Identifying rebound effects in consequential LCA

ilustraciones, diagramas

Autores:
Velez Henao, Johan Andres
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80100
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80100
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
330 - Economía::333 - Economía de la tierra y de la energía
Recursos energéticos renovables
Environmental rebound effect
LCA
STIRPAT
Environmental efficiency improvements
Non-conventional renewable resources
Mejoras en la eficiencia ambiental
Efecto de rebote ambiental
Recursos renovables no convencionales
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_3391afb870cf08cb3b57b8707e7c5eb1
oai_identifier_str oai:repositorio.unal.edu.co:unal/80100
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Identifying rebound effects in consequential LCA
dc.title.translated.spa.fl_str_mv Identificando efectos rebotes en análisis de ciclo de vida consecuencial
title Identifying rebound effects in consequential LCA
spellingShingle Identifying rebound effects in consequential LCA
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
330 - Economía::333 - Economía de la tierra y de la energía
Recursos energéticos renovables
Environmental rebound effect
LCA
STIRPAT
Environmental efficiency improvements
Non-conventional renewable resources
Mejoras en la eficiencia ambiental
Efecto de rebote ambiental
Recursos renovables no convencionales
title_short Identifying rebound effects in consequential LCA
title_full Identifying rebound effects in consequential LCA
title_fullStr Identifying rebound effects in consequential LCA
title_full_unstemmed Identifying rebound effects in consequential LCA
title_sort Identifying rebound effects in consequential LCA
dc.creator.fl_str_mv Velez Henao, Johan Andres
dc.contributor.advisor.none.fl_str_mv Hernández-Riveros, Jesús-Antonio
Möller, Andreas
Viere, Tobias
dc.contributor.author.none.fl_str_mv Velez Henao, Johan Andres
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
330 - Economía::333 - Economía de la tierra y de la energía
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
330 - Economía::333 - Economía de la tierra y de la energía
Recursos energéticos renovables
Environmental rebound effect
LCA
STIRPAT
Environmental efficiency improvements
Non-conventional renewable resources
Mejoras en la eficiencia ambiental
Efecto de rebote ambiental
Recursos renovables no convencionales
dc.subject.lem.none.fl_str_mv Recursos energéticos renovables
dc.subject.proposal.eng.fl_str_mv Environmental rebound effect
LCA
STIRPAT
Environmental efficiency improvements
Non-conventional renewable resources
dc.subject.proposal.spa.fl_str_mv Mejoras en la eficiencia ambiental
Efecto de rebote ambiental
Recursos renovables no convencionales
description ilustraciones, diagramas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-06T17:06:13Z
dc.date.available.none.fl_str_mv 2021-09-06T17:06:13Z
dc.date.issued.none.fl_str_mv 2021-07-28
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80100
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80100
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abo-Khalil, A., 2013. Impacts of Wind Farms on Power System Stability, in: Modeling and Control Aspects of Wind Power Systems. pp. 132–151. doi:http://dx.doi.org/10.5772/55090
Alfredsson, E.C., 2004. “Green” consumption - no solution for climate change. Energy 29, 513–524. doi:10.1016/j.energy.2003.10.013 Amusat, O.O., Shearing, P.R., Fraga, E.S., 2018. Optimal design of hybrid energy systems incorporating stochastic renewable resources fl uctuations. J. Energy Storage 15, 379–399. doi:10.1016/j.est.2017.12.003
Banco de la Republica, 2019. Total por grupo de gasto [WWW Document]. Índice precios al Consum. URL http://www.banrep.gov.co/es/indice-precios-consumidor-ipc (accessed 5.8.19).
Barelli, L., Bidini, G., Bonucci, F., 2016. A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration. Energy 113, 831–844. doi:10.1016/j.energy.2016.07.117
Barelli, L., Desideri, U., Ottaviano, A., 2015. Challenges in load balance due to renewable energy sources penetration : The possible role of energy storage technologies relative to the Italian case. Energy 93, 393–405. doi:10.1016/j.energy.2015.09.057
Berkhout, P., Muskens, J., Velthuijsen, J., 2000. Defining the rebound effect. Energy Policy 28, 425–432.
Binswanger, M., 2001. Technological progress and sustainable development: what about the rebound effect? Ecol. Econ. 36, 119–132. doi:10.1016/S0921-8009(00)00214-7
Boardman, B., 1991. Fuel Poverty: from cold homes to affordable warmthe, Belhaven P. ed. United Kingdom.
Brännlund, R., Ghalwash, T., Nordström, J., 2007. Increased energy efficiency and the rebound effect: Effects on consumption and emissions. Energy Econ. 29, 1–17. doi:10.1016/j.eneco.2005.09.003136
Brookes, L., 1990. Communications The greenhouse effect : the fallacies in the energy efficiency. Energy Policy 18, 199–201.
Chakravarty, D., Dasgupta, S., Roy, J., 2015. Rebound effect : how much to worry ? Curr. Opin. Environ. Sustain. 5, 216–228. doi:10.1016/j.cosust.2013.03.001
Chitnis, M., Sorrell, S., Druckman, A., Firth, S., 2012. The rebound effect : to what extent does it vary with income ?
Ciupageanu, Dana-Alexandra; Barelli, L., Ottaviano, A., Pelosi, D., Gheorghe, L., 2019. Innovative power management of hybrid energy storage systems coupled to RES plants : the Simultaneous Perturbation Stochastic Approximation approach. 2019 IEEE PES Innov. Smart Grid Technol. Eur. 1–5. doi:10.1109/ISGTEurope.2019.8905775
Ciupageanu, D.A., Lazaroiu, G., Barelli, L., 2019. Wind energy integration : Variability analysis and power system impact assessment z a. Energy 185. doi:10.1016/j.energy.2019.07.136
Congreso de la Republica, 2014. LEY 1715 de 2014, Presidencia de la Republica. Bogota. doi:10.1007/s13398-014-0173-7.2
CREG, C. de R. de E. y G., 2005. Definición de la fórmula tarifaria de energía eléctrica, para el próximo periodo tarifario. Bogota.
Deaton, A., Muellbauer, J., 1980. An Almost Ideal Demand System. Am. Econ. Rev. 70, 312–326.
European Commission, 2014. LICD Method [WWW Document]. Eur. Platf. Life Cycle Assess. URL eplca.jrc.ec.europa.eu/LCDN/developerILCDDataFormat.xhtml (accessed 11.14.19).
Flynn, D., Rather, Z., Ardal, A., Arco, S.D., Hansen, A.D., Cutululis, N.A., Sorensen, P., Estanquiero, A., Gómez, E., Menemenlis, N., Smith, C., Wang, Y., 2016. Technical impacts of high penetration levels of wind power on power system stability. doi:10.1002/wene.216
Font Vivanco, D., Kemp, R., Van der Voet, E., 2015. The relativity of eco-innovation : environmental rebound effects from past transport innovations in Europe. J. Clean. Prod. 101, 71–85. doi:10.1016/j.jclepro.2015.04.019
Font Vivanco, D., Kemp, R., Voet, E. Van Der, 2016a. How to deal with the rebound effect ? A policy-oriented approach. Energy Policy 94, 114–125.
Font Vivanco, D., Mcdowall, W., Freire-gonzález, J., Kemp, R., Voet, E. Van Der, 2016b. The foundations of the environmental rebound effect and its contribution towards a general framework. Ecol. Econ. 125, 60–69. doi:10.1016/j.ecolecon.2016.02.006
Font Vivanco, D., Tukker, A., Kemp, R., 2016c. Do Methodological Choices in Environmental Modeling Bias Rebound Eff ects? A Case Study on Electric Cars. Environ. Sci. Policy 50, pp 11366–11376. doi:10.1021/acs.est.6b01871
Font Vivanco, D., van der Voet, E., 2014. The rebound effect through industrial ecology’s eyes: a review of LCA-based studies. Int. J. Life Cycle Assess. 19. doi:10.1007/s11367-014-0802-6137
Font Vivanco, D., Voet, E. Van Der, 2014. The Remarkable Environmental Rebound Effect of Electric Cars: A Microeconomic Approach. Environ. Sci. Technol. 48, 12063–12072. doi:10.1021/es5038063
Freire-González, J., 2011. Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households. Ecol. Modell. 223, 32–40. doi:10.1016/j.ecolmodel.2011.09.001
Freire-González, J., 2010. Empirical evidence of direct rebound effect in Catalonia. Energy Policy 38, 2309–2314. doi:10.1016/j.enpol.2009.12.018
Freire-González, J., Font Vivanco, D., 2017. The influence of energy efficiency on other natural resources use: An input-output perspective. J. Clean. Prod. 162, 336–345. doi:10.1016/j.jclepro.2017.06.050
Freire-González, J., Font Vivanco, D., Puig-ventosa, I., 2017. Economic structure and energy savings from energy efficiency in households. Ecol. Econ. 131, 12–20. doi:10.1016/j.ecolecon.2016.08.023
Freire-gonzález, J., Puig-ventosa, I., 2015. Energy Efficiency Policies and the Jevons Paradox. Int. J. Energy Econ. Policy 5, 69–79.
Garcia-Mazo, C.M., 2019. Decisiones estratégicas de inversión en tecnologías renovables y no renovables para los generadores de energía en un mercado eléctrico competitivo. Medellin.
Gielen, D., Boshell, F., Saygin, D., Morgan D., B., Wagner, N., 2019. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 38–50. doi:doi.org/10.1016/j.esr.2019.01.006
Girod, B., de Haan, P., Scholz, R.W., 2010. Consumption-as-usual instead of ceteris paribus assumption for demand. Int. J. Life Cycle Assess. 16, 3–11. doi:10.1007/s11367-010-0240-z
GitHub, 2018. MRIOT [WWW Document]. Font Vivanco,David. URL https://github.com/dfontv/Rtools (accessed 11.14.19).
Goedkoop, Mark J., van Halen, C.J.G., te Riele, H.R.M., Rommens, P.J.M., 1999. Product service systems, ecological and economic basics, Report for Dutch Ministries of Environment (VROM) and Economic Affairs (EZ). doi:10.1111/j.1365-294X.2004.02125.x
Goedkoop, Mark J, Van Halen, C.J.G., Te Riele, H.R.M., Rommens, P.J.M., 1999. Product Service systems , Ecological and Economic Basics, Economic Affairs. doi:10.1111/j.1365-294X.2004.02125.x
Greening, L.A., Greene, D.L., Di, C., 2000. Energy efficiency and consumption - the rebound effect -a survey. Energy Policy 28, 389–401. Haas, R., Biermayr, P., 2000. The rebound effect for space heating empirical evidence from Austria. Energy Policy 28, 403–410. doi:10.1016/S0301-4215(00)00023-9
IDEAM, PNUD, MADS, DNP, Cancilleria, 2018. Segundo Reporte Bienal de Actualización de Colombia a la Convención Marco de las Naciones Unidas para el Cambio Climático (CMNUCC). Bogotá.
Kaberger, T., 2018. Progress of renewable electricity replacing fossil fuels. Glob. Energy Interconnect. 1, 48–52. doi:10.14171/j.2096-5117.gei.2018.01.006 Khazzoom, J.D., 1980. Economic Implications of Mandated Efficiency in Standards for Household Appliances. Energy J. 1, 21–40.
Lu, M., Wang, Z., 2016. Rebound effects for residential electricity use in urban China : an aggregation analysis based E-I-O and scenario simulation. Ann. Oper. Res. 1–22. doi:10.1007/s10479-016-2153-0
MADS, 2017. Política nacional de cambio climático.
Makov, T., Font Vivanco, D., 2018. Does the Circular Economy Grow the Pie? The Case of Rebound Effects From Smartphone Reuse. Front. Energy Res. 6, 1–11. doi:10.3389/fenrg.2018.00039
Miller, R.E., Blair, P.D., 2009. Input-output analysis: foundations and extensions. Cambridge University Press, Cambridge, United Kingdom.
Murray, C.K., 2013. What if consumers decided to all “go green”? Environmental rebound effects from consumption decisions. Energy Policy 54, 240–256. doi:10.1016/j.enpol.2012.11.025
Nansai, K., Kagawa, S., Suh, S., Fujii, M., Inaba, R., Hashimoto, S., 2009. Material and Energy Dependence of Services and Its Implications for Climate Change. Environ. Sci. Technol. 43, 4241–4246.
Peters, G.P., Andrew, R., Lennox, J., 2011. CONSTRUCTING AN ENVIRONMENTALLY- EXTENDED MULTI-REGIONAL INPUT – OUTPUT TABLE USING THE GTAP DATABASE. Econ. Syst. Res. 23, 151–152. doi:10.1080/09535314.2011.563234
Roy, J., 2000. The rebound effect: Some empirical evidence from India. Energy Policy 28, 433–438. doi:10.1016/S0301-4215(00)00027-6
Sorrell, S., 2007. The Rebound Effect: an assessment of the evidence for economy-wide energy savings from improved energy efficiency.
Sorrell, S., Dimitropoulos, J., 2007. The rebound effect : Microeconomic definitions , limitations and extensions. Ecol. Econ. 5, 636–64. doi:10.1016/j.ecolecon.2007.08.013
Sorrell, S., Dimitropoulos, J., Sommerville, M., 2009. Empirical estimates of the direct rebound effect : A review. Energy Policy 37, 1356–1371. doi:10.1016/j.enpol.2008.11.026
Spielmann, M., de Haan, P., Scholz, R.W., 2008. Environmental rebound effects of high-speed transport technologies: a case study of climate change rebound effects of a future underground maglev train system. J. Clean. Prod. 16, 1388–1398. doi:10.1016/j.jclepro.2007.08.001
Suh, S., 2006. Are services better for climate change? Environ. Sci. Technol. 40, 6555–6560. doi:10.1021/es0609351
SUI, S. de S.P.D., 2018. Servicios publicos. Energia [WWW Document]. URL http://www.sui.gov.co/web/energia (accessed 8.22.18).
Takase, K., Kondo, Y., Washizu, A., 2005. An Analysis of Sustainable Consumption by the Waste Input-Output Model. J. Ind. Ecol. 9, 201–219.
The Word Bank, 2010. Share of Each Sector in Household Total Consumption [WWW Document]. Glob. Consum. DATABASE. URL http://datatopics.worldbank.org/consumption/country/Colombia (accessed 7.22.19).
Thomas, B.A., Azevedo, I.L., 2013a. Estimating direct and indirect rebound effects for U.S. households with input–output analysis. Part 2: Simulation. Ecol. Econ. 86, 188–198. doi:10.1016/j.ecolecon.2012.12.002
Thomas, B.A., Azevedo, I.L., 2013b. Estimating direct and indirect rebound effects for U.S. households with input-output analysis Part 1: Theoretical framework. Ecol. Econ. 86, 199–210. doi:10.1016/j.ecolecon.2012.12.003
Turconi, R., Boldrin, A., Astrup, T., 2013. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renew. Sustain. Energy Rev. 28, 555–565. doi:10.1016/j.rser.2013.08.013
UN, U.N., 2018. Individual consumption expenditure of households [WWW Document]. Statistics (Ber). URL http://data.un.org/Data.aspx?d=SNA&f=group_code%3A302 (accessed 5.8.19).
United Nations, 2017. Sustainable development goals [WWW Document]. URL http://www.un.org/sustainabledevelopment/ (accessed 12.21.17). UPME, 2019a. Balance Energetico Colombiano BECO [WWW Document]. BECO Anu. URL http://www1.upme.gov.co/InformacionCifras/Paginas/BalanceEnergetico.aspx (accessed 5.6.19).
UPME, 2019b. BALANCE ENERGETICO COLOMBIANO - BECO [WWW Document]. Inf. y cifras Sect. URL http://www1.upme.gov.co/InformacionCifras/Paginas/BalanceEnergetico.aspx (accessed 2.6.19).
UPME, 2019c. Long-term auctions [WWW Document]. Rep. 46 Publ. results CLPE Auction No.02-2019. URL https://www1.upme.gov.co/PromocionSector/Subastas-largo-plazo/Paginas/Subasta-CLPE-No-02-2019.aspx (accessed 4.22.20).
UPME, 2016a. Plan de Expansión de Referencia Generación – Transmisión 2016 – 2030. Bogota.
UPME, 2016b. Plan De Accion Indicativo De Eficiencia Energética 2017-2022.
van den Bergh, J.C.J.M., 2011. Energy Conservation More Effective With Rebound Policy. Environ. Resour. Econ. 48, 43–58. doi:10.1007/s10640-010-9396-z
Vélez Henao, J.A., Garcia Mazo, C.M., 2019. Marginal technology based on consequential life cycle assessment . The case of Colombia Tecnología marginal basada en la evaluación del ciclo de vida consecuencial . El caso de ARTICLE INFO : AVAILABLE ONLINE : Rev. Fac. Ing. 51–61. doi:10.17533/udea.redin.n90a07
Wang, Z., Lu, M., Wang, J., 2014. Direct rebound effect on urban residential electricity use : An empirical study in China. Renew. Sustain. Energy Rev. 30, 124–132. doi:10.1016/j.rser.2013.09.002
Weidema, B.P., 2008. Rebound effects of sustainable production, in: Presentation to the “Sustainable Consumption and Production” Session of the Conference “Bridging the Gap; Responding to Environmental Change – From Words to Deeds”, Portorož, Slovenia, 2008.05.14-16. p. 5.
Wen, F., Ye, Z., Yang, H., Li, K., 2018. Exploring the rebound effect from the perspective of household: An analysis of China’s provincial level. Energy Econ. 75, 345–356. doi:10.1016/j.eneco.2018.08.018
XM-Filial de ISA, 2018. Reporte integral de sostenibilidad, operación y mercado 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 227 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
Leuphana Universität Lüneburg
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80100/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80100/8/1128283453.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80100/14/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/80100/15/1128283453.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
8117a75893aecd0555b5a5c95c0298d0
4460e5956bc1d1639be9ae6146a50347
f756e9e1127821c46a62dfd6d1ecc74e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089717881241600
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hernández-Riveros, Jesús-Antonio663dd88a1c5315f68be902d83bb725ed600Möller, Andreas564e747cf69b5c0ea1478fe93e1dffd3600Viere, Tobias8461bf40b58de8a447151eef9438f4b6600Velez Henao, Johan Andrese8b65ff0c72f9877545585af805ec8fd2021-09-06T17:06:13Z2021-09-06T17:06:13Z2021-07-28https://repositorio.unal.edu.co/handle/unal/80100Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasOne of the Colombian strategies to diversify and decarbonize the energy sector is encouraging the use of non-conventional renewable resources (NCRR). For doing so the government issued in 2014 the Law 1715 to promote NCRR and energy efficiency improvements into the sector. While presumably it will help to achieve the international and national commitment to reduce the CO2 emission by 20% in 2030, this assumption cannot be tested broader without taking in account the environmental consequence that such initiatives may produce in the household sector, the greatest electricity consuming sector in Colombia This thesis measures the environmental rebound effect (ERE) when increasing the shares of wind power into the Colombian power grid in the residential (household) sector. For doing so, a process-based Life Cycle Assessment (P-LCA), an environmental extended input output (EEIO) model and re-spending models (almost ideal demand system AIDS) were applied. Direct rebound effect was measured thought the elasticity price of the electricity demand; furthermore, the environmental savings for increasing the shares of wind power into the grid were calculated via P-LCA. For doing so, a P-LCA for a wind farm in Colombia was performed, whereas the information for other energy resources (Hydro, Coal, Gas, Solar and Thermal) where collected from Ecoinvent 3.4 database. To calculate the environmental indirect rebound effect the monetary savings obtained for the environmental efficiency were calculated. For doing so, an AIDS was applied to obtain the marginal budget shares (MBS). Combining the MBS obtained with the EEIO model the monetary savings were translated into environmental indicators. The ERE is presented for ten impact categories (climate change (CC), acidification (A), ecotoxicity (E), marine eutrophication (MEUT), terrestrial eutrophication (TEUT), carcinogenic effects (CE), non-carcinogenic effects (NCE), ozone layer depletion (OD), photochemical ozone creation (POC), and respiratory effects, inorganics (RES)). Moreover, a sensitive analysis was conducted to measure the variability of the ERE to different values of the direct rebound effect and different percentages of price efficiency. The results show that the inclusion of the environmental rebound effect has generally a non-negligible impact on the overall environmental indicators across all studied years. Such impacts ranging across impact categories from 5% (eutrophication) and 6,109% (photochemical oxidant creation) for the combined model, whereas for the single model the values fall on the ranges of 1% (eutrophication) and 9,277% (photochemical oxidant creation). Further, a sensitivity analysis of the elasticity price of the electricity and the price of the electricity reveals that the ERE varies in different ways, specifically, changes in these parameters could vary the impacts, respectively, by up to about <1% and 38%. Backfire effects are present for 8 of the 10 environmental impacts studied in different magnitudes across the years, depending meanly of the savings available to re-invest.Una de las estrategias colombianas para diversificar y descarbonizar el sector energético es fomentar el uso de recursos renovables no convencionales (RNNC). Para ello, el gobierno emitió en 2014 la Ley 1715 para promover los RNNC y las mejoras de eficiencia energética en el sector. Si bien esto ayudará a cumplir el compromiso internacional y nacional de reducir las emisiones de CO2 en un 20% en 2030, este supuesto no puede ser probado de manera amplia sin tener en cuenta las consecuencias ambientales que tales iniciativas pueden producir en el sector doméstico, el mayor sector consumidor de electricidad en Colombia. Esta tesis mide el efecto rebote ambiental (ERE) de aumentar la participación de energía eólica en la red eléctrica colombiana en el sector residencial (hogares). Para ello se aplicó un modelo de evaluación del ciclo de vida basada en procesos (P-LCA), un modelo de entrada y salida ambiental extendido (EEIO) y modelos de gastos adicionales (sistema de demanda casi ideal AIDS). El efecto rebote directo se midió a través del precio de la elasticidad de la demanda de electricidad; además, el ahorro medioambiental por el aumento de la participación de energía eólica en la red se calculó a través de P-LCA. Para ello se realizó un P-LCA para un parque eólico en Colombia, mientras que la información para otros recursos energéticos (Hidro, Carbón, Gas, Solar) se tomó de la base de datos Ecoinvent 3.4. Para calcular el efecto rebote indirecto ambiental se calcularon los ahorros monetarios obtenidos por la eficiencia ambiental. Para ello se aplicó un AIDS para obtener las participaciones presupuestarias marginales (MBS). Combinando las MBS obtenidas con el modelo EEIO, el ahorro monetario se tradujo en indicadores ambientales. El ERE se presenta para diez categorías de impacto (cambio climático (CC), acidificación (A), ecotoxicidad (E), eutrofización marina (MEUT), eutrofización terrestre (TEUT), efectos cancerígenos (CE), efectos no cancerígenos (NCE), agotamiento de la capa de ozono (OD), creación fotoquímica de ozono (POC), y efectos respiratorios, inorgánicos (RES)). Además, se realizó un análisis de sensibilidad para medir la variabilidad del ERE con respecto a los diferentes valores del efecto rebote directo y los diferentes porcentajes de eficiencia de los precios. Los resultados muestran que la inclusión del efecto de rebote ambiental tiene generalmente un impacto no despreciable en los indicadores ambientales globales a lo largo de todos los años estudiados. Estos impactos oscilan entre el 5% (eutrofización) y el 6,109% (creación de oxidantes fotoquímicos) para el modelo combinado, mientras que para el modelo único los valores caen en los rangos del 1% (eutrofización) y el 9,277% (creación de oxidantes fotoquímicos). Además, un análisis de sensibilidad del precio de la elasticidad de la electricidad y del precio de la electricidad revela que la ERE varía de diferentes maneras, específicamente, los cambios en estos parámetros podrían variar los impactos, respectivamente, hasta entre un Los resultados muestran que la inclusión del efecto de rebote ambiental tiene generalmente un impacto no despreciable en los indicadores ambientales globales a lo largo de todos los años estudiados. Estos impactos oscilan entre el 5% (eutrofización) y el 6,109% (creación de oxidantes fotoquímicos) para el modelo combinado, mientras que para el modelo único los valores caen en los rangos del 1% (eutrofización) y el 9,277% (creación de oxidantes fotoquímicos). Además, un análisis de sensibilidad del precio de la elasticidad de la electricidad y del precio de la electricidad revela que la ERE varía de diferentes maneras, específicamente, los cambios en estos parámetros podrían variar los impactos, respectivamente, hasta entre un <1% y 38%. En 8 de 10 los impactos ambientales. (Texto tomado de la fuente)DoctoradoDoctor en Ingenieríaxxii, 227 páginasapplication/pdfengUniversidad Nacional de ColombiaLeuphana Universität LüneburgMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosDepartamento de Procesos y EnergíaFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería330 - Economía::333 - Economía de la tierra y de la energíaRecursos energéticos renovablesEnvironmental rebound effectLCASTIRPATEnvironmental efficiency improvementsNon-conventional renewable resourcesMejoras en la eficiencia ambientalEfecto de rebote ambientalRecursos renovables no convencionalesIdentifying rebound effects in consequential LCAIdentificando efectos rebotes en análisis de ciclo de vida consecuencialTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbo-Khalil, A., 2013. Impacts of Wind Farms on Power System Stability, in: Modeling and Control Aspects of Wind Power Systems. pp. 132–151. doi:http://dx.doi.org/10.5772/55090Alfredsson, E.C., 2004. “Green” consumption - no solution for climate change. Energy 29, 513–524. doi:10.1016/j.energy.2003.10.013 Amusat, O.O., Shearing, P.R., Fraga, E.S., 2018. Optimal design of hybrid energy systems incorporating stochastic renewable resources fl uctuations. J. Energy Storage 15, 379–399. doi:10.1016/j.est.2017.12.003Banco de la Republica, 2019. Total por grupo de gasto [WWW Document]. Índice precios al Consum. URL http://www.banrep.gov.co/es/indice-precios-consumidor-ipc (accessed 5.8.19).Barelli, L., Bidini, G., Bonucci, F., 2016. A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration. Energy 113, 831–844. doi:10.1016/j.energy.2016.07.117Barelli, L., Desideri, U., Ottaviano, A., 2015. Challenges in load balance due to renewable energy sources penetration : The possible role of energy storage technologies relative to the Italian case. Energy 93, 393–405. doi:10.1016/j.energy.2015.09.057Berkhout, P., Muskens, J., Velthuijsen, J., 2000. Defining the rebound effect. Energy Policy 28, 425–432.Binswanger, M., 2001. Technological progress and sustainable development: what about the rebound effect? Ecol. Econ. 36, 119–132. doi:10.1016/S0921-8009(00)00214-7Boardman, B., 1991. Fuel Poverty: from cold homes to affordable warmthe, Belhaven P. ed. United Kingdom.Brännlund, R., Ghalwash, T., Nordström, J., 2007. Increased energy efficiency and the rebound effect: Effects on consumption and emissions. Energy Econ. 29, 1–17. doi:10.1016/j.eneco.2005.09.003136Brookes, L., 1990. Communications The greenhouse effect : the fallacies in the energy efficiency. Energy Policy 18, 199–201.Chakravarty, D., Dasgupta, S., Roy, J., 2015. Rebound effect : how much to worry ? Curr. Opin. Environ. Sustain. 5, 216–228. doi:10.1016/j.cosust.2013.03.001Chitnis, M., Sorrell, S., Druckman, A., Firth, S., 2012. The rebound effect : to what extent does it vary with income ?Ciupageanu, Dana-Alexandra; Barelli, L., Ottaviano, A., Pelosi, D., Gheorghe, L., 2019. Innovative power management of hybrid energy storage systems coupled to RES plants : the Simultaneous Perturbation Stochastic Approximation approach. 2019 IEEE PES Innov. Smart Grid Technol. Eur. 1–5. doi:10.1109/ISGTEurope.2019.8905775Ciupageanu, D.A., Lazaroiu, G., Barelli, L., 2019. Wind energy integration : Variability analysis and power system impact assessment z a. Energy 185. doi:10.1016/j.energy.2019.07.136Congreso de la Republica, 2014. LEY 1715 de 2014, Presidencia de la Republica. Bogota. doi:10.1007/s13398-014-0173-7.2CREG, C. de R. de E. y G., 2005. Definición de la fórmula tarifaria de energía eléctrica, para el próximo periodo tarifario. Bogota.Deaton, A., Muellbauer, J., 1980. An Almost Ideal Demand System. Am. Econ. Rev. 70, 312–326.European Commission, 2014. LICD Method [WWW Document]. Eur. Platf. Life Cycle Assess. URL eplca.jrc.ec.europa.eu/LCDN/developerILCDDataFormat.xhtml (accessed 11.14.19).Flynn, D., Rather, Z., Ardal, A., Arco, S.D., Hansen, A.D., Cutululis, N.A., Sorensen, P., Estanquiero, A., Gómez, E., Menemenlis, N., Smith, C., Wang, Y., 2016. Technical impacts of high penetration levels of wind power on power system stability. doi:10.1002/wene.216Font Vivanco, D., Kemp, R., Van der Voet, E., 2015. The relativity of eco-innovation : environmental rebound effects from past transport innovations in Europe. J. Clean. Prod. 101, 71–85. doi:10.1016/j.jclepro.2015.04.019Font Vivanco, D., Kemp, R., Voet, E. Van Der, 2016a. How to deal with the rebound effect ? A policy-oriented approach. Energy Policy 94, 114–125.Font Vivanco, D., Mcdowall, W., Freire-gonzález, J., Kemp, R., Voet, E. Van Der, 2016b. The foundations of the environmental rebound effect and its contribution towards a general framework. Ecol. Econ. 125, 60–69. doi:10.1016/j.ecolecon.2016.02.006Font Vivanco, D., Tukker, A., Kemp, R., 2016c. Do Methodological Choices in Environmental Modeling Bias Rebound Eff ects? A Case Study on Electric Cars. Environ. Sci. Policy 50, pp 11366–11376. doi:10.1021/acs.est.6b01871Font Vivanco, D., van der Voet, E., 2014. The rebound effect through industrial ecology’s eyes: a review of LCA-based studies. Int. J. Life Cycle Assess. 19. doi:10.1007/s11367-014-0802-6137Font Vivanco, D., Voet, E. Van Der, 2014. The Remarkable Environmental Rebound Effect of Electric Cars: A Microeconomic Approach. Environ. Sci. Technol. 48, 12063–12072. doi:10.1021/es5038063Freire-González, J., 2011. Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households. Ecol. Modell. 223, 32–40. doi:10.1016/j.ecolmodel.2011.09.001Freire-González, J., 2010. Empirical evidence of direct rebound effect in Catalonia. Energy Policy 38, 2309–2314. doi:10.1016/j.enpol.2009.12.018Freire-González, J., Font Vivanco, D., 2017. The influence of energy efficiency on other natural resources use: An input-output perspective. J. Clean. Prod. 162, 336–345. doi:10.1016/j.jclepro.2017.06.050Freire-González, J., Font Vivanco, D., Puig-ventosa, I., 2017. Economic structure and energy savings from energy efficiency in households. Ecol. Econ. 131, 12–20. doi:10.1016/j.ecolecon.2016.08.023Freire-gonzález, J., Puig-ventosa, I., 2015. Energy Efficiency Policies and the Jevons Paradox. Int. J. Energy Econ. Policy 5, 69–79.Garcia-Mazo, C.M., 2019. Decisiones estratégicas de inversión en tecnologías renovables y no renovables para los generadores de energía en un mercado eléctrico competitivo. Medellin.Gielen, D., Boshell, F., Saygin, D., Morgan D., B., Wagner, N., 2019. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 38–50. doi:doi.org/10.1016/j.esr.2019.01.006Girod, B., de Haan, P., Scholz, R.W., 2010. Consumption-as-usual instead of ceteris paribus assumption for demand. Int. J. Life Cycle Assess. 16, 3–11. doi:10.1007/s11367-010-0240-zGitHub, 2018. MRIOT [WWW Document]. Font Vivanco,David. URL https://github.com/dfontv/Rtools (accessed 11.14.19).Goedkoop, Mark J., van Halen, C.J.G., te Riele, H.R.M., Rommens, P.J.M., 1999. Product service systems, ecological and economic basics, Report for Dutch Ministries of Environment (VROM) and Economic Affairs (EZ). doi:10.1111/j.1365-294X.2004.02125.xGoedkoop, Mark J, Van Halen, C.J.G., Te Riele, H.R.M., Rommens, P.J.M., 1999. Product Service systems , Ecological and Economic Basics, Economic Affairs. doi:10.1111/j.1365-294X.2004.02125.xGreening, L.A., Greene, D.L., Di, C., 2000. Energy efficiency and consumption - the rebound effect -a survey. Energy Policy 28, 389–401. Haas, R., Biermayr, P., 2000. The rebound effect for space heating empirical evidence from Austria. Energy Policy 28, 403–410. doi:10.1016/S0301-4215(00)00023-9IDEAM, PNUD, MADS, DNP, Cancilleria, 2018. Segundo Reporte Bienal de Actualización de Colombia a la Convención Marco de las Naciones Unidas para el Cambio Climático (CMNUCC). Bogotá.Kaberger, T., 2018. Progress of renewable electricity replacing fossil fuels. Glob. Energy Interconnect. 1, 48–52. doi:10.14171/j.2096-5117.gei.2018.01.006 Khazzoom, J.D., 1980. Economic Implications of Mandated Efficiency in Standards for Household Appliances. Energy J. 1, 21–40.Lu, M., Wang, Z., 2016. Rebound effects for residential electricity use in urban China : an aggregation analysis based E-I-O and scenario simulation. Ann. Oper. Res. 1–22. doi:10.1007/s10479-016-2153-0MADS, 2017. Política nacional de cambio climático.Makov, T., Font Vivanco, D., 2018. Does the Circular Economy Grow the Pie? The Case of Rebound Effects From Smartphone Reuse. Front. Energy Res. 6, 1–11. doi:10.3389/fenrg.2018.00039Miller, R.E., Blair, P.D., 2009. Input-output analysis: foundations and extensions. Cambridge University Press, Cambridge, United Kingdom.Murray, C.K., 2013. What if consumers decided to all “go green”? Environmental rebound effects from consumption decisions. Energy Policy 54, 240–256. doi:10.1016/j.enpol.2012.11.025Nansai, K., Kagawa, S., Suh, S., Fujii, M., Inaba, R., Hashimoto, S., 2009. Material and Energy Dependence of Services and Its Implications for Climate Change. Environ. Sci. Technol. 43, 4241–4246.Peters, G.P., Andrew, R., Lennox, J., 2011. CONSTRUCTING AN ENVIRONMENTALLY- EXTENDED MULTI-REGIONAL INPUT – OUTPUT TABLE USING THE GTAP DATABASE. Econ. Syst. Res. 23, 151–152. doi:10.1080/09535314.2011.563234Roy, J., 2000. The rebound effect: Some empirical evidence from India. Energy Policy 28, 433–438. doi:10.1016/S0301-4215(00)00027-6Sorrell, S., 2007. The Rebound Effect: an assessment of the evidence for economy-wide energy savings from improved energy efficiency.Sorrell, S., Dimitropoulos, J., 2007. The rebound effect : Microeconomic definitions , limitations and extensions. Ecol. Econ. 5, 636–64. doi:10.1016/j.ecolecon.2007.08.013Sorrell, S., Dimitropoulos, J., Sommerville, M., 2009. Empirical estimates of the direct rebound effect : A review. Energy Policy 37, 1356–1371. doi:10.1016/j.enpol.2008.11.026Spielmann, M., de Haan, P., Scholz, R.W., 2008. Environmental rebound effects of high-speed transport technologies: a case study of climate change rebound effects of a future underground maglev train system. J. Clean. Prod. 16, 1388–1398. doi:10.1016/j.jclepro.2007.08.001Suh, S., 2006. Are services better for climate change? Environ. Sci. Technol. 40, 6555–6560. doi:10.1021/es0609351SUI, S. de S.P.D., 2018. Servicios publicos. Energia [WWW Document]. URL http://www.sui.gov.co/web/energia (accessed 8.22.18).Takase, K., Kondo, Y., Washizu, A., 2005. An Analysis of Sustainable Consumption by the Waste Input-Output Model. J. Ind. Ecol. 9, 201–219.The Word Bank, 2010. Share of Each Sector in Household Total Consumption [WWW Document]. Glob. Consum. DATABASE. URL http://datatopics.worldbank.org/consumption/country/Colombia (accessed 7.22.19).Thomas, B.A., Azevedo, I.L., 2013a. Estimating direct and indirect rebound effects for U.S. households with input–output analysis. Part 2: Simulation. Ecol. Econ. 86, 188–198. doi:10.1016/j.ecolecon.2012.12.002Thomas, B.A., Azevedo, I.L., 2013b. Estimating direct and indirect rebound effects for U.S. households with input-output analysis Part 1: Theoretical framework. Ecol. Econ. 86, 199–210. doi:10.1016/j.ecolecon.2012.12.003Turconi, R., Boldrin, A., Astrup, T., 2013. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renew. Sustain. Energy Rev. 28, 555–565. doi:10.1016/j.rser.2013.08.013UN, U.N., 2018. Individual consumption expenditure of households [WWW Document]. Statistics (Ber). URL http://data.un.org/Data.aspx?d=SNA&f=group_code%3A302 (accessed 5.8.19).United Nations, 2017. Sustainable development goals [WWW Document]. URL http://www.un.org/sustainabledevelopment/ (accessed 12.21.17). UPME, 2019a. Balance Energetico Colombiano BECO [WWW Document]. BECO Anu. URL http://www1.upme.gov.co/InformacionCifras/Paginas/BalanceEnergetico.aspx (accessed 5.6.19).UPME, 2019b. BALANCE ENERGETICO COLOMBIANO - BECO [WWW Document]. Inf. y cifras Sect. URL http://www1.upme.gov.co/InformacionCifras/Paginas/BalanceEnergetico.aspx (accessed 2.6.19).UPME, 2019c. Long-term auctions [WWW Document]. Rep. 46 Publ. results CLPE Auction No.02-2019. URL https://www1.upme.gov.co/PromocionSector/Subastas-largo-plazo/Paginas/Subasta-CLPE-No-02-2019.aspx (accessed 4.22.20).UPME, 2016a. Plan de Expansión de Referencia Generación – Transmisión 2016 – 2030. Bogota.UPME, 2016b. Plan De Accion Indicativo De Eficiencia Energética 2017-2022.van den Bergh, J.C.J.M., 2011. Energy Conservation More Effective With Rebound Policy. Environ. Resour. Econ. 48, 43–58. doi:10.1007/s10640-010-9396-zVélez Henao, J.A., Garcia Mazo, C.M., 2019. Marginal technology based on consequential life cycle assessment . The case of Colombia Tecnología marginal basada en la evaluación del ciclo de vida consecuencial . El caso de ARTICLE INFO : AVAILABLE ONLINE : Rev. Fac. Ing. 51–61. doi:10.17533/udea.redin.n90a07Wang, Z., Lu, M., Wang, J., 2014. Direct rebound effect on urban residential electricity use : An empirical study in China. Renew. Sustain. Energy Rev. 30, 124–132. doi:10.1016/j.rser.2013.09.002Weidema, B.P., 2008. Rebound effects of sustainable production, in: Presentation to the “Sustainable Consumption and Production” Session of the Conference “Bridging the Gap; Responding to Environmental Change – From Words to Deeds”, Portorož, Slovenia, 2008.05.14-16. p. 5.Wen, F., Ye, Z., Yang, H., Li, K., 2018. Exploring the rebound effect from the perspective of household: An analysis of China’s provincial level. Energy Econ. 75, 345–356. doi:10.1016/j.eneco.2018.08.018XM-Filial de ISA, 2018. Reporte integral de sostenibilidad, operación y mercado 2018InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80100/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1128283453.2021.pdf1128283453.2021.pdfTesis de doctorado en ingeniería. Sistemas energéticosapplication/pdf3851007https://repositorio.unal.edu.co/bitstream/unal/80100/8/1128283453.2021.pdf8117a75893aecd0555b5a5c95c0298d0MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/80100/14/license_rdf4460e5956bc1d1639be9ae6146a50347MD514THUMBNAIL1128283453.2021.pdf.jpg1128283453.2021.pdf.jpgGenerated Thumbnailimage/jpeg4438https://repositorio.unal.edu.co/bitstream/unal/80100/15/1128283453.2021.pdf.jpgf756e9e1127821c46a62dfd6d1ecc74eMD515unal/80100oai:repositorio.unal.edu.co:unal/801002023-10-13 13:08:20.821Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==