculo Kinosternon leucostomum postinguinale (Testudines: Kinosternidae) (MSc Thesis). Universidad de Antioquia. Rhodin, A.G.J., Iverson, J.B., Bour, R., Fritz, U., Georges, A., Shaffer, H.B., van Dijk, P.P., 2021. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (9th Ed.). Chelonian Research Foundation & Turtle Conservancy. https://doi.org/10.3854/crm.8.checklist.atlas.v9.2021 Ríos, N., Bouza, C., Gutiérrez, V., García, G., 2017. Species complex delimitation and patterns of population structure at different geographic scales in Neotropical silver catfish (Rhamdia: Heptapteridae). Environ. Biol. Fishes 100, 1047–1067. https://doi.org/10.1007/s10641-017-0622-1 Rocha-Méndez, A., Sánchez-González, L.A., González, C., Navarro-Sigüenza, A.G., 2019. The geography of evolutionary divergence in the highly endemic avifauna from the Sierra Madre del Sur, Mexico. BMC Evol. Biol. 19, 1–21. https://doi.org/10.1186/s12862-019-1564-3 Rocha D.G., Igor K., 2019. What has become of the refugia hypothesis to explain biological diversity in Amazonia?. Ecology and Evolution, 9, 4302-4309. doi:10.1002/ece3.5051 Rocha, M.B. da, Molina, F. de B., 1990. Reproductive Biology of Kinosternon scorpioides (Testudines: Kinosternidae) in Captivity. Tortoises & Turtles. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 Rubinoff, D., Holland, B.S., 2005. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst. Biol. 54, 952–961. https://doi.org/10.1080/10635150500234674 Rueda-Almonacid, J. V, Carr, J., Mittermeier, R., Rodríguez-Mahecha, J. V, Mast, R., Vogt, R., Rhodin, A., Velasquez, J., Rueda, J.N., Mittermeier, C., 2007. Las Tortugas y los Cocodrilianos de los Países Andinos del Trópico. Savage, J.M., 1966. The Origins and History of the Central American Herpetofauna. Copeia 1966, 719. https://doi.org/10.2307/1441404 Scott, P.A., Glenn, T.C., Rissler, L.J., 2018. Resolving taxonomic turbulence and uncovering cryptic diversity in the musk turtles (Sternotherus) using robust demographic modeling. Mol. Phylogenet. Evol. 120, 1–15. https://doi.org/10.1016/j.ympev.2017.11.008 Serb, J.M., Phillips, C.A., Iverson, J.B., 2001. Molecular phylogeny and biogeography of Kinosternon flavescens based on complete mitochondrial control region sequences. Mol. Phylogenet. Evol. 18, 149–162. https://doi.org/10.1006/mpev.2000.0858 Shaffer, B.H., FitzSimmons, N.N., Georges, A., Rhodin, A.G.J., 2007. Defining Turtle Diversity, Chelonian Research Monographs. Slavenko, A., Itescu, Y., Ihlow, F., Meiri, S., 2016. Home is where the shell is: Predicting turtle home range sizes. J. Anim. Ecol. 85, 106–114. https://doi.org/10.1111/1365-2656.12446 Spinks, P.Q., Shaffer, H.B., 2007. Conservation phylogenetics of the Asian box turtles (Geoemydidae, Cuora): Mitochondrial introgression, numts, and inferences from multiple nuclear loci. Conserv. Genet. 8, 641–657. https://doi.org/10.1007/s10592-006-9210-1 Spinks, P.Q., Shaffer, H.B., 2009. Conflicting mitochondrial and nuclear phylogenies for the widely disjunct emys (testudines: emydidae) species complex, and what they tell us about biogeography and hybridization. Syst. Biol. 58, 1–20. https://doi.org/10.1093/sysbio/syp005 Spinks, P.Q., Thomson, R.C., Gidiş, M., Bradley Shaffer, H., 2014. Multilocus phylogeny of the New-World mud turtles (Kinosternidae) supports the traditional classification of the group. Mol. Phylogenet. Evol. 76, 254–260. https://doi.org/10.1016/j.ympev.2014.03.025 Spinks, P.Q., Thomson, R.C., Pauly, G.B., Newman, C.E., Mount, G., Shaffer, 63 H.B., 2013. Misleading phylogenetic inferences based on single-exemplar sampling in the turtle genus Pseudemys. Mol. Phylogenet. Evol. 68, 269–281. https://doi.org/10.1016/j.ympev.2013.03.031 Spitzweg, C., Vamberger, M., Ihlow, F., Fritz, U., Hofmeyr, M.D., 2020. How many species of angulate tortoises occur in Southern Africa? (Testudines: Testudinidae: Chersina). Zool. Scr. 49, 412–426. https://doi.org/10.1111/zsc.12418 Stafford, P., Meyer, J., 2000. A Guide to the Reptiles pf Belize. The Natural History Musum, London, United Kingdom, and Academic Press, San Diego, California, United States. Swarth, C.W., 2010. Notes on the Movement and Aquatic Behavior 26, 233–235 Templeton, A.R., Crandall, K.A., Sing, C.F., 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619– 633. https://doi.org/10.1093/genetics/132.2.619 Torres-Carvajal, O., Lobos, S.E., 2014. A new species of alopoglossus lizard (squamata, gymnophthalmidae) from the tropical andes, with a molecular phylogeny of the genus. Zookeys 120, 105–120. https://doi.org/10.3897/zookeys.410.7401 Túnez, J.I., Cappozzo, H.L.., Pavés, H., Albareda, D.A., Cassini, M.H., 2013. The role of Pleistocene glaciations in shaping the genetic structure of South American fur seals (Arctocephalus australis). New Zealand Journal of Marine and Freshwater Research, 47(2), 139–152. https://doi.org/10.1080/00288330.2012.753463 Vargas-Ramírez, M., Caballero, S., Morales-Betancourt, M.A., Lasso, C.A., Amaya, L., Martínez, J.G., das Neves Silva Viana, M., Vogt, R.C., Farias, I.P., Hrbek, T., Campbell, P.D., Fritz, U., 2020. Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Mol. Phylogenet. Evol. 148, 106823. https://doi.org/10.1016/j.ympev.2020.106823 Vargas-Ramírez, M., Carr, J.L., Fritz, U., 2013. Complex phylogeography in Rhinoclemmys melanosterna: conflicting mitochondrial and nuclear evidence suggests past hybridization (Testudines: Geoemydidae). Zootaxa 3670, 238. https://doi.org/10.11646/zootaxa.3670.2.8 Vargas-Ramírez, M., Maran, J., Fritz, U., 2010. Red- And yellow-footed tortoises, Chelonoidis carbonaria and C. denticulam (Reptilia: Testadines: Testudinidae), in South American savannahs and forests: Do their phylogeographies reflect distinct habitats? Org. Divers. Evol. 10, 161–172. https://doi.org/10.1007/s13127-010- 0016-0 Vargas-Ramírez, M., Moreno-Arias, R., 2014. Unknown evolutionary lineages and population differentiation in Anolis heterodermus (Squamata: Dactyloidae) from the Eastern and Central Cordilleras of Colombia Revealed by DNA Sequence Data. South Am. J. Herpetol. 9, 131–141. https://doi.org/10.2994/SAJH-D-13- 00013.1 Vargas-Ramírez, M., Vences, M., Branch, W.R., Daniels, S.R., Glaw, F., Hofmeyr, M.D., Kuchling, G., Maran, J., Papenfuss, T.J., Široký, P., Vieites, D.R., Fritz, U., 2010. Deep genealogical lineages in the widely distributed African helmeted terrapin: Evidence from mitochondrial and nuclear DNA (Testudines: Pelomedusidae: Pelomedusa subrufa). Mol. Phylogenet. Evol. 56, 428–440. https://doi.org/10.1016/j.ympev.2010.03.019 Viana, D.C., Rui, L.A., Santos, A.C. dos, Miglino, M.A., Assis Neto, A.C. de, Araujo, L.P.F., Oliveira, A.S., Sousa, A.L., 2014. Seasonal morphological variation of the vas deferens of scorpion mud turtle (Kinosternon scorpioides). Biota Neotrop. 14. https://doi.org/10.1590/1676-06032014006413 Vogt, R.C., Flores-Villela, O., 1992. Effects of Incubation Temperature on Sex Determination in a Community of Neotropical Freshwater Turtles in Southern Mexico. Herpetol. J. 48, 265–270 Weinell, J.L., Bauer, A.M., 2018. Systematics and phylogeography of the widely distributed African skink Trachylepis varia species complex. Mol. Phylogenet. Evol. 120, 103–117. https://doi.org/10.1016/j.ympev.2017.11.014 Will, K.W., Rubinoff, D., 2004. Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20, 47– 55. https://doi.org/10.1111/j.1096-0031.2003.00008.x Witt, C., Brichau, S., Carter, A., 2012. New constraints on the origin of the Sierra Madre de Chiapas (south Mexico) from sediment provenance and apatite thermochronometry. Tectonics 31, 1–15. https://doi.org/10.1029/2012TC003141 Whinnett, A., Zimmermann, M., Willmott, K. R., Herrera, N., Mallarino, R., Simpson, F., Joron, M., Lamas, G., Mallet, J. 2005. Strikingly variable divergence times inferred across an Amazonian butterfly 'suture zone'. Proceedings of the Royal Society B: Biological Sciences, 272(1580), 2525–2533. doi:10.1098/rspb.2005.3247 Wong, R.A., Fong, J.J., Papenfuss, T.J., 2010. Phylogeography of the African Helmeted Terrapin, Pelomedusa subrufa: Genetic Structure, Dispersal, and Human Introduction. Proc. Calif. Acad. Sci. Ser. 4, 575–585 Zhang, D., Tang, L., Cheng, Y., Hao, Y., Xiong, Y., Song, G., Qu, Y., Rheindt, E., Alström, P., Jia, C., Lei, F., 2019. “ghost Introgression” As a Cause of Deep Mitochondrial Divergence in a Bird Species Complex. Mol. Biol. Evol. 36, 2375– 2386. https://doi.org/10.1093/molbev/msz170 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
iv, 110 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Biología |
dc.publisher.department.spa.fl_str_mv |
Departamento de Biología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82229/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82229/2/1032467122.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82229/3/1032467122.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 6ca6970d85b0c49b325c063a0bb59e3a 18300fb35dfa9cda6860b6793cd4a48b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089424401596416 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas-Ramírez, Mario3cb57faac3f9d602b5737b1a984a9227Briceño Zea, Jhon Sebastianfb79f191e426d1daf79d7c5353664e9bBiodiversidad y Conservación Genética2022-08-31T20:54:03Z2022-08-31T20:54:03Z2022https://repositorio.unal.edu.co/handle/unal/82229Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficas, mapasEl desarrollo de investigaciones en sistemática molecular (i.e. genética de poblaciones, filogenética y filogeografía) se ha beneficiado del avance en las técnicas de secuenciación recientes, las cuales ofrecen la posibilidad de obtener secuencias de ADN de manera económica y rápida. El análisis adecuado de estas secuencias enmarcado en disciplinas como la filogenética molecular y la filogeografía, han incrementado el conocimiento acerca de las relaciones evolutivas de linajes genéticos a nivel intra e interespecíficos, patrones de distribución geográfica de dichos linajes, e identificación de posibles procesos que formaron estos patrones. Adicionalmente, estos análisis se han convertido en herramienta fundamental de la taxonomía integrativa, complementando análisis provenientes de otras líneas de evidencia como por ejemplo la morfología y la bioacústica. La taxonomía integrativa se ha utilizado generalmente para evaluar especies ampliamente distribuidas, la cuales pueden constituir complejos de especies. Este es el caso de las tortugas continentales semiacuáticas neotropicales Kinosternon leucostomum y Kinosternon scorpioides (Testudines: Kinosternidae), cuyas extensas distribuciones y su presencia en diferentes hábitats, impulsan la hipótesis de que existe variación genética interespecífica no reconocida entre las poblaciones a lo largo de sus rangos de distribución, pudiendo corresponder con varios linajes evolutivos dentro de cada taxón. En esta investigación se obtuvieron y analizaron secuencias de tres genes mitocondriales (12s, 16s y Cytb) y siete fragmentos cleares (BDNF, CMOS, HMGB, ODC, R35, RAG1, RAG2) de individuos provenientes de gran parte del rango de distribución de las dos especies en el neo trópico con los siguientes objetivos: 1. Evaluar si existe variación genética interespecífica no reconocida, 2. Evaluar las relaciones evolutivas entre linajes detectados, 3. determinar la distribución geográfica de estos posibles linajes y 4. Establecer inferencias taxonómicas comparando los resultados con la clasificación taxonómica actual. Los análisis filogenéticos (Inferencia Bayesiana y Máxima Verosimilitud), además de Análisis de Componentes Principales y redes de Máxima Parsimonia de haplotipos, revelaron patrones de diferenciación genética contrastantes para cada especie. Para K. escorpioides se identificó una fuerte estructura genética compuesta de varios linajes evolutivos independientes. Para K. leucostomum no se identificó estructura genética, constituyendo un solo linaje evolutivo con algunas diferencias geográficas. Se discute acerca de las causas y consecuencias de estos patrones en un contexto filogenético, filogeográfico y taxonómico. Adicionalmente se discute acerca de las consecuencias de estos resultados para la conservación de las dos especies. (Texto tomado de la fuente)The growth of research in molecular systematics (i.e., population genetics, phylogenetics and phylogeography) has benefited from advances in recent sequencing techniques, which offer the possibility of obtaining DNA sequences economically and rapidly. Adequate analysis of these sequences in disciplines such as molecular phylogenetics and phylogeography has increased knowledge about the evolutionary relationships of genetic lineages at intra- and interspecific levels, patterns of geographic distribution of these lineages, and identification of possible processes that formed these patterns. Additionally, these analyses have become a fundamental tool for integrative taxonomy, complementing analyses from other lines of evidence such as morphology and bioacoustics. Integrative taxonomy has generally been used to evaluate widely distributed species, which may constitute species complexes. This is the case of the neotropical semi-aquatic continental turtles Kinosternon leucostomum and Kinosternon scorpioides (Testudines: Kinosternidae), whose wide distributions and presence in different habitats, support the hypothesis that there is unrecognized interspecific genetic variation among populations throughout their distribution ranges, which may correspond to several evolutionary lineages within each taxon. In this research, sequences of three mitochondrial genes (12s, 16s and Cytb) and seven nuclear loci (BDNF, CMOS, HMGB, ODC, R35, RAG1, RAG2) were obtained and analyzed from individuals from a large part of the distribution range of the two species in the neotropics with the following goals: 1. To evaluate if there is unrecognized interspecific genetic variation, 2. To evaluate the evolutionary relationships between detected lineages, 3. to determine the geographic distribution of these possible lineages and 4. to establish taxonomic inferences by comparing the results with the current taxonomic classification. Phylogenetic analyses (Bayesian Inference and Maximum Likelihood), in addition to Principal Component Analysis and Maximum Parsimony networks of haplotypes revealed contrasting patterns of genetic differentiation for each species. For K. scorpioides, a strong genetic structure composed of several independent evolutionary lineages was identified. For K. leucostomum no genetic structure was identified, constituting a single evolutionary lineage with some geographic differences. The causes and consequences of these patterns are discussed in a phylogenetic, phylogeographic and taxonomic context. In addition, the consequences of these results for the conservation of the two species are discussed.MaestríaMagíster en Ciencias - BiologíaFilogenéticaiv, 110 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaDepartamento de BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesCARACTERISTICAS DEMOGRAFICASDemographic characteristicsFilogenéticaFilogeografíaTortugas continentalesmtDNAnuDNAComplejo de especiesEspeciación crípticaPhylogeneticsPhylogeographyContinental turtlesmtDNAnuDNASpecies complexCryptic speciation¿Son Kinosternon scorpioides y Kinosternon leucostomum (Testudines: Kinosternidae) complejos de especies?: evaluación usando marcadores mitocondriales y nucleares y un amplio muestreo geográficoAre Kinosternon scorpioides and Kinosternon leucostomum (Testudines: Kinosternidae) species complexes? Evaluation using mitochondrial and nuclear markers and wide geographic samplingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAcuña Mesen, R., Marquez B., C., 1993. El dimorfismo sexual de Kinosternon scorpioides (Testudines: Kinosternidae) en Palo Verde, Costa Rica. Rev. Biol. Trop. 41, 261–265. https://doi.org/10.15517/rbt.v41i2.23360Ardila-Marulanda, M., De La Ossa V., J., De La Ossa-Lacayo, A., 2016. Uso de quelonios continentales en el golfo de Morrosquillo, Sucre, Colombia. Rev. Colomb. Cienc. Anim. - RECIA 8, 361. https://doi.org/10.24188/recia.v8.n0.2016.392Avendaño, J.E., Cortés-Herrera, J.O., Briceño-Lara, E.R., Rincón-Guarín, D.A., 2013. Crossing or bypassing the Andes: a commentary on recent range extensions of cis-Andean birds to the West of the Andes of Colombia. Orinoquia 17, 207–214Backström, N., Fagerberg, S., Ellegren, H., 2008. Genomics of natural bird populations: A gene-based set of reference markers evenly spread across the avian genome. Mol. Ecol. 17, 964–980. https://doi.org/10.1111/j.1365- 294X.2007.03551.xBaker, P.A.; Sherilyn, C.F.; Battisti, D.S.; Dick, C.W.; Vargas, O.M., Asner, G.P., Matin, R.E., Wheatley, A., Prates, I., 2020. Beyond Refugia: New Insights on Quaternary Climate Variation and the Evolution of Biotic Diversity in Tropical South America. In V. Rull, A. C. Carnaval (eds.), Neotropical Diversification: Patterns and Processes, Fascinating Life Sciences (1st ed., pp. 54-71). Springer, Cham.Barley, A.J., Spinks, P.Q., Thomson, R.C., Shaffer, H.B., 2010. Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life. Mol. Phylogenet. Evol. 55, 1189–1194. https://doi.org/10.1016/j.ympev.2009.11.005Battey, C.J., Klicka, J., 2017. Cryptic speciation and gene flow in a migratory songbird Species Complex: Insights from the Red-Eyed Vireo (Vireo olivaceus). Mol. Phylogenet. Evol. 113, 67–75. https://doi.org/10.1016/j.ympev.2017.05.006Berger, W.H., 1990. The younger dryas cold spell - a quest for causes. Global and Planetary Change, 3(3), 219–237. doi:10.1016/0921-8181(90)90018-8Berriozabal-Islas, C., Ramírez-Bautista, A., Torres-Ángeles, F., Mota Rodrigues, J.F., Macip-Ríos, R., Octavio-Aguilar, P., 2020. Climate change effects on turtles of the genus Kinosternon (Testudines: Kinosternidae): an assessment of habitat suitability and climate niche conservatism. Hydrobiologia 847, 4091–4110. https://doi.org/10.1007/s10750-020-04402-yBerry J, F., 1978. Variation and systematics in the Kinosternon scorpioides and K. leucostomum complexes (Reptilia: Testudines: Kinosternidae) of Mexico and Central. University of Utah.Berry, J.F., Iverson, J.B., 2001a. Kinosternon scorpioides. Cat. Am. Amphib. Reptil. doi:10.15781/T2GB1XN2WBerry, J.F., Iverson, J.B., 2001b. Kinosternon leucostomum. Cat. Am. Amphib. Reptil. doi:10.15781/T2M32NF5JBerry, J. F., J. B. Iverson y G. Forero-Medina. 2012. Kinosternon scorpioides (Linnaeus 1766). Pp. 340-348. En: Páez-Nieto V. P., Morales-Betacourt M. A., Lasso C. A., Castaño-Mora O.V., B.B. (1ª Ed.), 2012. Biología y Conservación de Las Tortugas Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).Bhaskar, R., Mohindra, V., 2019. Phylogenetic relationships among Indian freshwater turtles (family Trionychidae and Geoemydidae) with special reference to Lissemys punctata, inferred from mitochondrial cytochrome b gene sequences. Meta Gene 22, 100610. https://doi.org/10.1016/j.mgene.2019.100610Brumfield, R.T., Capparella, A.P., 1996. Historical diversification of birds in Northwestern South America: A molecular perspective on the role of vicariant events. Evolution (N. Y). 50, 1607–1624. https://doi.org/10.1111/j.1558- 5646.1996.tb03933.xBrusquetti, F., Netto, F., Baldo, D., Haddad, C., 2019. The influence of Pleistocene glaciations on Chacoan fauna: genetic structure and historical demography of an endemic frog of the South American Gran Chaco. Biological Journal of the Linnean Society, 126(3), 404-616. https://doi.org/10.1093/biolinnean/bly203Bryson, R.W., García-Vázquez, U.O., Riddle, B.R., 2012. Diversification in the Mexican horned lizard Phrynosoma orbiculare across a dynamic landscape. Mol. Phylogenet. Evol. 62, 87–96. https://doi.org/10.1016/j.ympev.2011.09.007Bush, M.B., Oliveira, P.E. 2006. The rise and fall of the Refugial Hypothesis of Amazonian speciation: a paleoecological perspective. Biota Neotropica, 6(1). doi:10.1590/S1676-06032006000100002Butler, C.J., 2019. A review of the effects of climate change on chelonians. Diversity 11. https://doi.org/10.3390/d11080138Cabrera, M.R., Colantonio, S.E., 1997. Taxonomic Revision of the South American Subspecies of the Turtle Kinosternon scorpioides. Soc. Study Amphib. Reptil. 31, 507–513.Cáceres-Martínez, C.H., Acevedo Rincón, A.A., Sierra Leal, J.A., González-Maya, J.F., 2017. Kinosternon scorpioides scorpioides (Testudines: kinosternidae): nuevo reporte en el Nororiente de Colombia. Acta Biol. Colomb. 22, 242–245. https://doi.org/10.15446/abc.v22n2.59804Cadena, C.D., Pedraza, C.A., Brumfield, R.T., 2016. Climate, habitat associations and the potential distributions of Neotropical birds: Implications for diversification across the Andes. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 40, 275. https://doi.org/10.18257/raccefyn.280Carter, A.L., Janzen, F.J., 2021. Predicting the effects of climate change on incubation in reptiles : methodological advances and new directions 1–10. https://doi.org/10.1242/jeb.236018Ceballos, C.P., Zapata, D., Alvarado, C., Rincón, E., 2016. Morphology, Diet, and Population Structure of the Southern White-lipped Mud Turtle Kinosternon leucostomum postinguinale (Testudines: Kinosternidae) in the Nus River Drainage, Colombia. J. Herpetol. 50, 374–380. https://doi.org/10.1670/15-035Chiari, Y., Vences, M., Vieites, D.R., Rabemananjara, F., Bora, P., Ramilijaona Ravoahangimalala, O., Meyer, A., 2004. New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Mol. Ecol. 13, 3763–3774. https://doi.org/10.1111/j.1365-294X.2004.02367.xChiari, Y., Vences, M., Vieites, D.R., Rabemananjara, F., Bora, P., Ramilijaona Ravoahangimalala, O., Meyer, A., 2004. New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Mol. Ecol. 13, 3763–3774. https://doi.org/10.1111/j.1365-294X.2004.02367.xCooper, M.A., Addison, F.T., Alvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martinez, J., Naar, J., Peñas, R., Pulham, A.J., Taborda, A., 1995. Basin development and tectonic history of the Llano Basin, Eastern Cordillera, and middle Magdalena Valley, Colombia. AAPG Bull. 79, 1421–1444Cordero, G.A., Reeves, R., Swarth, C.W., 2012. Long distance aquatic movement and home-range size of an eastern mud turtle, Kinosternon Subrubrum, population in the Mid-Atlantic Region of the United States. Chelonian Conserv. Biol. 11, 121– 124. https://doi.org/10.2744/CCB-0874.1Corredor-Londoño, G.A., Kattan, G., Galvis-Rizo, C.A., Amorocho, D., 2007. Tortugas del Valle del Cauca. Corporación Autónoma Regional del Valle del Cauca, CaliCrawford, N.G., Parham, J.F., Sellas, A.B., Faircloth, B.C., Glenn, T.C., Papenfuss, T.J., Henderson, J.B., Hansen, M.H., Simison, W.B., 2015. A phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257. https://doi.org/10.1016/j.ympev.2014.10.021D'Apolito, C., Absy, M.L., Latrubesse, E.M. 2013. The Hill of Six Lakes revisited: new data and re-evaluation of a key Pleistocene Amazon site. Quaternary Science Reviews, 76, 140–155. doi:10.1016/j.quascirev.2013.07.013Davis, M.A., Douglas, M.R., Collyer, M.L., Douglas, M.E., 2016. Deconstructing a species-complex: Geometric morphometric and molecular analyses define species in the Western Rattlesnake (Crotalus viridis). PLoS One 11, 1–21. https://doi.org/10.1371/journal.pone.0146166Dias, R.M., Lima, S.M.Q., Mendes, L.F., Almeida, D.F., Paiva, P.C., Britto, M.R., 2019. Different speciation processes in a cryptobenthic reef fish from the Western Tropical Atlantic. Hydrobiologia 837, 133–147. https://doi.org/10.1007/s10750- 019-3966-zDutcher, K.E., Vandergast, A.G., Esque, T.C., Mitelberg, A., Matocq, M.D., Heaton, J.S., Nussear, K.E., 2020. Genes in space: what Mojave desert tortoise genetics can tell us about landscape connectivity. Conserv. Genet. 21, 289–303. https://doi.org/10.1007/s10592-020-01251-zEnnen, J.R., Kalis, M.E., Patterson, A.L., Kreiser, B.R., Lovich, J.E., Godwin, J., Qualls, C.P., 2014. Clinal variation or validation of a subspecies? A case study of the graptemys nigrinoda complex (testudines: Emydidae). Biol. J. Linn. Soc. 111, 810–822. https://doi.org/10.1111/bij.12234Fritz, U., Fattizzo, T., Guicking, D., Tripepi, S., Pennisi, M.G., Lenk, P., Joger, U., Wink, M., 2005. A new cryptic species of pond turtle from southern Italy, the hottest spot in the range of the genus Emys (Reptilia, Testudines, Emydidae). Zool. Scr. 34, 351–371. https://doi.org/10.1111/j.1463-6409.2005.00188.xFritz, U., Gong, S., Auer, M., Kuchling, G., Schneewei, N., Hundsdörfer, A.K., 2010. The world’s economically most important chelonians represent a diverse species complex (Testudines: Trionychidae: Pelodiscus). Org. Divers. Evol. 10, 227–242. https://doi.org/10.1007/s13127-010-0007-1Fritz, U., Guicking, D., Auer, M., Sommer, R.S., Wink, M., Hundsdörfer, A.K., 2008. Diversity of the Southeast Asian leaf turtle genus Cyclemys: How many leaves on its tree of life? Zool. Scr. 37, 367–390. https://doi.org/10.1111/j.1463- 6409.2008.00332.xFrost, D.R., Rodrigues, M.T., Grant, T., Titus, T.A., 2001. Phylogenetics of the lizard genus Tropidurus (Squamata: Tropiduridae: Tropidurinae): Direct optimization, descriptive efficiency, and sensitivity analysis of congruence between molecular data and morphology. Mol. Phylogenet. Evol. 21, 352–371. https://doi.org/10.1006/mpev.2001.1015Fujita, M.K., Engstrom, T.N., Starkey, D.E., Shaffer, H.B., 2004. Turtle phylogeny: Insights from a novel nuclear intron. Mol. Phylogenet. Evol. 31, 1031–1040. https://doi.org/10.1016/j.ympev.2003.09.016Giraldo, F., Garcés-Restrepo, F.M., Carr, J.L., 2012. Kinosternon scorpioides, in: Páez-Nieto V. P., Morales-Betacourt M. A., Lasso C. A., Castaño-Mora O.V., B.B. (Ed.), Biología y Conservación de Las Tortugas Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).Haffer, J. 1969. Speciation in Amazonian Forest Birds. Science, 165(3889), 131– 137. doi:10.1126/science.165.3889.131Hall, T., 1999. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser.Hernández Morales, C., Sturaro, M.J., Nunes, P.M.S., Lotzkat, S., Peloso, P.L.V., 2020. A species-level total evidence phylogeny of the microteiid lizard family Alopoglossidae (Squamata: Gymnophthalmoidea). Cladistics 36, 301–321. https://doi.org/10.1111/cla.12407Hillis, D.M., 2019. Species delimitation in herpetology. J. Herpetol. 53, 3–12. https://doi.org/10.1670/18-123Hu, Y., Thapa, A., Fan, H., Ma, T., Wu, Q., Ma, S., Zhang, D., Wang, B., Li, M., Yan, L., Wei, F., 2020. Genomic evidence for two phylogenetic species and long-term population bottlenecks in red pandas. Sci. Adv. 6, 1–11. https://doi.org/10.1126/sciadv.aax5751Iverson, J.B., 1991. Phylogenetic hypotheses for the evolution of modern kinosternine turtles. Herpetol. Monogr. 5, 1–27. https://doi.org/10.2307/1466974Iverson, J.B., 2010. Reproduction in the red-cheeked mud turtle (Kinosternon scorpioides cruentatum) in Southeastern Mexico and Belize, with comparisons across the species range. Chelonian Conserv. Biol. 9, 250–261. https://doi.org/10.2744/CCB-0827.1Iverson, J.B., Brown, R.M., Akre, T.S., Near, T.J., Le, M., Thomson, R.C., Starkey, D.E., 2007. In Search of the Tree of Life for Turtles. Defin. Turt. Divers. Proc. a Work. Genet. Ethics, Taxon. Freshw. Turtles Tortoises 85–106.Iverson, J.B., Le, M., Ingram, C., 2013. Molecular phylogenetics of the mud and musk turtle family Kinosternidae. Mol. Phylogenet. Evol. 69, 929–939. https://doi.org/10.1016/j.ympev.2013.06.011Iverson, J.D., Mata-Silva, V., García, E., Wilson, L.D., 2015. The herpetofauna of Chiapas , Mexico : composition , distribution , and conservation 271–329. Johnson, J.D., 1990. Biogeographic Aspects of the Herpetofauna of the Central Depression of Chiapas, México, with Comments on Surrounding Areas 35, 268– 278Jombart, T., 2015. An introduction to adegenet 2.0.0. R Package.Juste, J., Ruedi, M., Puechmaille, S.J., Salicini, I., Ibáñez, C., 2018. Two New Cryptic Bat Species within the Myotis nattereri Species Complex (Vespertilionidae, Chiroptera) from the Western Palaearctic. Acta Chiropterologica 20, 285–300. https://doi.org/10.3161/15081109ACC2018.20.2.001Kartavtsev, Y.P., 2011. Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochondrial DNA 22, 55– 65. https://doi.org/10.3109/19401736.2011.588215Kieswetter, C.M., Schneider, C.J., 2013. Phylogeography in the northern Andes: Complex history and cryptic diversity in a cloud forest frog, Pristimantis w-nigrum (Craugastoridae). Mol. Phylogenet. Evol. 69, 462–468. https://doi.org/10.1016/j.ympev.2013.08.007Knaus, B., Winter, D., Paradis, E., Jombart, T., Kamvar, Z.N., Knaus, B., Schliep, K., Alastair, P., Winter, D., 2020. Package ‘ pegas .’Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S. V., Paabo, S., Villablanca, F.X., Wilson, A.C., 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. U. S. A. 86, 6196–6200. https://doi.org/10.1073/pnas.86.16.6196Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., Calcott, B., 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. https://doi.org/dx.doi.org/10.1093/molbev/msw260Leaché, A.D., McGuire, J.A., 2006. Phylogenetic relationships of horned lizards (Phrynosoma) based on nuclear and mitochondrial data: Evidence for a misleading mitochondrial gene tree. Mol. Phylogenet. Evol. 39, 628–644. https://doi.org/10.1016/j.ympev.2005.12.016Loc-Barragán, J.A., Reyes-Velasco, J., Woolrich-Piña, G.A., Grünwald, C.I., Venegas de Anaya, M., Rangel-Mendoza, J.A., López-Luna, M.A., 2020. A new species of mud turtle of genus kinosternon (Testudines: Kinosternidae) from the pacific coastal plain of northwestern Mexico. Zootaxa 4885, 509–529. https://doi.org/10.11646/zootaxa.4885.4.3López-Luna, M.A., Cupul-Magaña, F.G., Escobedo-Galván, A.H., GonzálezHernández, A.J., Centenero-Alcalá, E., Rangel-Mendoza, J.A., Ramírez-Ramírez, M.M., Cazares-Hernández, E. 2018. A Distinctive New Species of Mud Turtle from Western México. Chelonian Conservation and Biology, 17(1), 2–13. doi:10.2744/CCB-1292.1López-Luna, M.A., Venegas-Anaya, M., Cupul-Magaña, F.G., Rangel-Mendoza, J.A., Escobedo-Galván, A.H. 2021. Mitochondrial DNA data support the recognition of the mud turtle, Kinosternon vogti (Cryptodira: Kinosternidae). Chelonian Conservation and Biology, 20(1), 97-102. https://doi.org/ 10.2744/CCB1387.1Maddison, W., Knowles, L., 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21–30. https://doi.org/10.1080/10635150500354928Márquez, C., 1995. Historia natural y dimorfismo sexual de la tortuga Kinosternon scorpioides en Palo Verde Costa Rica. Rev. Ecol. Latino-Americana 2, 37–44Mata-Silva, V., DeSantis, D.L., García-Padilla, E., Johnson, J.D., Wilson, L.D., 2019. The endemic herpetofauna of Central America: A casualty of anthropocentrism. Amphib. Reptil. Conserv. 13, 1–64McCormack, J.E., Hird, S.M., Zellmer, A.J., Carstens, B.C., Brumfield, R.T., 2013. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenet. Evol. 66, 526–538. https://doi.org/10.1016/j.ympev.2011.12.007McCranie, J.R. 2018. The Lizards, Crocodiles, and Turtles of Honduras. Systematics, Distribution, and Conservation. Bulletin of the Museum of Comparative Zoology, 1–129. doi:10.3099/0027-4100-15.1.1Mendoza-Henao, A.M., Arias, E., Townsend, J.H., Parra-Olea, G., 2020. Phylogeny-based species delimitation and integrative taxonomic revision of the Hyalinobatrachium fleischmanni species complex, with resurrection of H. viridissimum (Taylor, 1942). Syst. Biodivers. 0, 1–21. https://doi.org/10.1080/14772000.2020.1776781Morales-Betancourt, M.A., Lasso, C.A., Páez, V.P., Bock, B.C., 2015. Libro rojo de reptiles de Colombia., in: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt, p. 247Morales-Martínez, D.M., Rodríguez-Posada, M.E., Ramírez-Chaves, H.E., 2021. Erratum to: A new cryptic species of yellow-eared bat Vampyressa melissa species complex (Chiroptera: Phyllostomidae) from Colombia. J. Mammal. https://doi.org/10.1093/jmammal/gyab016Morales-Verdeja, S.A., Vogt, R.C., 1997. Terrestrial movements in relation to aestivation and the annual reproductive cycle of Kinosternon leucostomum. Copeia 1997, 123–130. https://doi.org/10.2307/1447847Mothes, C.C., Howell, H.J., Searcy, C.A., 2020. Habitat suitability models for the imperiled wood turtle (Glyptemys insculpta) raise concerns for the species’ persistence under future climate change. Glob. Ecol. Conserv. 24, e01247. https://doi.org/10.1016/j.gecco.2020.e01247Nascimento, F.F., Reis, M. Dos, Yang, Z., 2017. A biologist’s guide to Bayesian phylogenetic analysis. Nat. Ecol. Evol. 1, 1446–1454. https://doi.org/10.1038/s41559-017-0280-xNguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300Padial, J.M., De La Riva, I., 2009. Integrative taxonomy reveals cryptic Amazonian species of Pristimantis (Anura: Strabomantidae). Zool. J. Linn. Soc. 155, 97–122. https://doi.org/10.1111/j.1096-3642.2008.00424.xPáez-Nieto V. P., Morales-Betacourt M. A., Lasso C. A., Castaño-Mora O.V., B.B. (1ª Ed.), 2012. Biología y Conservación de Las Tortugas Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH)Pereira, L.A., Santos, E.M. Dos, Tchaicka, L., De Sousa, A.L., 2019. Population analysis of Kinosternon scorpioides using SSR markers. AIP Conf. Proc. 2186, 1– 5. https://doi.org/10.1063/1.5138059Pérez-Pérez, A., López-Moreno, A.E., Suárez-Rodríguez, O., Rheubert, J.L., Hernández-Gallegos, O., 2017. How far do adult turtles move? Home range and dispersal of Kinosternon integrum. Ecol. Evol. 7, 8220–8231. https://doi.org/10.1002/ece3.3339Petzold, A., Vargas-Ramírez, M., Kehlmaier, C., Vamberger, M., Branch, W.R., Du Preez, L., Hofmeyr, M.D., Meyer, L., Schleicher, A., Široký, P., Fritz, U., 2014. A revision of African helmeted terrapins (Testudines: Pelomedusidae: Pelomedusa), with descriptions of six new species. Zootaxa 3795, 523–548. https://doi.org/10.11646/zootaxa.3795.5.2Phillips, J.G., Deitloff, J., Guyer, C., Huetteman, S., Nicholson, K.E., 2015. Biogeography and evolution of a widespread Central American lizard species complex: Norops humilis, (Squamata: Dactyloidae). BMC Evol. Biol. 15, 20–24. https://doi.org/10.1186/s12862-015-0391-4Pine, R.H., Timm, R.M., Weksler, M., 2012. A newly recognized clade of transAndean Oryzomyini (Rodentia: Cricetidae), with description of a new genus. J. Mammal. 93, 851–870. https://doi.org/10.1644/11-MAMM-A-012.1Praschag, P., Hundsdörfer, A.K., Fritz, U., 2007. Phylogeny and taxonomy of endangered South and South-east Asian freshwater turtles elucidated by mtDNA sequence variation (Testudines: Geoemydidae: Batagur, Callagur, Hardella, Kachuga, Pangshura). Zool. Scr. 36, 429–442. https://doi.org/10.1111/j.1463- 6409.2007.00293.xPritchard, P.C., Trebbau, P., 1984. Turtles of Venezuela. Soc. Study Amphib. Reptil. 403.Quijada-Mascareñas, J, Ferguson, J.E., Pook, C.E., Salomão M.G., Thorpe, R.S., Wüster, W., 2007. Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex) as an example. 34(8), 1296–1312. https://doi.org/10.1111/j.1365- 2699.2007.01707.xRambaut, A., 2018. FigTree.Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032Ramírez-Guerra, N., 2016. Caracterización filogenética de la tortuga Tapaculo Kinosternon leucostomum postinguinale (Testudines: Kinosternidae) (MSc Thesis). Universidad de Antioquia.Rhodin, A.G.J., Iverson, J.B., Bour, R., Fritz, U., Georges, A., Shaffer, H.B., van Dijk, P.P., 2021. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (9th Ed.). Chelonian Research Foundation & Turtle Conservancy. https://doi.org/10.3854/crm.8.checklist.atlas.v9.2021Ríos, N., Bouza, C., Gutiérrez, V., García, G., 2017. Species complex delimitation and patterns of population structure at different geographic scales in Neotropical silver catfish (Rhamdia: Heptapteridae). Environ. Biol. Fishes 100, 1047–1067. https://doi.org/10.1007/s10641-017-0622-1Rocha-Méndez, A., Sánchez-González, L.A., González, C., Navarro-Sigüenza, A.G., 2019. The geography of evolutionary divergence in the highly endemic avifauna from the Sierra Madre del Sur, Mexico. BMC Evol. Biol. 19, 1–21. https://doi.org/10.1186/s12862-019-1564-3Rocha D.G., Igor K., 2019. What has become of the refugia hypothesis to explain biological diversity in Amazonia?. Ecology and Evolution, 9, 4302-4309. doi:10.1002/ece3.5051Rocha, M.B. da, Molina, F. de B., 1990. Reproductive Biology of Kinosternon scorpioides (Testudines: Kinosternidae) in Captivity. Tortoises & Turtles.Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029Rubinoff, D., Holland, B.S., 2005. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst. Biol. 54, 952–961. https://doi.org/10.1080/10635150500234674Rueda-Almonacid, J. V, Carr, J., Mittermeier, R., Rodríguez-Mahecha, J. V, Mast, R., Vogt, R., Rhodin, A., Velasquez, J., Rueda, J.N., Mittermeier, C., 2007. Las Tortugas y los Cocodrilianos de los Países Andinos del Trópico.Savage, J.M., 1966. The Origins and History of the Central American Herpetofauna. Copeia 1966, 719. https://doi.org/10.2307/1441404Scott, P.A., Glenn, T.C., Rissler, L.J., 2018. Resolving taxonomic turbulence and uncovering cryptic diversity in the musk turtles (Sternotherus) using robust demographic modeling. Mol. Phylogenet. Evol. 120, 1–15. https://doi.org/10.1016/j.ympev.2017.11.008Serb, J.M., Phillips, C.A., Iverson, J.B., 2001. Molecular phylogeny and biogeography of Kinosternon flavescens based on complete mitochondrial control region sequences. Mol. Phylogenet. Evol. 18, 149–162. https://doi.org/10.1006/mpev.2000.0858Shaffer, B.H., FitzSimmons, N.N., Georges, A., Rhodin, A.G.J., 2007. Defining Turtle Diversity, Chelonian Research Monographs.Slavenko, A., Itescu, Y., Ihlow, F., Meiri, S., 2016. Home is where the shell is: Predicting turtle home range sizes. J. Anim. Ecol. 85, 106–114. https://doi.org/10.1111/1365-2656.12446Spinks, P.Q., Shaffer, H.B., 2007. Conservation phylogenetics of the Asian box turtles (Geoemydidae, Cuora): Mitochondrial introgression, numts, and inferences from multiple nuclear loci. Conserv. Genet. 8, 641–657. https://doi.org/10.1007/s10592-006-9210-1Spinks, P.Q., Shaffer, H.B., 2009. Conflicting mitochondrial and nuclear phylogenies for the widely disjunct emys (testudines: emydidae) species complex, and what they tell us about biogeography and hybridization. Syst. Biol. 58, 1–20. https://doi.org/10.1093/sysbio/syp005Spinks, P.Q., Thomson, R.C., Gidiş, M., Bradley Shaffer, H., 2014. Multilocus phylogeny of the New-World mud turtles (Kinosternidae) supports the traditional classification of the group. Mol. Phylogenet. Evol. 76, 254–260. https://doi.org/10.1016/j.ympev.2014.03.025Spinks, P.Q., Thomson, R.C., Pauly, G.B., Newman, C.E., Mount, G., Shaffer, 63 H.B., 2013. Misleading phylogenetic inferences based on single-exemplar sampling in the turtle genus Pseudemys. Mol. Phylogenet. Evol. 68, 269–281. https://doi.org/10.1016/j.ympev.2013.03.031Spitzweg, C., Vamberger, M., Ihlow, F., Fritz, U., Hofmeyr, M.D., 2020. How many species of angulate tortoises occur in Southern Africa? (Testudines: Testudinidae: Chersina). Zool. Scr. 49, 412–426. https://doi.org/10.1111/zsc.12418Stafford, P., Meyer, J., 2000. A Guide to the Reptiles pf Belize. The Natural History Musum, London, United Kingdom, and Academic Press, San Diego, California, United States.Swarth, C.W., 2010. Notes on the Movement and Aquatic Behavior 26, 233–235Templeton, A.R., Crandall, K.A., Sing, C.F., 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619– 633. https://doi.org/10.1093/genetics/132.2.619Torres-Carvajal, O., Lobos, S.E., 2014. A new species of alopoglossus lizard (squamata, gymnophthalmidae) from the tropical andes, with a molecular phylogeny of the genus. Zookeys 120, 105–120. https://doi.org/10.3897/zookeys.410.7401Túnez, J.I., Cappozzo, H.L.., Pavés, H., Albareda, D.A., Cassini, M.H., 2013. The role of Pleistocene glaciations in shaping the genetic structure of South American fur seals (Arctocephalus australis). New Zealand Journal of Marine and Freshwater Research, 47(2), 139–152. https://doi.org/10.1080/00288330.2012.753463Vargas-Ramírez, M., Caballero, S., Morales-Betancourt, M.A., Lasso, C.A., Amaya, L., Martínez, J.G., das Neves Silva Viana, M., Vogt, R.C., Farias, I.P., Hrbek, T., Campbell, P.D., Fritz, U., 2020. Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Mol. Phylogenet. Evol. 148, 106823. https://doi.org/10.1016/j.ympev.2020.106823Vargas-Ramírez, M., Carr, J.L., Fritz, U., 2013. Complex phylogeography in Rhinoclemmys melanosterna: conflicting mitochondrial and nuclear evidence suggests past hybridization (Testudines: Geoemydidae). Zootaxa 3670, 238. https://doi.org/10.11646/zootaxa.3670.2.8Vargas-Ramírez, M., Maran, J., Fritz, U., 2010. Red- And yellow-footed tortoises, Chelonoidis carbonaria and C. denticulam (Reptilia: Testadines: Testudinidae), in South American savannahs and forests: Do their phylogeographies reflect distinct habitats? Org. Divers. Evol. 10, 161–172. https://doi.org/10.1007/s13127-010- 0016-0Vargas-Ramírez, M., Moreno-Arias, R., 2014. Unknown evolutionary lineages and population differentiation in Anolis heterodermus (Squamata: Dactyloidae) from the Eastern and Central Cordilleras of Colombia Revealed by DNA Sequence Data. South Am. J. Herpetol. 9, 131–141. https://doi.org/10.2994/SAJH-D-13- 00013.1Vargas-Ramírez, M., Vences, M., Branch, W.R., Daniels, S.R., Glaw, F., Hofmeyr, M.D., Kuchling, G., Maran, J., Papenfuss, T.J., Široký, P., Vieites, D.R., Fritz, U., 2010. Deep genealogical lineages in the widely distributed African helmeted terrapin: Evidence from mitochondrial and nuclear DNA (Testudines: Pelomedusidae: Pelomedusa subrufa). Mol. Phylogenet. Evol. 56, 428–440. https://doi.org/10.1016/j.ympev.2010.03.019Viana, D.C., Rui, L.A., Santos, A.C. dos, Miglino, M.A., Assis Neto, A.C. de, Araujo, L.P.F., Oliveira, A.S., Sousa, A.L., 2014. Seasonal morphological variation of the vas deferens of scorpion mud turtle (Kinosternon scorpioides). Biota Neotrop. 14. https://doi.org/10.1590/1676-06032014006413Vogt, R.C., Flores-Villela, O., 1992. Effects of Incubation Temperature on Sex Determination in a Community of Neotropical Freshwater Turtles in Southern Mexico. Herpetol. J. 48, 265–270Weinell, J.L., Bauer, A.M., 2018. Systematics and phylogeography of the widely distributed African skink Trachylepis varia species complex. Mol. Phylogenet. Evol. 120, 103–117. https://doi.org/10.1016/j.ympev.2017.11.014Will, K.W., Rubinoff, D., 2004. Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20, 47– 55. https://doi.org/10.1111/j.1096-0031.2003.00008.xWitt, C., Brichau, S., Carter, A., 2012. New constraints on the origin of the Sierra Madre de Chiapas (south Mexico) from sediment provenance and apatite thermochronometry. Tectonics 31, 1–15. https://doi.org/10.1029/2012TC003141Whinnett, A., Zimmermann, M., Willmott, K. R., Herrera, N., Mallarino, R., Simpson, F., Joron, M., Lamas, G., Mallet, J. 2005. Strikingly variable divergence times inferred across an Amazonian butterfly 'suture zone'. Proceedings of the Royal Society B: Biological Sciences, 272(1580), 2525–2533. doi:10.1098/rspb.2005.3247Wong, R.A., Fong, J.J., Papenfuss, T.J., 2010. Phylogeography of the African Helmeted Terrapin, Pelomedusa subrufa: Genetic Structure, Dispersal, and Human Introduction. Proc. Calif. Acad. Sci. Ser. 4, 575–585Zhang, D., Tang, L., Cheng, Y., Hao, Y., Xiong, Y., Song, G., Qu, Y., Rheindt, E., Alström, P., Jia, C., Lei, F., 2019. “ghost Introgression” As a Cause of Deep Mitochondrial Divergence in a Bird Species Complex. Mol. Biol. Evol. 36, 2375– 2386. https://doi.org/10.1093/molbev/msz170EstudiantesGrupos comunitariosInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82229/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1032467122.2022.pdf1032467122.2022.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf4955720https://repositorio.unal.edu.co/bitstream/unal/82229/2/1032467122.2022.pdf6ca6970d85b0c49b325c063a0bb59e3aMD52THUMBNAIL1032467122.2022.pdf.jpg1032467122.2022.pdf.jpgGenerated Thumbnailimage/jpeg5224https://repositorio.unal.edu.co/bitstream/unal/82229/3/1032467122.2022.pdf.jpg18300fb35dfa9cda6860b6793cd4a48bMD53unal/82229oai:repositorio.unal.edu.co:unal/822292023-08-08 23:04:12.179Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |