Regression and multimodal learning to aid diagnosis in ophthalmology and histopathology

ilustraciones, diagramas

Autores:
Toledo Cortés, Santiago
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85336
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85336
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Histopathology
Ophthalmology
Deep learning
Kernel methods
Medical image analysis
Multimodal learning
Ordinal regression
Probabilistic models
Quantum machine learning
Análisis de imágenes médicas
Histopatologı́a
Métodos de Kernel
Oftalmologı́a
Aprendizaje profundo
Aprendizaje de máquina cuántico
Aprendizaje multimodal
Modelos probabilı́sticos
Regresión ordinal
Teoría de las probabilidades
Inteligencia artificial
Ciencias médicas
Probability theory
Artificial intelligence
Medical sciences
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_3384b00508660b9d13cc5b6236f3adac
oai_identifier_str oai:repositorio.unal.edu.co:unal/85336
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Regression and multimodal learning to aid diagnosis in ophthalmology and histopathology
dc.title.translated.spa.fl_str_mv Regresión y aprendizaje multimodal como ayuda al diagnóstico en oftalmologı́a e histopatologı́a
title Regression and multimodal learning to aid diagnosis in ophthalmology and histopathology
spellingShingle Regression and multimodal learning to aid diagnosis in ophthalmology and histopathology
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Histopathology
Ophthalmology
Deep learning
Kernel methods
Medical image analysis
Multimodal learning
Ordinal regression
Probabilistic models
Quantum machine learning
Análisis de imágenes médicas
Histopatologı́a
Métodos de Kernel
Oftalmologı́a
Aprendizaje profundo
Aprendizaje de máquina cuántico
Aprendizaje multimodal
Modelos probabilı́sticos
Regresión ordinal
Teoría de las probabilidades
Inteligencia artificial
Ciencias médicas
Probability theory
Artificial intelligence
Medical sciences
title_short Regression and multimodal learning to aid diagnosis in ophthalmology and histopathology
title_full Regression and multimodal learning to aid diagnosis in ophthalmology and histopathology
title_fullStr Regression and multimodal learning to aid diagnosis in ophthalmology and histopathology
title_full_unstemmed Regression and multimodal learning to aid diagnosis in ophthalmology and histopathology
title_sort Regression and multimodal learning to aid diagnosis in ophthalmology and histopathology
dc.creator.fl_str_mv Toledo Cortés, Santiago
dc.contributor.advisor.spa.fl_str_mv González Osorio, Fabio Augusto
dc.contributor.author.spa.fl_str_mv Toledo Cortés, Santiago
dc.contributor.researchgroup.spa.fl_str_mv Mindlab
dc.contributor.orcid.spa.fl_str_mv 0000-0003-4172-9263
dc.contributor.cvlac.spa.fl_str_mv 0001449836
dc.contributor.scopus.spa.fl_str_mv 57207843310
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Santiago-Toledo-Cortes-2
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?user=M7l6jx4AAAAJ&hl=en
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Histopathology
Ophthalmology
Deep learning
Kernel methods
Medical image analysis
Multimodal learning
Ordinal regression
Probabilistic models
Quantum machine learning
Análisis de imágenes médicas
Histopatologı́a
Métodos de Kernel
Oftalmologı́a
Aprendizaje profundo
Aprendizaje de máquina cuántico
Aprendizaje multimodal
Modelos probabilı́sticos
Regresión ordinal
Teoría de las probabilidades
Inteligencia artificial
Ciencias médicas
Probability theory
Artificial intelligence
Medical sciences
dc.subject.proposal.eng.fl_str_mv Histopathology
Ophthalmology
Deep learning
Kernel methods
Medical image analysis
Multimodal learning
Ordinal regression
Probabilistic models
Quantum machine learning
Análisis de imágenes médicas
dc.subject.proposal.spa.fl_str_mv Histopatologı́a
Métodos de Kernel
Oftalmologı́a
Aprendizaje profundo
Aprendizaje de máquina cuántico
Aprendizaje multimodal
Modelos probabilı́sticos
Regresión ordinal
dc.subject.unesco.spa.fl_str_mv Teoría de las probabilidades
Inteligencia artificial
Ciencias médicas
dc.subject.unesco.eng.fl_str_mv Probability theory
Artificial intelligence
Medical sciences
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-16T19:43:16Z
dc.date.available.none.fl_str_mv 2024-01-16T19:43:16Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85336
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85336
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv Testing for Glaucoma. https://glaucoma.org/learn-about-glaucoma/testing-for-glaucoma/. 2023
Abràmoff, Michael D. ; Folk, James C. ; Han, Dennis P. ; Walker, Jonathan D. ; Williams, David F. ; Russell, Stephen R. ; Massin, Pascale ; Cochener, Beatrice ; Gain, Philippe ; Tang, Li ; Lamard, Mathieu ; Moga, Daniela C. ; Quellec, Gwénolé ; Niemeijer, Meindert: Automated analysis of retinal images for detection of referable diabetic retinopathy. In: JAMA Ophthalmology 131 (2013), Nr. 3, S. 351–357. – ISSN 21686165
Adler, Tim J. ; Ardizzone, Lynton ; Vemuri, Anant ; Ayala, Leonardo ; Gröhl, Janek ; Kirchner, Thomas ; Wirkert, Sebastian ; Kruse, Jakob ; Rother, Carsten ; Köthe, Ullrich ; Maier-Hein, Lena: Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks. In: In- ternational Journal of Computer Assisted Radiology and Surgery 14 (2019), Nr. 6, S. 997–1007. – ISSN 18616429
American Academy of Ophthalmology: International clinical diabetic retinopathy disease severity scale detailed table. In: International Council of Oph- thalmology (2002)
Andrearczyk, Vincent ; Müller, Henning: Deep multimodal classification of image types in biomedical journal figures. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11018 LNCS (2018), S. 3–14. – ISBN 9783319989310
Araújo, Teresa ; Aresta, Guilherme ; Mendonça, Luı́s ; Penas, Susana ; Maia, Carolina ; Carneiro, Ângela ; Mendonça, Ana M. ; Campilho, Aurélio: DR—GRADUATE: Uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images. In: Medical Image Analysis 63 (2020). – ISSN 13618423
Arevalo, John ; Solorio, Thamar ; Montes-Y-Gómez, Manuel ; González, Fabio A.: Gated multimodal units for information fusion. In: 5th International Conference on Learning Representations, ICLR 2017 - Workshop Track Proceedings (2017)
Baccianella, Stefano ; Esuli, Andrea ; Sebastiani, Fabrizio: Evaluation measures for ordinal regression. In: 2009 Ninth international conference on intelligent systems design and applications IEEE, 2009, S. 283–287
Baltrusaitis, Tadas ; Ahuja, Chaitanya ; Morency, Louis P.: Multimodal Machine Learning: A Survey and Taxonomy. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 41 (2019), Nr. 2, S. 423–443. – ISSN 19393539
Bauer, Dominik F. ; Russ, Tom ; Waldkirch, Barbara I. ; Tönnes, Christian ; Segars, William P. ; Schad, Lothar R. ; Zöllner, Frank G. ; Golla, Alena K.: Generation of annotated multimodal ground truth datasets for abdominal medical image registration. In: International Journal of Computer Assisted Radiology and Surgery 16 (2021), Nr. 8, S. 1277–1285. – ISSN 18616429
Bayoudh, K ; Knani, R ; Hamdaoui, F ; Mtibaa, A: A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. In: Vis Comput 38 (2022), Nr. 8, S. 2939–2970. – Epub 2021 Jun 10; PMID: 34131356; PMCID: PMC8192112
Beckham, Christopher ; Pal, Christopher: A simple squared-error reformulation for ordinal classification. (2016), Nr. Nips
Beckham, Christopher ; Pal, Christopher: Unimodal probability distributions for deep ordinal classification. In: 34th International Conference on Machine Learning, ICML 2017 1 (2017), S. 647–655. ISBN 9781510855144
Benzebouchi, Nacer E. ; Azizi, Nabiha ; Ashour, Amira S. ; Dey, Nilanjan ; Sherratt, R. S.: Multi-modal classifier fusion with feature cooperation for glaucoma diagnosis. In: Journal of Experimental and Theoretical Artificial Intelligence 31 (2019), Nr. 6, S. 841–874. – ISSN 13623079
Blunt, Nick S. ; Camps, Joan ; Crawford, Ophelia ; Izsák, Róbert ; Leontica, Sebastian ; Mirani, Arjun ; Moylett, Alexandra E. ; Scivier, Sam A. ; Sünder- hauf, Christoph ; Schopf, Patrick ; Taylor, Jacob M. ; Holzmann, Nicole: Per- spective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications. In: Journal of Chemical Theory and Computation 18 (2022), Nr. 12, S. 7001–7023. – PMID: 36355616
Bradshaw, John ; Matthews, Alexander G. de G. ; Ghahramani, Zoubin: Ad- versarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks. In: https://arxiv.org/pdf/1707.02476.pdfarXiv:1707.02476v1 eprint (2017), S. 1–33
Bulten, Wouter ; Litjens, Geert ; Pinckaers, Hans ; Ström, Peter ; Eklund, Martin ; Kartasalo, Kimmo ; Demkin, Maggie ; Dane, Sohier. The PANDA challenge: Prostate cANcer graDe Assessment using the Gleason grading system. März 2020
Burns, Stephen A. ; Elsner, Ann E. ; Sapoznik, Kaitlyn A. ; Warner, Raymond L. ; Gast, Thomas J.: Adaptive optics imaging of the human retina. In: Progress in Retinal and Eye Research 68 (2019), S. 1–30. – ISSN 1350–9462
Burns, Stephen A. ; Elsner, Ann E. ; Sapoznik, Kaitlyn A. ; Warner, Raymond L. ; Gast, Thomas J.: Adaptive optics imaging of the human retina. In: Progress in Retinal and Eye Research 68 (2019), Nr. August 2018, S. 1–30. – ISSN 18731635
Camargo, Jorge E. ; Caicedo, Juan C. ; Gonzalez, Fabio A.: A kernel-based framework for image collection exploration. In: Journal of Visual Languages and Computing 24 (2013), Nr. 1, S. 53–67. – ISSN 1045926X
Camargo, Jorge E. ; González, Fabio A.: Multimodal latent topic analysis for image collection summarization. In: Information Sciences 328 (2016), S. 270–287. – ISSN 00200255
Campochiaro, Peter A. ; Mir, Tahreem A.: The mechanism of cone cell death in Retinitis Pigmentosa. In: Progress in Retinal and Eye Research 62 (2018), S. 24–37. – ISSN 1350–9462
In: Castellano, Ginevra ; Kessous, Loic ; Caridakis, George: Emotion Recog- nition through Multiple Modalities: Face, Body Gesture, Speech. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008, S. 92–103. – ISBN 978–3–540–85099–1
Cerezo, M ; Verdon, Guillaume ; Huang, Hsin-Yuan ; Cincio, Lukasz ; Coles, Patrick J.: Challenges and opportunities in quantum machine learning. In: Nature Computational Science 2 (2022), Nr. 9, S. 567–576
Chakravarty, Arunava ; Sivaswamy, Jayanthi: Glaucoma classification with a fusion of segmentation and image-based features. In: Proceedings - International Symposium on Biomedical Imaging 2016-June (2016), Nr. i, S. 689–692. – ISBN 9781479923502
Chen, Richard J. ; Lu, Ming Y. ; Williamson, Drew F. ; Chen, Tiffany Y. ; Lipkova, Jana ; Noor, Zahra ; Shaban, Muhammad ; Shady, Maha ; Williams, Mane ; Joo, Bumjin ; Mahmood, Faisal: Pan-cancer integrative histology-genomic analysis via multimodal deep learning. In: Cancer Cell 40 (2022), Nr. 8, S. 865–878.e6. – ISSN 18783686
Chen, Yingming ; Ratnam, Kavitha ; Sundquist, Sanna M. ; Lujan, Brandon ; Ayyagari, Radha ; Gudiseva, V. H. ; Roorda, Austin ; Duncan, Jacque L.: Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt Disease. In: Investigative Ophthalmology and Visual Science 52 (2011), Nr. 6, S. 3281–3292. – ISSN 01460404
Choi, Joon Y. ; Yoo, Tae K. ; Seo, Jeong G. ; Kwak, Jiyong ; Um, Terry T. ; Rim, Tyler H.: Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. In: PLOS ONE 12 (2017), 11, Nr. 11, S. 1–16
Chollet, Francois: Image segmentation with a U-Net-like architecture. https:// keras.io/examples/vision/oxford_pets_image_segmentation/. 2020. – [Online; accessed 30-September-2021]
Chollet, Francois [u. a.]: Keras. https://github.com/fchollet/keras. 2015. – [Online; accessed 01-Mar-2022]
Contreras, Victor H. ; Lara, Juan S. ; Perdomo, Oscar J. ; González, Fabio A.: Supervised online matrix factorization for histopathological multimodal retrieval. In: Romero, Eduardo (Hrsg.) ; Lepore, Natasha (Hrsg.) ; Brieva, Jorge (Hrsg.): 14th International Symposium on Medical Information Processing and Analysis Bd. 10975 International Society for Optics and Photonics, SPIE, 2018, S. 109750Y
Cross, Nancy ; van Steen, Cécile ; Zegaoui, Yasmina ; Satherley, Andrew ; Angelillo, Luigi: Current and Future Treatment of Retinitis Pigmentosa. In: Clinical Ophthalmology 16 (2022), S. 2909–2921. – ISSN 11775483
Cui, Shaoguo ; Mao, Lei ; Jiang, Jingfeng ; Liu, Chang ; Xiong, Shuyu: Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. In: Journal of Healthcare Engineering 2018 (2018). – ISSN 20402309
Cunefare, David: CNN-Cone-Detection. https://github.com/DavidCunefare/ CNN-Cone-Detection. 2017. – [Online; accessed 01-Mar-2022]
Cunefare, David ; Fang, Leyuan ; Cooper, Robert F. ; Dubra, Alfredo ; Car- roll, Joseph ; Farsiu, Sina: Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks. In: Scientific Reports 7 (2017), Nr. 1, S. 1–11. – ISSN 20452322
Cunefare, David ; Huckenpahler, Alison L. ; Patterson, Emily J. ; Dubra, Alfredo ; Carroll, Joseph ; Farsiu, Sina: RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images. In: Biomedical Optics Express 10 (2019), Nr. 8, S. 3815. – ISSN 2156–7085
Cutajar, Kurt ; Bonilla, Edwin V. ; Michiardi, Pietro ; Filippone, Maur- izio: Random feature expansions for Deep Gaussian Processes. In: 34th Interna- tional Conference on Machine Learning, ICML 2017 2 (2017), S. 1467–1482. ISBN 9781510855144
Davidson, Benjamin ; Kalitzeos, Angelos ; Carroll, Joseph ; Dubra, Alfredo ; Ourselin, Sebastien ; Michaelides, Michel ; Bergeles, Christos: Automatic Cone Photoreceptor Localisation in Healthy and Stargardt Afflicted Retinas Using Deep Learning. In: Scientific Reports 8 (2018), Nr. 1, S. 1–13. – ISBN 4159801826350
Decencière, Etienne ; Zhang, Xiwei ; Cazuguel, Guy ; Laÿ, Bruno ; Cochener, Béatrice ; Trone, Caroline ; Gain, Philippe ; Ordóñez-Varela, John R. ; Massin, Pascale ; Erginay, Ali ; Charton, Béatrice ; Klein, Jean C.: Feedback on a publicly distributed image database: The Messidor database. In: Image Analysis and Stereology 33 (2014), Nr. 3, S. 231–234. – ISSN 18545165
Diabetic Retinopathy Detection of Kaggle: EyePACS Challenge. www. kaggle.com/c/diabetic-retinopathy-detection/data. – Accessed: 2019-10-15
For Disease Control, Centers ; Prevention: Prostate Cancer Statistics. 2022. – Accessed: 2023-06-01
For Disease Control, Centers ; Prevention. Prostate Cancer Incidence by Age and Stage at Diagnosis, United States—20012019. USCS data brief, no 34. 2023
Eladawi, Nabila ; Eltanboly, Ahmed ; Elmogy, Mohammed ; Ghazal, Mo- hammed ; Fraiwan, Luay ; Aboelfetouh, Ahmed ; Riad, Alaa ; Keynton, Robert ; El-Azab, Magdi ; Schaal, Shlomit ; El-Baz, Ayman: Diabetic retinopathy early detection based on OCT and OCTA feature fusion. In: Proceedings - Interna- tional Symposium on Biomedical Imaging 2019-April (2019), S. 587–591. – ISBN 9781538636411
Ethem, Alpaydin: Introduction to Machine Learning. 3. The MIT Press, 2014
Faraj, Sheila F. ; Bezerra, Stephania M. ; Yousefi, Kasra ; Fedor, Helen ; Glavaris, Stephanie ; Han, Misop ; Partin, Alan W. ; Humphreys, Elizabeth ; Tosoian, Jeffrey ; Johnson, Michael H. ; Davicioni, Elai ; Trock, Bruce J. ; Schaeffer, Edward M. ; Ross, Ashley E. ; Netto, George J.: Clinical validation of the 2005 isup gleason grading system in a cohort of intermediate and high risk men undergoing radical prostatectomy. In: PLoS ONE 11 (2016), Nr. 1, S. 1–13. – ISSN 19326203
Frank, Eibe ; Hall, Mark: A Simple Approach to Ordinal Classification. In: De Raedt, Luc (Hrsg.) ; Flach, Peter (Hrsg.): Machine Learning: ECML 2001. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. – ISBN 978–3–540–44795–5, S. 145–156
Garcia Arnal Barbedo, Jayme: A Review on Methods for Automatic Counting of Objects in Digital Images. In: IEEE Latin America Transactions 10 (2012), Nr. 5, S. 2112–2124
Garg, Bhanu ; Manwani, Naresh: Robust Deep Ordinal Regression under Label Noise. In: Pan, Sinno J. (Hrsg.) ; Sugiyama, Masashi (Hrsg.): Proceedings of The 12th Asian Conference on Machine Learning Bd. 129. Bangkok, Thailand : PMLR, 18–20 Nov 2020, S. 782–796
Gargeya, Rishab ; Leng, Theodore: Automated Identification of Diabetic Retinopa- thy Using Deep Learning. In: Ophthalmology 124 (2017), Nr. 7, S. 962–969
Gieres, François: Mathematical surprises and Dirac’s formalism in quantum mechan- ics. In: Reports on Progress in Physics 63 (2000), dec, Nr. 12, S. 1893
Golabbakhsh, M. ; Rabbani, H.: Vessel-based registration of fundus and optical coherence tomography projection images of retina using a quadratic registration model. In: IET Image Processing 7 (2013), November, Nr. 8, S. 768–776. – ISSN 1751–9667
González, Fabio A. ; Ramos-Pollán, Raúl ; Gallego-Mejia, Joseph A.: Quan- tum Kernel Mixtures for Probabilistic Deep Learning. (2023)
González, Fabio A. ; Vargas-Calderón, Vladimir ; Vinck-Posada, Herbert: Classification with quantum measurements. In: Journal of the Physical Society of Japan 90 (2021), Nr. 4, S. 044002
González, F.A. ; Gallego, A. ; Toledo-Cortés, S. [u. a.]: Learning with density matrices and random features. In: Quantum Machine Intelligence 4 (2022), S. 23
González, Fabio A. ; Vargas-Calderón, Vladimir ; Vinck-Posada, Herbert: Classification with Quantum Measurements. In: Journal of the Physical Society of Japan 90 (2021), Nr. 4, S. 044002
Gulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 (2016), Nr. 22, S. 2402–2410
Gunawardhana, Piumi L. ; Jayathilake, Raviru ; Withanage, Yasiru ; Gane- goda, Gamage U.: Automatic Diagnosis of Diabetic Retinopathy using Machine Learning: A Review. In: Proceedings of ICITR 2020 - 5th International Conference on Information Technology Research: Towards the New Digital Enlightenment (2020). ISBN 9781665414753
Guo, Z. ; Li, X. ; Huang, H. ; Guo, N. ; Li, Q.: Medical image segmentation based on multi-modal convolutional neural network: Study on image fusion schemes. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018. – ISSN 1945–8452, S. 903–907
Guo, Z. ; Li, X. ; Huang, H. ; Guo, N. ; Li, Q.: Deep Learning-Based Image Segmentation on Multimodal Medical Imaging. In: IEEE Transactions on Radiation and Plasma Medical Sciences 3 (2019), March, Nr. 2, S. 162–169. – ISSN 2469–7303
Gutiérrez, Pedro A. ; Pérez-Ortiz, Marı́a ; Sánchez-Monedero, Javier ; Fernández-Navarro, Francisco ; Hervás-Martı́nez, César: Ordinal Regression Methods: Survey and Experimental Study. In: IEEE Transactions on Knowledge and Data Engineering 28 (2016), Nr. 1, S. 127–146. – ISSN 10414347
Gutman, David A. ; Cobb, Jake ; Somanna, Dhananjaya ; Park, Yuna ; Wang, Fusheng ; Kurc, Tahsin ; Saltz, Joel H. ; Brat, Daniel J. ; Cooper, Lee A. ; Kong, Jun: Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. In: Journal of the American Medical Informatics Association 20 (2013), Nr. 6, S. 1091–1098
Hashemi, Mehrdad ; Zandieh, Mohammad A. ; Talebi, Yasmin ; Rahmanian, Parham ; Shafiee, Sareh S. ; Nejad, Melina M. ; Babaei, Roghayeh ; Sadi, Farzaneh H. ; Rajabi, Romina ; Abkenar, Zahra O. ; Rezaei, Shamin ; Ren, Jun ; Nabavi, Noushin ; Khorrami, Ramin ; Rashidi, Mohsen ; Hushmandi, Kiavash ; Entezari, Maliheh ; Taheriazam, Afshin: Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. In: Biomedicine Pharmacotherapy 160 (2023), S. 114392. – ISSN 0753–3322
He, Shenghua ; Minn, Kyaw T. ; Solnica-Krezel, Lilianna ; Anastasio, Mark A. ; Li, Hua: Deeply-supervised density regression for automatic cell counting in mi- croscopy images. In: Medical Image Analysis 68 (2021), S. 101892. – ISSN 1361–8415
Huang, Di ; Heath Jeffery, Rachael C. ; Aung-Htut, May T. ; McLenachan, Samuel ; Fletcher, Sue ; Wilton, Steve D. ; Chen, Fred K.: Stargardt disease and progress in therapeutic strategies. In: Ophthalmic Genetics 43 (2022), Nr. 1, S. 1–26. – ISSN 17445094
Huang, Huikang ; Situ, Haozhen ; Zheng, Shenggen: Bidirectional Information Flow Quantum State Tomography. In: Chinese Physics Letters 38 (2021), Nr. 4, S. 1–6. – ISSN 17413540
Jim, Oscar A. ; Cirujeda, Pol ; Henning, M: Combining Radiology Images and Meta – data for Multimodal Medical Case – based Retrieval. In: VISCERAL book (2017), S. 1–14
Jiménez del Toro, Oscar ; Atzori, Manfredo ; Otálora, Sebastian ; Andersson, Mats ; Eurén, Kristian ; Hedlund, Martin ; Rönnquist, Peter ; Müller, Henning: Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score. In: Medical Imaging 2017: Digital Pathology 10140 (2017), S. 101400O. – ISBN 9781510607255
Kamnitsas, K. ; Bai, W. ; Ferrante, E. ; McDonagh, S. ; Sinclair, M. ; Pawlowski, N. ; Rajchl, M. ; Lee, M. ; Kainz, B. ; Rueckert, D. ; Glocker, B.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10670 LNCS (2018), S. 450–462. – ISBN 9783319752372
Karimi, Davood ; Nir, Guy ; Fazli, Ladan ; Black, Peter C. ; Goldenberg, Larry ; Salcudean, Septimiu E.: Deep Learning-Based Gleason Grading of Prostate Cancer from Histopathology Images - Role of Multiscale Decision Aggregation and Data Augmentation. In: IEEE Journal of Biomedical and Health Informatics 24 (2020), may, Nr. 5, S. 1413–1426. – ISSN 21682208
Kaya, Mahmut ; Bilge, H.s: Deep Metric Learning: A Survey. In: Symmetry 11 (2019), 08, S. 1066
Kendall, Alex ; Gal, Yarin: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems 2017-December (2017), Nr. Nips, S. 5575–5585. – ISSN 10495258
Khani, Ali A. ; Fatemi Jahromi, Seyed A. ; Shahreza, Hatef O. ; Behroozi, Hamid ; Baghshah, Mahdieh S.: Towards Automatic Prostate Gleason Grading Via Deep Convolutional Neural Networks. In: 5th Iranian Conference on Signal Process- ing and Intelligent Systems, ICSPIS 2019 (2019), Nr. December, S. 18–19. ISBN 9781728153506
Kim, Hee E. ; Cosa-Linan, Alejandro ; Santhanam, Nandhini ; Jannesari, Mah- boubeh ; Maros, Mate E. ; Ganslandt, Thomas: Transfer learning for medical image classification: a literature review. In: BMC medical imaging 22 (2022), Nr. 1, S. 69
Kim, Tae H. ; Jeong, Dae J. ; Hahn, Soo Y. ; Shin, Jung H. ; Oh, Young L. ; Ki, Chang S. ; Kim, Jong W. ; Jang, Ju Y. ; Cho, Yoon Y. ; Chung, Jae H. ; Kim, Sun W.: Triage of patients with AUS/FLUS on thyroid cytopathology: Effectiveness of the multimodal diagnostic techniques. In: Cancer Medicine 5 (2016), Nr. 5, S. 769–777. – ISSN 20457634
Kleesiek, Jens ; Urban, Gregor ; Hubert, Alexander ; Schwarz, Daniel ; Maier- Hein, Klaus ; Bendszus, Martin ; Biller, Armin: Deep MRI brain extraction: A 3D convolutional neural network for skull stripping. In: NeuroImage 129 (2016), S. 460–469. – ISSN 10959572
Kong, Jun ; Cooper, Lee A. ; Wang, Fusheng ; Gutman, David A. ; Gao, Jingjing ; Chisolm, Candace ; Sharma, Ashish ; Pan, Tony ; Van Meir, Erwin G. ; Kurc, Tahsin M. ; Moreno, Carlos S. ; Saltz, Joel H. ; Brat, Daniel J.: Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images, and clinical outcomes. In: IEEE Transactions on Biomedical Engineering 58 (2011), Nr. 12 PART 2, S. 3469–3474. – ISSN 00189294
Kononenko, Igor: Machine learning for medical diagnosis: History, state of the art and perspective. In: Artificial Intelligence in Medicine 23 (2001), Nr. 1, S. 89–109. – ISSN 09333657
Kovalyk, Oleksandr ; Morales-Sánchez, Juan ; Verdú-Monedero, Rafael ; Sellés-Navarro, Inmaculada ; Palazón-Cabanes, Ana ; Sancho-Gómez, José Luis: PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. In: Scientific Data 9 (2022), Nr. 1, S. 1–12. – ISBN 4159702201
Krause, Jonathan ; Gulshan, Varun ; Rahimy, Ehsan ; Karth, Peter ; Widner, Kasumi ; Corrado, Greg S. ; Peng, Lily ; Webster, Dale R.: Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. In: Ophthalmology 125 (2018), Nr. 8, S. 1264–1272. – ISSN 15494713
Krenn, Mario ; Malik, Mehul ; Fickler, Robert ; Lapkiewicz, Radek ; Zeilinger, Anton: Automated Search for new Quantum Experiments. In: Phys. Rev. Lett. 116 (2016), S. 090405
Lara, Juan S. ; Contreras O., Victor H. ; Otálora, Sebastián ; Müller, Hen- ning ; González, Fabio A.: Multimodal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval. In: Martel, Anne L. (Hrsg.) ; Abol- maesumi, Purang (Hrsg.) ; Stoyanov, Danail (Hrsg.) ; Mateus, Diana (Hrsg.) ; Zuluaga, Maria A. (Hrsg.) ; Zhou, S. K. (Hrsg.) ; Racoceanu, Daniel (Hrsg.) ; Joskowicz, Leo (Hrsg.): Medical Image Computing and Computer Assisted Inter- vention – MICCAI 2020. Cham : Springer International Publishing, 2020. – ISBN 978–3–030–59722–1, S. 572–581
Lara, Juan S. ; Contreras O, Victor H. ; Otálora, Sebastián ; Müller, Hen- ning ; González, Fabio A.: Multimodal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin- formatics) Bd. 12265 LNCS, 2020. – ISBN 9783030597214, S. 572–581
Lee, Jimmy A. ; Liu, Peng ; Cheng, Jun ; Fu, Huazhu: A Deep Step Pattern Rep- resentation for Multimodal Retinal Image Registration. In: The IEEE International Conference on Computer Vision (ICCV) (2019), S. 5077–5086
Lee, Ki S. ; Jung, Seok K. ; Ryu, Jae J. ; Shin, Sang W. ; Choi, Jinwook: Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. In: Journal of Clinical Medicine 9 (2020), Nr. 2. – ISSN 20770383
Leibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14. – ISSN 20452322
Leibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14
Li, Daoliang ; Miao, Zheng ; Peng, Fang ; Wang, Liang ; Hao, Yinfeng ; Wang, Zhenhu ; Chen, Tao ; Li, Hui ; Zheng, Yingying: Automatic counting methods in aquaculture: A review. In: Journal of the World Aquaculture Society 52 (2021), Nr. 2, S. 269–283
Li, Feng ; Liu, Zheng ; Chen, Hua ; Jiang, Minshan ; Zhang, Xuedian ; Wu, Zhizheng: Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. In: Translational Vision Science and Technology 8 (2019), Nr. 6. – ISSN 21642591
Li, Hongming ; Habes, Mohamad ; Fan, Yong: Deep Ordinal Ranking for Multi- Category Diagnosis of Alzheimer’s Disease using Hippocampal MRI data. In: arXiv (2017), sep
Li, Yuchun ; Huang, Mengxing ; Zhang, Yu ; Chen, Jing ; Xu, Haixia ; Wang, Gang ; Feng, Wenlong: Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer. In: IEEE Access 8 (2020), S. 117714–117725. – ISSN 21693536
Lim, G. ; Bellemo, V. ; Xie, Y. [u. a.]: Different fundus imaging modalities and technical factors in AI screening for diabetic retinopathy: a review. In: Eye and Vision 7 (2020), S. 21
Lim, Zhan W. ; Lee, Mong L. ; Hsu, Wynne ; Wong, Tien Y.: Building Trust in Deep Learning System towards Automated Disease Detection. In: The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (2018), S. 9516–9521
Liu, Xiaofeng: Ordinal Regression with Neuron Stick-breaking for Medical Diagnosis. 2018. – Forschungsbericht. – 0–0 S
Lucas, Marit ; Jansen, Ilaria ; Savci-Heijink, C. D. ; Meijer, Sybren L. ; de Boer, Onno J. ; van Leeuwen, Ton G. ; de Bruin, Daniel M. ; Marquering, Henk A.: Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. In: Virchows Archiv 475 (2019), Nr. 1, S. 77–83. – ISSN 14322307
Ma, Mengmeng ; Ren, Jian ; Zhao, Long ; Testuggine, Davide ; Peng, Xi: Are Multimodal Transformers Robust to Missing Modality? (2022), S. 18177–18186
Ma, Mengmeng ; Ren, Jian ; Zhao, Long ; Tulyakov, Sergey ; Wu, Cathy ; Peng, Xi: SMIL: Multimodal Learning with Severely Missing Modality. In: 35th AAAI Conference on Artificial Intelligence, AAAI 2021 3B (2021), S. 2302–2310. ISBN 9781713835974
Manjula Sri, K.M.M. R.: Novel image pro-cessing techniquesto detect lesion us-ing lab view R. In: India Conference (INDICON), 2011 Annual IEEE (2011)
Mcgurk, Harry ; Macdonald, John: Hearing lips and seeing voices. In: Nature 264 (1976), Nr. 5588, S. 746–748. – ISSN 00280836
Menze, Bjoern ; Reyes, Mauricio ; Jakab, Andras ; Gerstner, Elisabeth ; Fara- hani, Keyvan ; Menze, Bjoern ; Reyes, Mauricio ; Jakab, Andras ; Gerstner, Elisabeth ; Kirby, Justin: Brain Tumor Image Segmentation ( BRATS ) 2013 To cite this version : NCI-MICCAI Challenge on Multimodal Brain Tumor Segmentation. (2013)
MINSALUD: ANÁLISIS DE SITUACIÓN DE SALUD VISUAL EN COLOMBIA 2016. (2015). – ISBN 9780511993398
Miri, Mohammad S. ; Abràmoff, Michael D. ; Lee, Kyungmoo ; Niemeijer, Mein- dert ; Wang, Jui K. ; Kwon, Young H. ; Garvin, Mona K.: Multimodal Segmen- tation of Optic Disc and Cup from SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach. In: IEEE Transactions on Medical Imaging 34 (2015), Nr. 9, S. 1854–1866. – ISSN 1558254X
Moccia, Sara ; Wirkert, Sebastian J. ; Kenngott, Hannes ; Vemuri, Anant S. ; Apitz, Martin ; Mayer, Benjamin ; De Momi, Elena ; Mattos, Leonardo S. ; Maier-Hein, Lena: Uncertainty-aware organ classification for surgical data science applications in laparoscopy. In: IEEE Transactions on Biomedical Engineering 65 (2018), Nr. 11, S. 2649–2659. – ISSN 15582531
Mookiah, Muthu Rama K. ; Acharya, U. R. ; Chua, Chua K. ; Min, Lim C. ; Ng, E. Y. ; Mushrif, Milind M. ; Laude, Augustinus: Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 227 (2013), Nr. 1, S. 37–49. – ISSN 09544119
Morgan, Jessica I. ; Chen, Min ; Huang, Andrew M. ; Jiang, Yu Y. ; Cooper, Robert F.: Cone identification in choroideremia: Repeatability, reliability, and au- tomation through use of a convolutional neural network. In: Translational Vision Science and Technology 9 (2020), Nr. 2, S. 1–13. – ISSN 21642591
Müller, Henning ; Ünay, Devrim: Medical Decision Support Using Increasingly Large Multimodal Data Sets. In: Big Data Analytics for Large-Scale Multimedia Search (2019), S. 317–336
Nagpal, Kunal ; Foote, Davis ; Liu, Yun ; Chen, Po Hsuan C. ; Wulczyn, Ellery ; Tan, Fraser ; Olson, Niels ; Smith, Jenny L. ; Mohtashamian, Arash ; Wren, James H. ; Corrado, Greg S. ; MacDonald, Robert ; Peng, Lily H. ; Amin, Mahul B. ; Evans, Andrew J. ; Sangoi, Ankur R. ; Mermel, Craig H. ; Hipp, Jason D. ; Stumpe, Martin C.: Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. In: npj Digital Medicine 2 (2019), dec, Nr. 1, S. 1–10. – ISSN 23986352
Nakatake, Shunji ; Murakami, Yusuke ; Funatsu, Jun ; Koyanagi, Yoshito ; Akiyama, Masato ; Momozawa, Yukihide ; Ishibashi, Tatsuro ; Sonoda, Koh H. ; Ikeda, Yasuhiro: Early detection of cone photoreceptor cell loss in retinitis pig- mentosa using adaptive optics scanning laser ophthalmoscopy. In: Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 257 (2019), Nr. 6, S. 1169–1181. – ISSN 1435702X
Nie, Dong ; Wang, Li ; Gao, Yaozong ; Shen, Dinggang: FULLY CONVOLU- TIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION Dong. In: Proc IEEE Int Symp Biomed Imaging (2016)
Niu, Zhenxing ; Zhou, Mo ; Wang, Le ; Gao, Xinbo ; Hua, Gang: Ordinal regression with multiple output CNN for age estimation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Bd. 2016-Decem, IEEE Computer Society, dec 2016. – ISBN 9781467388504, S. 4920–4928
Otálora, Sebastian ; Perdomo, Oscar ; González, Fabio ; Müller, Henning: Training Deep Convolutional Neural Networks with Active Learning for Exudate Clas- sification in Eye Fundus Images. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Bd. 10552 LNCS, 2017. – ISBN 9783319675336, S. 146–154
Perdomo, Oscar. ; Gonzalez, Fabio.: A Systematic Review of Deep Learning Methods Applied to Ocular Images. In: Ciencia e Ingenieria Neogranadina 30 (2019), Nr. 1. ISBN 0000000314251
Perdomo, Oscar ; Otalora, Sebastian ; Gonzalez, Fabio A. ; Meriaudeau, Fabrice ; Muller, Henning: OCT-NET: A convolutional network for automatic clas- sification of normal and diabetic macular edema using sd-oct volumes. In: Proceedings - International Symposium on Biomedical Imaging 2018-April (2018), Nr. Isbi, S. 1423–1426. – ISBN 9781538636367
Perdomo Charry, Oscar J. ; Arevalo, John ; González, Fabio A.: Combin- ing morphometric features and convolutional networks fusion for glaucoma diagnosis. (2017), Nr. November, S. 57. – ISBN 9781510616332
Pinz, A. ; Bernogger, S. ; Datlinger, P. ; Kruger, A.: Mapping the human retina. In: IEEE Transactions on Medical Imaging 17 (1998), Aug, Nr. 4, S. 606–619. – ISSN 1558–254X
Piotter, Elena ; McClements, Michelle E. ; Maclaren, Robert E.: Therapy approaches for stargardt disease. In: Biomolecules 11 (2021), Nr. 8, S. 1–28. – ISSN 2218273X
Polikar, R. ; Tilley, C. ; Hillis, B. ; Clark, C. M.: Multimodal EEG, MRI and PET data fusion for Alzheimer’s disease diagnosis. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010. – ISSN 1558–4615, S. 6058–6061
Rahimi, Ali ; Recht, Ben: Random features for large-scale kernel machines. In: Advances in neural information . . . (2007), Nr. 1, S. 1–8. – ISBN 160560352X
Rahimi, Ali ; Recht, Benjamin: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference, 2009. – ISBN 160560352X
Ramirez, Geovany A. ; Baltrušaitis, Tadas ; Morency, Louis-Philippe: Modeling Latent Discriminative Dynamic of Multi-dimensional Affective Signals. In: D’Mello, Sidney (Hrsg.) ; Graesser, Arthur (Hrsg.) ; Schuller, Björn (Hrsg.) ; Martin, Jean-Claude (Hrsg.): Affective Computing and Intelligent Interaction. Berlin, Heidel- berg : Springer Berlin Heidelberg, 2011. – ISBN 978–3–642–24571–8, S. 396–406
Rasmussen, Carl E. ; Williams, Christopher K. I.: Gaussian processes for machine learning. The MIT Press, 2006. – ISBN 026218253X
Ren, Jian ; Hacihaliloglu, Ilker ; Singer, Eric A. ; Foran, David J. ; Qi, Xin: Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images. In: Frontiers in Bioengineering and Biotechnology 7 (2019), Nr. May, S. 1–12. – ISSN 2296–4185
Ritter, N. ; Owens, R. ; Cooper, J. ; Eikelboom, R. H. ; Van Saarloos, P. P.: Registration of stereo and temporal images of the retina. In: IEEE Transactions on Medical Imaging 18 (1999), May, Nr. 5, S. 404–418. – ISSN 1558–254X
Ronneberger, Olaf ; Fischer, Philipp ; Brox, Thomas: U-net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Sci- ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9351 (2015), S. 234–241. – ISBN 9783319245737
Roorda, Austin ; Romero-Borja, Fernando ; III, William J. D. ; Queener, Hope ; Hebert, Thomas J. ; Campbell, Melanie C.: Adaptive optics scanning laser ophthalmoscopy. In: Opt. Express 10 (2002), May, Nr. 9, S. 405–412
Russakovsky, Olga ; Deng, Jia ; Su, Hao ; Krause, Jonathan ; Satheesh, Sanjeev ; Ma, Sean ; Huang, Zhiheng ; Karpathy, Andrej ; Khosla, Aditya ; Bernstein, Michael ; Berg, Alexander C. ; Fei-Fei, Li: ImageNet Large Scale Visual Recognition Challenge. In: International Journal of Computer Vision (IJCV) 115 (2015), Nr. 3, S. 211–252
Sahran, Shahnorbanun ; Albashish, Dheeb ; Abdullah, Azizi ; Shukor, Nor- dashima A. ; Hayati Md Pauzi, Suria: Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading. In: Artificial Intelligence in Medicine 87 (2018), S. 78–90. – ISSN 18732860
Salam, Anum A. ; Khalil, Tehmina ; Akram, M. U. ; Jameel, Amina ; Basit, Imran: Automated detection of glaucoma using structural and non structural features. In: SpringerPlus 5 (2016), Nr. 1. – ISSN 21931801
Salam, Anum A. ; Akram, M. U. ; Wazir, Kamran ; Anwar, Syed M. ; Majid, Muhammad: Autonomous Glaucoma detection from fundus image using cup to disc ratio and hybrid features. In: 2015 IEEE International Symposium on Signal Pro- cessing and Information Technology, ISSPIT 2015 (2016), Nr. c, S. 370–374. ISBN 9781509004805
Schlegl, Thomas ; Waldstein, Sebastian ; Vogl, Wolf-Dieter ; Schmidt- Erfurth, Ursula ; Langs, Georg: Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks. In: Information Processing in Medical Imaging 9123 (2015), Nr. Chapter 58, S. 733–745. – ISBN 978–3–319–19991–7
Schmidhuber, Jürgen: Deep Learning in neural networks: An overview. In: Neural Networks 61 (2015), S. 85–117. – ISBN 0893–6080
Shah, Mital ; Roomans Ledo, Ana ; Rittscher, Jens: Automated classification of normal and Stargardt disease optical coherence tomography images using deep learn- ing. In: Acta Ophthalmologica 98 (2020), Nr. 6, S. e715–e721
Shawe-Taylor, John ; Cristianini, Nello: Kernel Methods for Pattern Analysis. New York, New York, USA : Cambridge University Press, 2004. – ISBN 9780521813976
Singh, Amitojdeep ; Sengupta, Sourya ; Lakshminarayanan, Vasudevan: Ex- plainable deep learning models in medical image analysis. In: Journal of Imaging 6 (2020), Nr. 6, S. 1–19. – ISSN 2313433X
Society, American C. Key Statistics for Prostate Cancer. 2023
Stolte, Skylar ; Fang, Ruogu: A survey on medical image analysis in diabetic retinopathy. In: Medical Image Analysis 64 (2020), S. 101742. – ISSN 13618423
Ström, Peter ; Kartasalo, Kimmo ; Olsson, Henrik ; Solorzano, Leslie ; De- lahunt, Brett ; Berney, Daniel M. ; Bostwick, David G. ; Evans, Andrew J. ; Grignon, David J. ; Humphrey, Peter A. ; Iczkowski, Kenneth A. ; Kench, James G. ; Kristiansen, Glen ; van der Kwast, Theodorus H. ; Leite, Katia R. ; McKenney, Jesse K. ; Oxley, Jon ; Pan, Chin C. ; Samaratunga, Hemamali ; Srigley, John R. ; Takahashi, Hiroyuki ; Tsuzuki, Toyonori ; Varma, Mu- rali ; Zhou, Ming ; Lindberg, Johan ; Lindskog, Cecilia ; Ruusuvuori, Pekka ; Wählby, Carolina ; Grönberg, Henrik ; Rantalainen, Mattias ; Egevad, Lars ; Eklund, Martin: Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. In: The Lancet Oncology 21 (2020), Nr. 2, S. 222–232. – ISSN 14745488
Summerfield, Quentin: L ipreading and audio-visual speech perception. In: Philo- sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 335 (1992), Nr. 1273, S. 71–78
Sun, Yunlian ; Tang, Jinhui ; Sun, Zhenan ; Tistarelli, Massimo: Facial Age and Expression Synthesis Using Ordinal Ranking Adversarial Networks. In: IEEE Transactions on Information Forensics and Security 15 (2020), S. 2960–2972. – ISSN 15566021
Szegedy, Christian ; Vanhoucke, Vincent ; Ioffe, Sergey ; Shlens, Jon ; Wojna, Zbigniew: Rethinking the Inception Architecture for Computer Vision. In: Pro- ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-December (2016), S. 2818–2826. – ISBN 9781467388504
Tang, Yehui ; Yan, Junchi ; Hu, Guoqiang ; Zhang, Baohua ; Zhou, Jinzan: Recent progress and perspectives on quantum computing for finance. In: Service Oriented Computing and Applications 16 (2022), Nr. 4, S. 227–229
Teng, Q. ; Liu, Z. ; Song, Y. ; Han, K. ; Lu, Y.: A survey on the interpretability of deep learning in medical diagnosis. In: Multimed Syst 28 (2022), Nr. 6, S. 2335–2355
Threatt, Jennifer ; Williamson, Jennifer F. ; Huynh, Kyle ; Davis, Richard M.: Ocular disease, knowledge and technology applications in patients with diabetes. In: American Journal of the Medical Sciences 345 (2013), Nr. 4, S. 266–270. – ISSN 00029629
Tian, Li ; Ma, Liyan ; Wen, Zhijie ; Xie, Shaorong ; Xu, Yupeng: Learning Dis- criminative Representations for Fine-Grained Diabetic Retinopathy Grading. (2020)
Toledo-Cortés, Santiago ; De La Pava, Melissa ; Perdómo, Oscar ; González, Fabio A.: Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification. In: Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science, vol 12069. Springer, Cham., 2020, S. 206–215
Toledo-Cortés, Santiago: AOSLO-CNN Diagnosis and Counting. https:// github.com/stoledoc/AOSLO-CNN_Diagnosis_Counting. 2022. – [Online; accessed 01-Mar-2022]
Toledo-Cortés, Santiago: DQOR Code for Medical Image Grading with Deep Quan- tum Ordinal Regression. https://github.com/stoledoc/DQOR. 2022. – [Online; ac- cessed 01-Mar-2022]
Toledo-Cortés, Santiago ; Dubis, Adam M. ; González, Fabio A. ; Müller, Henning: Deep Density Estimation for Cone Counting and Diagnosis of Genetic Eye Diseases From Adaptive Optics Scanning Light Ophthalmoscope Images. In: Transla- tional Vision Science Technology 12 (2023), 11, Nr. 11, S. 25–25. – ISSN 2164–2591
Toledo-Cortés, Santiago ; Useche, Diego H. ; Müller, Henning ; González, Fabio A.: Grading diabetic retinopathy and prostate cancer diagnostic images with deep quantum ordinal regression. In: Computers in Biology and Medicine 145 (2022), S. 105472. – ISSN 0010–4825
Tolkach, Yuri ; Dohmgörgen, Tilmann ; Toma, Marieta ; Kristiansen, Glen: High-accuracy prostate cancer pathology using deep learning. In: Nature Machine Intelligence 2 (2020), jul, Nr. 7, S. 411–418. – ISSN 25225839
In: Tsang, Stephen H. ; Sharma, Tarun: Stargardt Disease. Cham : Springer International Publishing, 2018, S. 139–151. – ISBN 978–3–319–95046–4
Uppamma, P. ; Bhattacharya, S.: Deep Learning and Medical Image Process- ing Techniques for Diabetic Retinopathy: A Survey of Applications, Challenges, and Future Trends. In: J Healthc Eng 2023 (2023), S. 2728719
Urban, G. ; Bendszus, M. ; Hamprecht, Fred A. ; Kleesiek, J.: Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks. In: MIC- CAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, S. 31–35
Vaghefi, Ehsan ; Hill, Sophie ; Kersten, Hannah M. ; Squirrell, David: Mul- timodal Retinal Image Analysis via Deep Learning for the Diagnosis of Intermediate Dry Age-Related Macular Degeneration : A Feasibility Study. 2020 (2020)
Vaicenavicius, Juozas ; Widmann, David ; Andersson, Carl ; Lindsten, Fredrik ; Roll, Jacob ; Schön, Thomas: Evaluating model calibration in classification. In: Chaudhuri, Kamalika (Hrsg.) ; Sugiyama, Masashi (Hrsg.): Proceedings of Machine Learning Research Bd. 89, PMLR, 16–18 Apr 2019, S. 3459–3467
Van Grinsven, Mark J. ; Buitendijk, Gabriëlle H.S. ; Brussee, Corina ; Van Ginneken, Bram ; Hoyng, Carel B. ; Theelen, Thomas ; Klaver, Caroline C. ; Sánchez, Clara I.: Automatic identification of reticular pseudodrusen using multi- modal retinal image analysis. In: Investigative Ophthalmology and Visual Science 56 (2015), Nr. 1, S. 633–639. – ISSN 15525783
Vanegas, Jorge A.: Large-scale Non-linear Multimodal Semantic Embedding Large- scale Non-linear Multimodal Semantic Embedding, Dissertation, 2017
Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11
Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11. – ISBN 1111111111
Wang, Daihou ; Foran, David J. ; Ren, Jian ; Zhong, Hua ; Kim, Isaac Y. ; Qi, Xin: Exploring automatic prostate histopathology image gleason grading via local structure modeling. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem (2015), S. 2649–2652. – ISBN 9781424492718
Wang, Weisen ; Xu, Zhiyan ; Yu, Weihong ; Zhao, Jianchun ; Yang, Jingyuan ; He, Feng ; Yang, Zhikun ; Chen, Di ; Ding, Dayong ; Chen, Youxin ; Li, Xirong: Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization. (2019), S. 156–164. – ISBN 9783030322380
Wells, John A. ; Glassman, Adam R. ; Ayala, Allison R. ; Jampol, Lee M. ; Bressler, Neil M. ; Bressler, Susan B. ; Brucker, Alexander J. ; Ferris, Fred- erick L. ; Hampton, G. R. ; Jhaveri, Chirag ; Melia, Michele ; Beck, Roy W.: Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema Two-Year Re- sults from a Comparative Effectiveness Randomized Clinical Trial. In: Ophthalmology 123 (2016), Nr. 6, S. 1351–1359
Wilkinson, C. P. ; Ferris, Frederick L. ; Klein, Ronald E. ; Lee, Paul P. ; Agardh, Carl D. ; Davis, Matthew ; Dills, Diana ; Kampik, Anselm ; Pararajasegaram, R. ; Verdaguer, Juan T. ; Lum, Flora: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. In: Ophthalmology 110 (2003), Nr. 9, S. 1677–1682
Wilson, Andrew ; Nickisch, Hannes: Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP). In: Proceedings of the 32nd International Conference on Machine Learning, JMLR: W&CP. Lille, France, 2015
World Health Organisation: World report on vision. 2019 ( 14). – Forschungs- bericht. – 180–235 S. – ISBN 9789241516570
Wynne, Niamh ; Carroll, Joseph ; Duncan, Jacque L.: Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). In: Progress in Retinal and Eye Research (2021), Nr. October, S. 100920. – ISSN 18731635
Xie, Weidi ; Noble, J. A. ; Zisserman, Andrew: Microscopy cell counting and de- tection with fully convolutional regression networks. In: Computer Methods in Biome- chanics and Biomedical Engineering: Imaging and Visualization 6 (2018), Nr. 3, S. 283–292. – ISSN 21681171
Xin, Qiu ; Elliot, Meyerson ; Miikkulainen, Risto: Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel. In: ICLR 2020., 2019, S. 1–17. Addis Ababa, Ethiopia
Yang, Jialiang ; Ju, Jie ; Guo, Lei ; Ji, Binbin ; Shi, Shufang ; Yang, Zixuan ; Gao, Songlin ; Yuan, Xu ; Tian, Geng ; Liang, Yuebin ; Yuan, Peng: Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. In: Computational and Structural Biotechnology Journal 20 (2022), S. 333–342. – ISSN 2001–0370
Yap, Jordan ; Yolland, William ; Tschandl, Philipp: Multimodal skin lesion classification using deep learning. In: Experimental Dermatology 27 (2018), Nr. 11, S. 1261–1267. – ISSN 16000625
Yau, Joanne W. ; Rogers, Sophie L. ; Kawasaki, Rho ; Lamoureux, Ecosse L. ; Kowalski, Jonathan W. ; Bek, Toke ; Chen, Shih J. ; Dekker, Jacqueline M. ; Fletcher, Astrid ; Grauslund, Jakob ; Haffner, Steven ; Hamman, Richard F. ; Ikram, M. K. ; Kayama, Takamasa ; Klein, Barbara E. ; Klein, Ronald ; Krish- naiah, Sannapaneni ; Mayurasakorn, Korapat ; O’Hare, Joseph P. ; Orchard, Trevor J. ; Porta, Massimo ; Rema, Mohan ; Roy, Monique S. ; Sharma, Tarun ; Shaw, Jonathan ; Taylor, Hugh ; Tielsch, James M. ; Varma, Rohit ; Wang, Jie J. ; Wang, Ningli ; West, Sheila ; Zu, Liang ; Yasuda, Miho ; Zhang, Xinzhi ; Mitchell, Paul ; Wong, Tien Y.: Global prevalence and major risk factors of diabetic retinopathy. In: Diabetes Care 35 (2012), Nr. 3, S. 556–564
Yoo, Tae K. ; Choi, Joon Y. ; Seo, Jeong G. ; Ramasubramanian, Bhoopalan ; Selvaperumal, Sundaramoorthy ; Kim, Deok W.: The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. In: Medical and Biological Engineering and Computing 57 (2019), Nr. 3, S. 677–687. – ISSN 17410444
Zadeh, Amir ; Chen, Minghai ; Cambria, Erik ; Poria, Soujanya ; Morency, Louis P.: Tensor fusion network for multimodal sentiment analysis. In: EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings (2017), S. 1103–1114. ISBN 9781945626838
Zana, F. ; Klein, J. C.: A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. In: IEEE Transactions on Medical Imaging 18 (1999), May, Nr. 5, S. 419–428. – ISSN 1558–254X
Zeng, Xianglong ; Chen, Haiquan ; Luo, Yuan ; Ye, Wenbin: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. In: IEEE Access 7 (2019), Nr. c, S. 30744–30753
Zhang, Daoqiang ; Wang, Yaping ; Zhou, Luping ; Yuan, Hong: Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment. In: Neuroimage (2011). – ISBN 6176321972
Zhang, Yao ; Ni, Qiang: Recent advances in quantum machine learning. In: Quantum Engineering 2 (2020), Nr. 1, S. e34
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 123 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computación
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85336/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85336/2/1032441097.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85336/3/1032441097.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
ed38be9cd99a31689159002b50369530
fa0d97ad04818ae542902f58e146b315
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089465821396992
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio Augusto35912f60905ba6e179208c70e6024e80Toledo Cortés, Santiagoaacc1c99e2c7e404d2f99a7a954b57c8Mindlab0000-0003-4172-9263000144983657207843310https://www.researchgate.net/profile/Santiago-Toledo-Cortes-2https://scholar.google.com/citations?user=M7l6jx4AAAAJ&hl=en2024-01-16T19:43:16Z2024-01-16T19:43:16Z2023https://repositorio.unal.edu.co/handle/unal/85336Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasThe main contribution of this thesis is the development of probabilistic machine learning models to support disease diagnosis from medical data sources. We show how a probabilistic approach offers great versatility in exploiting all available information about the target task. Based on the mathematical formalism of quantum mechanics, we develop and apply machine learning models that allow us to handle the flow of information using density matrices in different ways. We develop mechanisms that can naturally encode not only categorical but also ordinal information, and can also merge different data modalities. Furthermore, we show that the proposed models are naturally interpretable, which allows and facilitates their use in sensitive domains such as health applications. In particular, our models are tested in the diagnosis of several eye diseases and prostate cancer. First, we show the effectiveness and benefit of using regression models in the diagnosis of eye diseases of genetic origin. We then demonstrate the importance of including disease grading information and performing discrete regression to improve the performance of the binary diagnosis of diabetic retinopathy and prostate cancer. We show that a probabilistic interpretation of the results provides information on the uncertainty of the models, which can also be used in training processes. Finally, the proposed framework allows us to encode information using kernel functions, which in turn allows us to naturally introduce flexible information fusion mechanisms and thus to address multimodal tasks. Overall, we show that incorporating ordinal and multimodal information using probabilistic kernel-based frameworks allows learning better data representations, which improves the performance of the models and provides them with a higher level of interpretability.La principal contribución de esta tesis es el desarrollo de modelos probabilísticos de aprendizaje de máquina para apoyar el diagnóstico de enfermedades a partir de información médica. Mostramos cómo un enfoque probabilístico ofrece una gran versatilidad al momento de aprovechar toda la información disponible sobre la tarea objetivo. Basándonos en el formalismo matemático de la mecánica cuántica, desarrollamos y aplicamos modelos de aprendizaje que nos permiten manejar el flujo de información utilizando matrices de densidad de diferentes maneras. Desarrollamos mecanismos que pueden codificar de forma natural no sólo información categórica, sino también ordinal, y que también pueden fusionar distintas modalidades de información. Además, demostramos que los modelos propuestos son naturalmente interpretables, lo que permite y facilita su aplicación en dominios sensibles como las aplicaciones médicas. Precisamente, en este trabajo probamos nuestros modelos en tareas específicas de diagnóstico de enfermedades oculares y cáncer de próstata. En primer lugar, mostramos la eficacia y el beneficio de usar modelos de regresión en el diagnóstico de enfermedades oculares de origen genético. A continuación, demostramos la importancia de incluir información sobre el estadio de las enfermedades y realizar una regresión discreta para mejorar el rendimiento del diagnóstico binario de la retinopatía diabética y el cáncer de próstata. Demostramos que la interpretación probabilística de los resultados proporciona información sobre la incertidumbre de los modelos, que puede utilizarse también en los procesos de entrenamiento. Por último, los modelos propuestos nos permiten codificar la información mediante funciones kernel, que a su vez nos permiten introducir de forma natural mecanismos de fusión de información, flexibles y versátiles, y con estos abordar tareas multimodales. En conjunto, demostramos que la incorporación de información ordinal y multimodal mediante modelos probabilísticos basados en funciones de kernel permite aprender mejores representaciones de los datos, lo que mejora el rendimiento de los modelos y les proporciona un mayor nivel de interpretabilidad. (Texto tomado de la fuente).DoctoradoDoctor en IngenieríaSistemas Inteligentesxvi, 123 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y ComputaciónFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasHistopathologyOphthalmologyDeep learningKernel methodsMedical image analysisMultimodal learningOrdinal regressionProbabilistic modelsQuantum machine learningAnálisis de imágenes médicasHistopatologı́aMétodos de KernelOftalmologı́aAprendizaje profundoAprendizaje de máquina cuánticoAprendizaje multimodalModelos probabilı́sticosRegresión ordinalTeoría de las probabilidadesInteligencia artificialCiencias médicasProbability theoryArtificial intelligenceMedical sciencesRegression and multimodal learning to aid diagnosis in ophthalmology and histopathologyRegresión y aprendizaje multimodal como ayuda al diagnóstico en oftalmologı́a e histopatologı́aTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDBiremeTesting for Glaucoma. https://glaucoma.org/learn-about-glaucoma/testing-for-glaucoma/. 2023Abràmoff, Michael D. ; Folk, James C. ; Han, Dennis P. ; Walker, Jonathan D. ; Williams, David F. ; Russell, Stephen R. ; Massin, Pascale ; Cochener, Beatrice ; Gain, Philippe ; Tang, Li ; Lamard, Mathieu ; Moga, Daniela C. ; Quellec, Gwénolé ; Niemeijer, Meindert: Automated analysis of retinal images for detection of referable diabetic retinopathy. In: JAMA Ophthalmology 131 (2013), Nr. 3, S. 351–357. – ISSN 21686165Adler, Tim J. ; Ardizzone, Lynton ; Vemuri, Anant ; Ayala, Leonardo ; Gröhl, Janek ; Kirchner, Thomas ; Wirkert, Sebastian ; Kruse, Jakob ; Rother, Carsten ; Köthe, Ullrich ; Maier-Hein, Lena: Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks. In: In- ternational Journal of Computer Assisted Radiology and Surgery 14 (2019), Nr. 6, S. 997–1007. – ISSN 18616429American Academy of Ophthalmology: International clinical diabetic retinopathy disease severity scale detailed table. In: International Council of Oph- thalmology (2002)Andrearczyk, Vincent ; Müller, Henning: Deep multimodal classification of image types in biomedical journal figures. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11018 LNCS (2018), S. 3–14. – ISBN 9783319989310Araújo, Teresa ; Aresta, Guilherme ; Mendonça, Luı́s ; Penas, Susana ; Maia, Carolina ; Carneiro, Ângela ; Mendonça, Ana M. ; Campilho, Aurélio: DR—GRADUATE: Uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images. In: Medical Image Analysis 63 (2020). – ISSN 13618423Arevalo, John ; Solorio, Thamar ; Montes-Y-Gómez, Manuel ; González, Fabio A.: Gated multimodal units for information fusion. In: 5th International Conference on Learning Representations, ICLR 2017 - Workshop Track Proceedings (2017)Baccianella, Stefano ; Esuli, Andrea ; Sebastiani, Fabrizio: Evaluation measures for ordinal regression. In: 2009 Ninth international conference on intelligent systems design and applications IEEE, 2009, S. 283–287Baltrusaitis, Tadas ; Ahuja, Chaitanya ; Morency, Louis P.: Multimodal Machine Learning: A Survey and Taxonomy. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 41 (2019), Nr. 2, S. 423–443. – ISSN 19393539Bauer, Dominik F. ; Russ, Tom ; Waldkirch, Barbara I. ; Tönnes, Christian ; Segars, William P. ; Schad, Lothar R. ; Zöllner, Frank G. ; Golla, Alena K.: Generation of annotated multimodal ground truth datasets for abdominal medical image registration. In: International Journal of Computer Assisted Radiology and Surgery 16 (2021), Nr. 8, S. 1277–1285. – ISSN 18616429Bayoudh, K ; Knani, R ; Hamdaoui, F ; Mtibaa, A: A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. In: Vis Comput 38 (2022), Nr. 8, S. 2939–2970. – Epub 2021 Jun 10; PMID: 34131356; PMCID: PMC8192112Beckham, Christopher ; Pal, Christopher: A simple squared-error reformulation for ordinal classification. (2016), Nr. NipsBeckham, Christopher ; Pal, Christopher: Unimodal probability distributions for deep ordinal classification. In: 34th International Conference on Machine Learning, ICML 2017 1 (2017), S. 647–655. ISBN 9781510855144Benzebouchi, Nacer E. ; Azizi, Nabiha ; Ashour, Amira S. ; Dey, Nilanjan ; Sherratt, R. S.: Multi-modal classifier fusion with feature cooperation for glaucoma diagnosis. In: Journal of Experimental and Theoretical Artificial Intelligence 31 (2019), Nr. 6, S. 841–874. – ISSN 13623079Blunt, Nick S. ; Camps, Joan ; Crawford, Ophelia ; Izsák, Róbert ; Leontica, Sebastian ; Mirani, Arjun ; Moylett, Alexandra E. ; Scivier, Sam A. ; Sünder- hauf, Christoph ; Schopf, Patrick ; Taylor, Jacob M. ; Holzmann, Nicole: Per- spective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications. In: Journal of Chemical Theory and Computation 18 (2022), Nr. 12, S. 7001–7023. – PMID: 36355616Bradshaw, John ; Matthews, Alexander G. de G. ; Ghahramani, Zoubin: Ad- versarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks. In: https://arxiv.org/pdf/1707.02476.pdfarXiv:1707.02476v1 eprint (2017), S. 1–33Bulten, Wouter ; Litjens, Geert ; Pinckaers, Hans ; Ström, Peter ; Eklund, Martin ; Kartasalo, Kimmo ; Demkin, Maggie ; Dane, Sohier. The PANDA challenge: Prostate cANcer graDe Assessment using the Gleason grading system. März 2020Burns, Stephen A. ; Elsner, Ann E. ; Sapoznik, Kaitlyn A. ; Warner, Raymond L. ; Gast, Thomas J.: Adaptive optics imaging of the human retina. In: Progress in Retinal and Eye Research 68 (2019), S. 1–30. – ISSN 1350–9462Burns, Stephen A. ; Elsner, Ann E. ; Sapoznik, Kaitlyn A. ; Warner, Raymond L. ; Gast, Thomas J.: Adaptive optics imaging of the human retina. In: Progress in Retinal and Eye Research 68 (2019), Nr. August 2018, S. 1–30. – ISSN 18731635Camargo, Jorge E. ; Caicedo, Juan C. ; Gonzalez, Fabio A.: A kernel-based framework for image collection exploration. In: Journal of Visual Languages and Computing 24 (2013), Nr. 1, S. 53–67. – ISSN 1045926XCamargo, Jorge E. ; González, Fabio A.: Multimodal latent topic analysis for image collection summarization. In: Information Sciences 328 (2016), S. 270–287. – ISSN 00200255Campochiaro, Peter A. ; Mir, Tahreem A.: The mechanism of cone cell death in Retinitis Pigmentosa. In: Progress in Retinal and Eye Research 62 (2018), S. 24–37. – ISSN 1350–9462In: Castellano, Ginevra ; Kessous, Loic ; Caridakis, George: Emotion Recog- nition through Multiple Modalities: Face, Body Gesture, Speech. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008, S. 92–103. – ISBN 978–3–540–85099–1Cerezo, M ; Verdon, Guillaume ; Huang, Hsin-Yuan ; Cincio, Lukasz ; Coles, Patrick J.: Challenges and opportunities in quantum machine learning. In: Nature Computational Science 2 (2022), Nr. 9, S. 567–576Chakravarty, Arunava ; Sivaswamy, Jayanthi: Glaucoma classification with a fusion of segmentation and image-based features. In: Proceedings - International Symposium on Biomedical Imaging 2016-June (2016), Nr. i, S. 689–692. – ISBN 9781479923502Chen, Richard J. ; Lu, Ming Y. ; Williamson, Drew F. ; Chen, Tiffany Y. ; Lipkova, Jana ; Noor, Zahra ; Shaban, Muhammad ; Shady, Maha ; Williams, Mane ; Joo, Bumjin ; Mahmood, Faisal: Pan-cancer integrative histology-genomic analysis via multimodal deep learning. In: Cancer Cell 40 (2022), Nr. 8, S. 865–878.e6. – ISSN 18783686Chen, Yingming ; Ratnam, Kavitha ; Sundquist, Sanna M. ; Lujan, Brandon ; Ayyagari, Radha ; Gudiseva, V. H. ; Roorda, Austin ; Duncan, Jacque L.: Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt Disease. In: Investigative Ophthalmology and Visual Science 52 (2011), Nr. 6, S. 3281–3292. – ISSN 01460404Choi, Joon Y. ; Yoo, Tae K. ; Seo, Jeong G. ; Kwak, Jiyong ; Um, Terry T. ; Rim, Tyler H.: Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. In: PLOS ONE 12 (2017), 11, Nr. 11, S. 1–16Chollet, Francois: Image segmentation with a U-Net-like architecture. https:// keras.io/examples/vision/oxford_pets_image_segmentation/. 2020. – [Online; accessed 30-September-2021]Chollet, Francois [u. a.]: Keras. https://github.com/fchollet/keras. 2015. – [Online; accessed 01-Mar-2022]Contreras, Victor H. ; Lara, Juan S. ; Perdomo, Oscar J. ; González, Fabio A.: Supervised online matrix factorization for histopathological multimodal retrieval. In: Romero, Eduardo (Hrsg.) ; Lepore, Natasha (Hrsg.) ; Brieva, Jorge (Hrsg.): 14th International Symposium on Medical Information Processing and Analysis Bd. 10975 International Society for Optics and Photonics, SPIE, 2018, S. 109750YCross, Nancy ; van Steen, Cécile ; Zegaoui, Yasmina ; Satherley, Andrew ; Angelillo, Luigi: Current and Future Treatment of Retinitis Pigmentosa. In: Clinical Ophthalmology 16 (2022), S. 2909–2921. – ISSN 11775483Cui, Shaoguo ; Mao, Lei ; Jiang, Jingfeng ; Liu, Chang ; Xiong, Shuyu: Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. In: Journal of Healthcare Engineering 2018 (2018). – ISSN 20402309Cunefare, David: CNN-Cone-Detection. https://github.com/DavidCunefare/ CNN-Cone-Detection. 2017. – [Online; accessed 01-Mar-2022]Cunefare, David ; Fang, Leyuan ; Cooper, Robert F. ; Dubra, Alfredo ; Car- roll, Joseph ; Farsiu, Sina: Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks. In: Scientific Reports 7 (2017), Nr. 1, S. 1–11. – ISSN 20452322Cunefare, David ; Huckenpahler, Alison L. ; Patterson, Emily J. ; Dubra, Alfredo ; Carroll, Joseph ; Farsiu, Sina: RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images. In: Biomedical Optics Express 10 (2019), Nr. 8, S. 3815. – ISSN 2156–7085Cutajar, Kurt ; Bonilla, Edwin V. ; Michiardi, Pietro ; Filippone, Maur- izio: Random feature expansions for Deep Gaussian Processes. In: 34th Interna- tional Conference on Machine Learning, ICML 2017 2 (2017), S. 1467–1482. ISBN 9781510855144Davidson, Benjamin ; Kalitzeos, Angelos ; Carroll, Joseph ; Dubra, Alfredo ; Ourselin, Sebastien ; Michaelides, Michel ; Bergeles, Christos: Automatic Cone Photoreceptor Localisation in Healthy and Stargardt Afflicted Retinas Using Deep Learning. In: Scientific Reports 8 (2018), Nr. 1, S. 1–13. – ISBN 4159801826350Decencière, Etienne ; Zhang, Xiwei ; Cazuguel, Guy ; Laÿ, Bruno ; Cochener, Béatrice ; Trone, Caroline ; Gain, Philippe ; Ordóñez-Varela, John R. ; Massin, Pascale ; Erginay, Ali ; Charton, Béatrice ; Klein, Jean C.: Feedback on a publicly distributed image database: The Messidor database. In: Image Analysis and Stereology 33 (2014), Nr. 3, S. 231–234. – ISSN 18545165Diabetic Retinopathy Detection of Kaggle: EyePACS Challenge. www. kaggle.com/c/diabetic-retinopathy-detection/data. – Accessed: 2019-10-15For Disease Control, Centers ; Prevention: Prostate Cancer Statistics. 2022. – Accessed: 2023-06-01For Disease Control, Centers ; Prevention. Prostate Cancer Incidence by Age and Stage at Diagnosis, United States—20012019. USCS data brief, no 34. 2023Eladawi, Nabila ; Eltanboly, Ahmed ; Elmogy, Mohammed ; Ghazal, Mo- hammed ; Fraiwan, Luay ; Aboelfetouh, Ahmed ; Riad, Alaa ; Keynton, Robert ; El-Azab, Magdi ; Schaal, Shlomit ; El-Baz, Ayman: Diabetic retinopathy early detection based on OCT and OCTA feature fusion. In: Proceedings - Interna- tional Symposium on Biomedical Imaging 2019-April (2019), S. 587–591. – ISBN 9781538636411Ethem, Alpaydin: Introduction to Machine Learning. 3. The MIT Press, 2014Faraj, Sheila F. ; Bezerra, Stephania M. ; Yousefi, Kasra ; Fedor, Helen ; Glavaris, Stephanie ; Han, Misop ; Partin, Alan W. ; Humphreys, Elizabeth ; Tosoian, Jeffrey ; Johnson, Michael H. ; Davicioni, Elai ; Trock, Bruce J. ; Schaeffer, Edward M. ; Ross, Ashley E. ; Netto, George J.: Clinical validation of the 2005 isup gleason grading system in a cohort of intermediate and high risk men undergoing radical prostatectomy. In: PLoS ONE 11 (2016), Nr. 1, S. 1–13. – ISSN 19326203Frank, Eibe ; Hall, Mark: A Simple Approach to Ordinal Classification. In: De Raedt, Luc (Hrsg.) ; Flach, Peter (Hrsg.): Machine Learning: ECML 2001. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. – ISBN 978–3–540–44795–5, S. 145–156Garcia Arnal Barbedo, Jayme: A Review on Methods for Automatic Counting of Objects in Digital Images. In: IEEE Latin America Transactions 10 (2012), Nr. 5, S. 2112–2124Garg, Bhanu ; Manwani, Naresh: Robust Deep Ordinal Regression under Label Noise. In: Pan, Sinno J. (Hrsg.) ; Sugiyama, Masashi (Hrsg.): Proceedings of The 12th Asian Conference on Machine Learning Bd. 129. Bangkok, Thailand : PMLR, 18–20 Nov 2020, S. 782–796Gargeya, Rishab ; Leng, Theodore: Automated Identification of Diabetic Retinopa- thy Using Deep Learning. In: Ophthalmology 124 (2017), Nr. 7, S. 962–969Gieres, François: Mathematical surprises and Dirac’s formalism in quantum mechan- ics. In: Reports on Progress in Physics 63 (2000), dec, Nr. 12, S. 1893Golabbakhsh, M. ; Rabbani, H.: Vessel-based registration of fundus and optical coherence tomography projection images of retina using a quadratic registration model. In: IET Image Processing 7 (2013), November, Nr. 8, S. 768–776. – ISSN 1751–9667González, Fabio A. ; Ramos-Pollán, Raúl ; Gallego-Mejia, Joseph A.: Quan- tum Kernel Mixtures for Probabilistic Deep Learning. (2023)González, Fabio A. ; Vargas-Calderón, Vladimir ; Vinck-Posada, Herbert: Classification with quantum measurements. In: Journal of the Physical Society of Japan 90 (2021), Nr. 4, S. 044002González, F.A. ; Gallego, A. ; Toledo-Cortés, S. [u. a.]: Learning with density matrices and random features. In: Quantum Machine Intelligence 4 (2022), S. 23González, Fabio A. ; Vargas-Calderón, Vladimir ; Vinck-Posada, Herbert: Classification with Quantum Measurements. In: Journal of the Physical Society of Japan 90 (2021), Nr. 4, S. 044002Gulshan, Varun ; Peng, Lily ; Coram, Marc ; Stumpe, Martin C. ; Wu, Derek ; Narayanaswamy, Arunachalam ; Venugopalan, Subhashini ; Widner, Kasumi ; Madams, Tom ; Cuadros, Jorge ; Kim, Ramasamy ; Raman, Rajiv ; Nelson, Philip C. ; Mega, Jessica L. ; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 (2016), Nr. 22, S. 2402–2410Gunawardhana, Piumi L. ; Jayathilake, Raviru ; Withanage, Yasiru ; Gane- goda, Gamage U.: Automatic Diagnosis of Diabetic Retinopathy using Machine Learning: A Review. In: Proceedings of ICITR 2020 - 5th International Conference on Information Technology Research: Towards the New Digital Enlightenment (2020). ISBN 9781665414753Guo, Z. ; Li, X. ; Huang, H. ; Guo, N. ; Li, Q.: Medical image segmentation based on multi-modal convolutional neural network: Study on image fusion schemes. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018. – ISSN 1945–8452, S. 903–907Guo, Z. ; Li, X. ; Huang, H. ; Guo, N. ; Li, Q.: Deep Learning-Based Image Segmentation on Multimodal Medical Imaging. In: IEEE Transactions on Radiation and Plasma Medical Sciences 3 (2019), March, Nr. 2, S. 162–169. – ISSN 2469–7303Gutiérrez, Pedro A. ; Pérez-Ortiz, Marı́a ; Sánchez-Monedero, Javier ; Fernández-Navarro, Francisco ; Hervás-Martı́nez, César: Ordinal Regression Methods: Survey and Experimental Study. In: IEEE Transactions on Knowledge and Data Engineering 28 (2016), Nr. 1, S. 127–146. – ISSN 10414347Gutman, David A. ; Cobb, Jake ; Somanna, Dhananjaya ; Park, Yuna ; Wang, Fusheng ; Kurc, Tahsin ; Saltz, Joel H. ; Brat, Daniel J. ; Cooper, Lee A. ; Kong, Jun: Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. In: Journal of the American Medical Informatics Association 20 (2013), Nr. 6, S. 1091–1098Hashemi, Mehrdad ; Zandieh, Mohammad A. ; Talebi, Yasmin ; Rahmanian, Parham ; Shafiee, Sareh S. ; Nejad, Melina M. ; Babaei, Roghayeh ; Sadi, Farzaneh H. ; Rajabi, Romina ; Abkenar, Zahra O. ; Rezaei, Shamin ; Ren, Jun ; Nabavi, Noushin ; Khorrami, Ramin ; Rashidi, Mohsen ; Hushmandi, Kiavash ; Entezari, Maliheh ; Taheriazam, Afshin: Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. In: Biomedicine Pharmacotherapy 160 (2023), S. 114392. – ISSN 0753–3322He, Shenghua ; Minn, Kyaw T. ; Solnica-Krezel, Lilianna ; Anastasio, Mark A. ; Li, Hua: Deeply-supervised density regression for automatic cell counting in mi- croscopy images. In: Medical Image Analysis 68 (2021), S. 101892. – ISSN 1361–8415Huang, Di ; Heath Jeffery, Rachael C. ; Aung-Htut, May T. ; McLenachan, Samuel ; Fletcher, Sue ; Wilton, Steve D. ; Chen, Fred K.: Stargardt disease and progress in therapeutic strategies. In: Ophthalmic Genetics 43 (2022), Nr. 1, S. 1–26. – ISSN 17445094Huang, Huikang ; Situ, Haozhen ; Zheng, Shenggen: Bidirectional Information Flow Quantum State Tomography. In: Chinese Physics Letters 38 (2021), Nr. 4, S. 1–6. – ISSN 17413540Jim, Oscar A. ; Cirujeda, Pol ; Henning, M: Combining Radiology Images and Meta – data for Multimodal Medical Case – based Retrieval. In: VISCERAL book (2017), S. 1–14Jiménez del Toro, Oscar ; Atzori, Manfredo ; Otálora, Sebastian ; Andersson, Mats ; Eurén, Kristian ; Hedlund, Martin ; Rönnquist, Peter ; Müller, Henning: Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score. In: Medical Imaging 2017: Digital Pathology 10140 (2017), S. 101400O. – ISBN 9781510607255Kamnitsas, K. ; Bai, W. ; Ferrante, E. ; McDonagh, S. ; Sinclair, M. ; Pawlowski, N. ; Rajchl, M. ; Lee, M. ; Kainz, B. ; Rueckert, D. ; Glocker, B.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10670 LNCS (2018), S. 450–462. – ISBN 9783319752372Karimi, Davood ; Nir, Guy ; Fazli, Ladan ; Black, Peter C. ; Goldenberg, Larry ; Salcudean, Septimiu E.: Deep Learning-Based Gleason Grading of Prostate Cancer from Histopathology Images - Role of Multiscale Decision Aggregation and Data Augmentation. In: IEEE Journal of Biomedical and Health Informatics 24 (2020), may, Nr. 5, S. 1413–1426. – ISSN 21682208Kaya, Mahmut ; Bilge, H.s: Deep Metric Learning: A Survey. In: Symmetry 11 (2019), 08, S. 1066Kendall, Alex ; Gal, Yarin: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems 2017-December (2017), Nr. Nips, S. 5575–5585. – ISSN 10495258Khani, Ali A. ; Fatemi Jahromi, Seyed A. ; Shahreza, Hatef O. ; Behroozi, Hamid ; Baghshah, Mahdieh S.: Towards Automatic Prostate Gleason Grading Via Deep Convolutional Neural Networks. In: 5th Iranian Conference on Signal Process- ing and Intelligent Systems, ICSPIS 2019 (2019), Nr. December, S. 18–19. ISBN 9781728153506Kim, Hee E. ; Cosa-Linan, Alejandro ; Santhanam, Nandhini ; Jannesari, Mah- boubeh ; Maros, Mate E. ; Ganslandt, Thomas: Transfer learning for medical image classification: a literature review. In: BMC medical imaging 22 (2022), Nr. 1, S. 69Kim, Tae H. ; Jeong, Dae J. ; Hahn, Soo Y. ; Shin, Jung H. ; Oh, Young L. ; Ki, Chang S. ; Kim, Jong W. ; Jang, Ju Y. ; Cho, Yoon Y. ; Chung, Jae H. ; Kim, Sun W.: Triage of patients with AUS/FLUS on thyroid cytopathology: Effectiveness of the multimodal diagnostic techniques. In: Cancer Medicine 5 (2016), Nr. 5, S. 769–777. – ISSN 20457634Kleesiek, Jens ; Urban, Gregor ; Hubert, Alexander ; Schwarz, Daniel ; Maier- Hein, Klaus ; Bendszus, Martin ; Biller, Armin: Deep MRI brain extraction: A 3D convolutional neural network for skull stripping. In: NeuroImage 129 (2016), S. 460–469. – ISSN 10959572Kong, Jun ; Cooper, Lee A. ; Wang, Fusheng ; Gutman, David A. ; Gao, Jingjing ; Chisolm, Candace ; Sharma, Ashish ; Pan, Tony ; Van Meir, Erwin G. ; Kurc, Tahsin M. ; Moreno, Carlos S. ; Saltz, Joel H. ; Brat, Daniel J.: Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images, and clinical outcomes. In: IEEE Transactions on Biomedical Engineering 58 (2011), Nr. 12 PART 2, S. 3469–3474. – ISSN 00189294Kononenko, Igor: Machine learning for medical diagnosis: History, state of the art and perspective. In: Artificial Intelligence in Medicine 23 (2001), Nr. 1, S. 89–109. – ISSN 09333657Kovalyk, Oleksandr ; Morales-Sánchez, Juan ; Verdú-Monedero, Rafael ; Sellés-Navarro, Inmaculada ; Palazón-Cabanes, Ana ; Sancho-Gómez, José Luis: PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. In: Scientific Data 9 (2022), Nr. 1, S. 1–12. – ISBN 4159702201Krause, Jonathan ; Gulshan, Varun ; Rahimy, Ehsan ; Karth, Peter ; Widner, Kasumi ; Corrado, Greg S. ; Peng, Lily ; Webster, Dale R.: Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. In: Ophthalmology 125 (2018), Nr. 8, S. 1264–1272. – ISSN 15494713Krenn, Mario ; Malik, Mehul ; Fickler, Robert ; Lapkiewicz, Radek ; Zeilinger, Anton: Automated Search for new Quantum Experiments. In: Phys. Rev. Lett. 116 (2016), S. 090405Lara, Juan S. ; Contreras O., Victor H. ; Otálora, Sebastián ; Müller, Hen- ning ; González, Fabio A.: Multimodal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval. In: Martel, Anne L. (Hrsg.) ; Abol- maesumi, Purang (Hrsg.) ; Stoyanov, Danail (Hrsg.) ; Mateus, Diana (Hrsg.) ; Zuluaga, Maria A. (Hrsg.) ; Zhou, S. K. (Hrsg.) ; Racoceanu, Daniel (Hrsg.) ; Joskowicz, Leo (Hrsg.): Medical Image Computing and Computer Assisted Inter- vention – MICCAI 2020. Cham : Springer International Publishing, 2020. – ISBN 978–3–030–59722–1, S. 572–581Lara, Juan S. ; Contreras O, Victor H. ; Otálora, Sebastián ; Müller, Hen- ning ; González, Fabio A.: Multimodal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin- formatics) Bd. 12265 LNCS, 2020. – ISBN 9783030597214, S. 572–581Lee, Jimmy A. ; Liu, Peng ; Cheng, Jun ; Fu, Huazhu: A Deep Step Pattern Rep- resentation for Multimodal Retinal Image Registration. In: The IEEE International Conference on Computer Vision (ICCV) (2019), S. 5077–5086Lee, Ki S. ; Jung, Seok K. ; Ryu, Jae J. ; Shin, Sang W. ; Choi, Jinwook: Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. In: Journal of Clinical Medicine 9 (2020), Nr. 2. – ISSN 20770383Leibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14. – ISSN 20452322Leibig, Christian ; Allken, Vaneeda ; Ayhan, Murat S. ; Berens, Philipp ; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14Li, Daoliang ; Miao, Zheng ; Peng, Fang ; Wang, Liang ; Hao, Yinfeng ; Wang, Zhenhu ; Chen, Tao ; Li, Hui ; Zheng, Yingying: Automatic counting methods in aquaculture: A review. In: Journal of the World Aquaculture Society 52 (2021), Nr. 2, S. 269–283Li, Feng ; Liu, Zheng ; Chen, Hua ; Jiang, Minshan ; Zhang, Xuedian ; Wu, Zhizheng: Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. In: Translational Vision Science and Technology 8 (2019), Nr. 6. – ISSN 21642591Li, Hongming ; Habes, Mohamad ; Fan, Yong: Deep Ordinal Ranking for Multi- Category Diagnosis of Alzheimer’s Disease using Hippocampal MRI data. In: arXiv (2017), sepLi, Yuchun ; Huang, Mengxing ; Zhang, Yu ; Chen, Jing ; Xu, Haixia ; Wang, Gang ; Feng, Wenlong: Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer. In: IEEE Access 8 (2020), S. 117714–117725. – ISSN 21693536Lim, G. ; Bellemo, V. ; Xie, Y. [u. a.]: Different fundus imaging modalities and technical factors in AI screening for diabetic retinopathy: a review. In: Eye and Vision 7 (2020), S. 21Lim, Zhan W. ; Lee, Mong L. ; Hsu, Wynne ; Wong, Tien Y.: Building Trust in Deep Learning System towards Automated Disease Detection. In: The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (2018), S. 9516–9521Liu, Xiaofeng: Ordinal Regression with Neuron Stick-breaking for Medical Diagnosis. 2018. – Forschungsbericht. – 0–0 SLucas, Marit ; Jansen, Ilaria ; Savci-Heijink, C. D. ; Meijer, Sybren L. ; de Boer, Onno J. ; van Leeuwen, Ton G. ; de Bruin, Daniel M. ; Marquering, Henk A.: Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. In: Virchows Archiv 475 (2019), Nr. 1, S. 77–83. – ISSN 14322307Ma, Mengmeng ; Ren, Jian ; Zhao, Long ; Testuggine, Davide ; Peng, Xi: Are Multimodal Transformers Robust to Missing Modality? (2022), S. 18177–18186Ma, Mengmeng ; Ren, Jian ; Zhao, Long ; Tulyakov, Sergey ; Wu, Cathy ; Peng, Xi: SMIL: Multimodal Learning with Severely Missing Modality. In: 35th AAAI Conference on Artificial Intelligence, AAAI 2021 3B (2021), S. 2302–2310. ISBN 9781713835974Manjula Sri, K.M.M. R.: Novel image pro-cessing techniquesto detect lesion us-ing lab view R. In: India Conference (INDICON), 2011 Annual IEEE (2011)Mcgurk, Harry ; Macdonald, John: Hearing lips and seeing voices. In: Nature 264 (1976), Nr. 5588, S. 746–748. – ISSN 00280836Menze, Bjoern ; Reyes, Mauricio ; Jakab, Andras ; Gerstner, Elisabeth ; Fara- hani, Keyvan ; Menze, Bjoern ; Reyes, Mauricio ; Jakab, Andras ; Gerstner, Elisabeth ; Kirby, Justin: Brain Tumor Image Segmentation ( BRATS ) 2013 To cite this version : NCI-MICCAI Challenge on Multimodal Brain Tumor Segmentation. (2013)MINSALUD: ANÁLISIS DE SITUACIÓN DE SALUD VISUAL EN COLOMBIA 2016. (2015). – ISBN 9780511993398Miri, Mohammad S. ; Abràmoff, Michael D. ; Lee, Kyungmoo ; Niemeijer, Mein- dert ; Wang, Jui K. ; Kwon, Young H. ; Garvin, Mona K.: Multimodal Segmen- tation of Optic Disc and Cup from SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach. In: IEEE Transactions on Medical Imaging 34 (2015), Nr. 9, S. 1854–1866. – ISSN 1558254XMoccia, Sara ; Wirkert, Sebastian J. ; Kenngott, Hannes ; Vemuri, Anant S. ; Apitz, Martin ; Mayer, Benjamin ; De Momi, Elena ; Mattos, Leonardo S. ; Maier-Hein, Lena: Uncertainty-aware organ classification for surgical data science applications in laparoscopy. In: IEEE Transactions on Biomedical Engineering 65 (2018), Nr. 11, S. 2649–2659. – ISSN 15582531Mookiah, Muthu Rama K. ; Acharya, U. R. ; Chua, Chua K. ; Min, Lim C. ; Ng, E. Y. ; Mushrif, Milind M. ; Laude, Augustinus: Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 227 (2013), Nr. 1, S. 37–49. – ISSN 09544119Morgan, Jessica I. ; Chen, Min ; Huang, Andrew M. ; Jiang, Yu Y. ; Cooper, Robert F.: Cone identification in choroideremia: Repeatability, reliability, and au- tomation through use of a convolutional neural network. In: Translational Vision Science and Technology 9 (2020), Nr. 2, S. 1–13. – ISSN 21642591Müller, Henning ; Ünay, Devrim: Medical Decision Support Using Increasingly Large Multimodal Data Sets. In: Big Data Analytics for Large-Scale Multimedia Search (2019), S. 317–336Nagpal, Kunal ; Foote, Davis ; Liu, Yun ; Chen, Po Hsuan C. ; Wulczyn, Ellery ; Tan, Fraser ; Olson, Niels ; Smith, Jenny L. ; Mohtashamian, Arash ; Wren, James H. ; Corrado, Greg S. ; MacDonald, Robert ; Peng, Lily H. ; Amin, Mahul B. ; Evans, Andrew J. ; Sangoi, Ankur R. ; Mermel, Craig H. ; Hipp, Jason D. ; Stumpe, Martin C.: Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. In: npj Digital Medicine 2 (2019), dec, Nr. 1, S. 1–10. – ISSN 23986352Nakatake, Shunji ; Murakami, Yusuke ; Funatsu, Jun ; Koyanagi, Yoshito ; Akiyama, Masato ; Momozawa, Yukihide ; Ishibashi, Tatsuro ; Sonoda, Koh H. ; Ikeda, Yasuhiro: Early detection of cone photoreceptor cell loss in retinitis pig- mentosa using adaptive optics scanning laser ophthalmoscopy. In: Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 257 (2019), Nr. 6, S. 1169–1181. – ISSN 1435702XNie, Dong ; Wang, Li ; Gao, Yaozong ; Shen, Dinggang: FULLY CONVOLU- TIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION Dong. In: Proc IEEE Int Symp Biomed Imaging (2016)Niu, Zhenxing ; Zhou, Mo ; Wang, Le ; Gao, Xinbo ; Hua, Gang: Ordinal regression with multiple output CNN for age estimation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Bd. 2016-Decem, IEEE Computer Society, dec 2016. – ISBN 9781467388504, S. 4920–4928Otálora, Sebastian ; Perdomo, Oscar ; González, Fabio ; Müller, Henning: Training Deep Convolutional Neural Networks with Active Learning for Exudate Clas- sification in Eye Fundus Images. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Bd. 10552 LNCS, 2017. – ISBN 9783319675336, S. 146–154Perdomo, Oscar. ; Gonzalez, Fabio.: A Systematic Review of Deep Learning Methods Applied to Ocular Images. In: Ciencia e Ingenieria Neogranadina 30 (2019), Nr. 1. ISBN 0000000314251Perdomo, Oscar ; Otalora, Sebastian ; Gonzalez, Fabio A. ; Meriaudeau, Fabrice ; Muller, Henning: OCT-NET: A convolutional network for automatic clas- sification of normal and diabetic macular edema using sd-oct volumes. In: Proceedings - International Symposium on Biomedical Imaging 2018-April (2018), Nr. Isbi, S. 1423–1426. – ISBN 9781538636367Perdomo Charry, Oscar J. ; Arevalo, John ; González, Fabio A.: Combin- ing morphometric features and convolutional networks fusion for glaucoma diagnosis. (2017), Nr. November, S. 57. – ISBN 9781510616332Pinz, A. ; Bernogger, S. ; Datlinger, P. ; Kruger, A.: Mapping the human retina. In: IEEE Transactions on Medical Imaging 17 (1998), Aug, Nr. 4, S. 606–619. – ISSN 1558–254XPiotter, Elena ; McClements, Michelle E. ; Maclaren, Robert E.: Therapy approaches for stargardt disease. In: Biomolecules 11 (2021), Nr. 8, S. 1–28. – ISSN 2218273XPolikar, R. ; Tilley, C. ; Hillis, B. ; Clark, C. M.: Multimodal EEG, MRI and PET data fusion for Alzheimer’s disease diagnosis. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010. – ISSN 1558–4615, S. 6058–6061Rahimi, Ali ; Recht, Ben: Random features for large-scale kernel machines. In: Advances in neural information . . . (2007), Nr. 1, S. 1–8. – ISBN 160560352XRahimi, Ali ; Recht, Benjamin: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference, 2009. – ISBN 160560352XRamirez, Geovany A. ; Baltrušaitis, Tadas ; Morency, Louis-Philippe: Modeling Latent Discriminative Dynamic of Multi-dimensional Affective Signals. In: D’Mello, Sidney (Hrsg.) ; Graesser, Arthur (Hrsg.) ; Schuller, Björn (Hrsg.) ; Martin, Jean-Claude (Hrsg.): Affective Computing and Intelligent Interaction. Berlin, Heidel- berg : Springer Berlin Heidelberg, 2011. – ISBN 978–3–642–24571–8, S. 396–406Rasmussen, Carl E. ; Williams, Christopher K. I.: Gaussian processes for machine learning. The MIT Press, 2006. – ISBN 026218253XRen, Jian ; Hacihaliloglu, Ilker ; Singer, Eric A. ; Foran, David J. ; Qi, Xin: Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images. In: Frontiers in Bioengineering and Biotechnology 7 (2019), Nr. May, S. 1–12. – ISSN 2296–4185Ritter, N. ; Owens, R. ; Cooper, J. ; Eikelboom, R. H. ; Van Saarloos, P. P.: Registration of stereo and temporal images of the retina. In: IEEE Transactions on Medical Imaging 18 (1999), May, Nr. 5, S. 404–418. – ISSN 1558–254XRonneberger, Olaf ; Fischer, Philipp ; Brox, Thomas: U-net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Sci- ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9351 (2015), S. 234–241. – ISBN 9783319245737Roorda, Austin ; Romero-Borja, Fernando ; III, William J. D. ; Queener, Hope ; Hebert, Thomas J. ; Campbell, Melanie C.: Adaptive optics scanning laser ophthalmoscopy. In: Opt. Express 10 (2002), May, Nr. 9, S. 405–412Russakovsky, Olga ; Deng, Jia ; Su, Hao ; Krause, Jonathan ; Satheesh, Sanjeev ; Ma, Sean ; Huang, Zhiheng ; Karpathy, Andrej ; Khosla, Aditya ; Bernstein, Michael ; Berg, Alexander C. ; Fei-Fei, Li: ImageNet Large Scale Visual Recognition Challenge. In: International Journal of Computer Vision (IJCV) 115 (2015), Nr. 3, S. 211–252Sahran, Shahnorbanun ; Albashish, Dheeb ; Abdullah, Azizi ; Shukor, Nor- dashima A. ; Hayati Md Pauzi, Suria: Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading. In: Artificial Intelligence in Medicine 87 (2018), S. 78–90. – ISSN 18732860Salam, Anum A. ; Khalil, Tehmina ; Akram, M. U. ; Jameel, Amina ; Basit, Imran: Automated detection of glaucoma using structural and non structural features. In: SpringerPlus 5 (2016), Nr. 1. – ISSN 21931801Salam, Anum A. ; Akram, M. U. ; Wazir, Kamran ; Anwar, Syed M. ; Majid, Muhammad: Autonomous Glaucoma detection from fundus image using cup to disc ratio and hybrid features. In: 2015 IEEE International Symposium on Signal Pro- cessing and Information Technology, ISSPIT 2015 (2016), Nr. c, S. 370–374. ISBN 9781509004805Schlegl, Thomas ; Waldstein, Sebastian ; Vogl, Wolf-Dieter ; Schmidt- Erfurth, Ursula ; Langs, Georg: Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks. In: Information Processing in Medical Imaging 9123 (2015), Nr. Chapter 58, S. 733–745. – ISBN 978–3–319–19991–7Schmidhuber, Jürgen: Deep Learning in neural networks: An overview. In: Neural Networks 61 (2015), S. 85–117. – ISBN 0893–6080Shah, Mital ; Roomans Ledo, Ana ; Rittscher, Jens: Automated classification of normal and Stargardt disease optical coherence tomography images using deep learn- ing. In: Acta Ophthalmologica 98 (2020), Nr. 6, S. e715–e721Shawe-Taylor, John ; Cristianini, Nello: Kernel Methods for Pattern Analysis. New York, New York, USA : Cambridge University Press, 2004. – ISBN 9780521813976Singh, Amitojdeep ; Sengupta, Sourya ; Lakshminarayanan, Vasudevan: Ex- plainable deep learning models in medical image analysis. In: Journal of Imaging 6 (2020), Nr. 6, S. 1–19. – ISSN 2313433XSociety, American C. Key Statistics for Prostate Cancer. 2023Stolte, Skylar ; Fang, Ruogu: A survey on medical image analysis in diabetic retinopathy. In: Medical Image Analysis 64 (2020), S. 101742. – ISSN 13618423Ström, Peter ; Kartasalo, Kimmo ; Olsson, Henrik ; Solorzano, Leslie ; De- lahunt, Brett ; Berney, Daniel M. ; Bostwick, David G. ; Evans, Andrew J. ; Grignon, David J. ; Humphrey, Peter A. ; Iczkowski, Kenneth A. ; Kench, James G. ; Kristiansen, Glen ; van der Kwast, Theodorus H. ; Leite, Katia R. ; McKenney, Jesse K. ; Oxley, Jon ; Pan, Chin C. ; Samaratunga, Hemamali ; Srigley, John R. ; Takahashi, Hiroyuki ; Tsuzuki, Toyonori ; Varma, Mu- rali ; Zhou, Ming ; Lindberg, Johan ; Lindskog, Cecilia ; Ruusuvuori, Pekka ; Wählby, Carolina ; Grönberg, Henrik ; Rantalainen, Mattias ; Egevad, Lars ; Eklund, Martin: Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. In: The Lancet Oncology 21 (2020), Nr. 2, S. 222–232. – ISSN 14745488Summerfield, Quentin: L ipreading and audio-visual speech perception. In: Philo- sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 335 (1992), Nr. 1273, S. 71–78Sun, Yunlian ; Tang, Jinhui ; Sun, Zhenan ; Tistarelli, Massimo: Facial Age and Expression Synthesis Using Ordinal Ranking Adversarial Networks. In: IEEE Transactions on Information Forensics and Security 15 (2020), S. 2960–2972. – ISSN 15566021Szegedy, Christian ; Vanhoucke, Vincent ; Ioffe, Sergey ; Shlens, Jon ; Wojna, Zbigniew: Rethinking the Inception Architecture for Computer Vision. In: Pro- ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-December (2016), S. 2818–2826. – ISBN 9781467388504Tang, Yehui ; Yan, Junchi ; Hu, Guoqiang ; Zhang, Baohua ; Zhou, Jinzan: Recent progress and perspectives on quantum computing for finance. In: Service Oriented Computing and Applications 16 (2022), Nr. 4, S. 227–229Teng, Q. ; Liu, Z. ; Song, Y. ; Han, K. ; Lu, Y.: A survey on the interpretability of deep learning in medical diagnosis. In: Multimed Syst 28 (2022), Nr. 6, S. 2335–2355Threatt, Jennifer ; Williamson, Jennifer F. ; Huynh, Kyle ; Davis, Richard M.: Ocular disease, knowledge and technology applications in patients with diabetes. In: American Journal of the Medical Sciences 345 (2013), Nr. 4, S. 266–270. – ISSN 00029629Tian, Li ; Ma, Liyan ; Wen, Zhijie ; Xie, Shaorong ; Xu, Yupeng: Learning Dis- criminative Representations for Fine-Grained Diabetic Retinopathy Grading. (2020)Toledo-Cortés, Santiago ; De La Pava, Melissa ; Perdómo, Oscar ; González, Fabio A.: Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification. In: Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science, vol 12069. Springer, Cham., 2020, S. 206–215Toledo-Cortés, Santiago: AOSLO-CNN Diagnosis and Counting. https:// github.com/stoledoc/AOSLO-CNN_Diagnosis_Counting. 2022. – [Online; accessed 01-Mar-2022]Toledo-Cortés, Santiago: DQOR Code for Medical Image Grading with Deep Quan- tum Ordinal Regression. https://github.com/stoledoc/DQOR. 2022. – [Online; ac- cessed 01-Mar-2022]Toledo-Cortés, Santiago ; Dubis, Adam M. ; González, Fabio A. ; Müller, Henning: Deep Density Estimation for Cone Counting and Diagnosis of Genetic Eye Diseases From Adaptive Optics Scanning Light Ophthalmoscope Images. In: Transla- tional Vision Science Technology 12 (2023), 11, Nr. 11, S. 25–25. – ISSN 2164–2591Toledo-Cortés, Santiago ; Useche, Diego H. ; Müller, Henning ; González, Fabio A.: Grading diabetic retinopathy and prostate cancer diagnostic images with deep quantum ordinal regression. In: Computers in Biology and Medicine 145 (2022), S. 105472. – ISSN 0010–4825Tolkach, Yuri ; Dohmgörgen, Tilmann ; Toma, Marieta ; Kristiansen, Glen: High-accuracy prostate cancer pathology using deep learning. In: Nature Machine Intelligence 2 (2020), jul, Nr. 7, S. 411–418. – ISSN 25225839In: Tsang, Stephen H. ; Sharma, Tarun: Stargardt Disease. Cham : Springer International Publishing, 2018, S. 139–151. – ISBN 978–3–319–95046–4Uppamma, P. ; Bhattacharya, S.: Deep Learning and Medical Image Process- ing Techniques for Diabetic Retinopathy: A Survey of Applications, Challenges, and Future Trends. In: J Healthc Eng 2023 (2023), S. 2728719Urban, G. ; Bendszus, M. ; Hamprecht, Fred A. ; Kleesiek, J.: Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks. In: MIC- CAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, S. 31–35Vaghefi, Ehsan ; Hill, Sophie ; Kersten, Hannah M. ; Squirrell, David: Mul- timodal Retinal Image Analysis via Deep Learning for the Diagnosis of Intermediate Dry Age-Related Macular Degeneration : A Feasibility Study. 2020 (2020)Vaicenavicius, Juozas ; Widmann, David ; Andersson, Carl ; Lindsten, Fredrik ; Roll, Jacob ; Schön, Thomas: Evaluating model calibration in classification. In: Chaudhuri, Kamalika (Hrsg.) ; Sugiyama, Masashi (Hrsg.): Proceedings of Machine Learning Research Bd. 89, PMLR, 16–18 Apr 2019, S. 3459–3467Van Grinsven, Mark J. ; Buitendijk, Gabriëlle H.S. ; Brussee, Corina ; Van Ginneken, Bram ; Hoyng, Carel B. ; Theelen, Thomas ; Klaver, Caroline C. ; Sánchez, Clara I.: Automatic identification of reticular pseudodrusen using multi- modal retinal image analysis. In: Investigative Ophthalmology and Visual Science 56 (2015), Nr. 1, S. 633–639. – ISSN 15525783Vanegas, Jorge A.: Large-scale Non-linear Multimodal Semantic Embedding Large- scale Non-linear Multimodal Semantic Embedding, Dissertation, 2017Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11Voets, Mike ; Møllersen, Kajsa ; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11. – ISBN 1111111111Wang, Daihou ; Foran, David J. ; Ren, Jian ; Zhong, Hua ; Kim, Isaac Y. ; Qi, Xin: Exploring automatic prostate histopathology image gleason grading via local structure modeling. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem (2015), S. 2649–2652. – ISBN 9781424492718Wang, Weisen ; Xu, Zhiyan ; Yu, Weihong ; Zhao, Jianchun ; Yang, Jingyuan ; He, Feng ; Yang, Zhikun ; Chen, Di ; Ding, Dayong ; Chen, Youxin ; Li, Xirong: Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization. (2019), S. 156–164. – ISBN 9783030322380Wells, John A. ; Glassman, Adam R. ; Ayala, Allison R. ; Jampol, Lee M. ; Bressler, Neil M. ; Bressler, Susan B. ; Brucker, Alexander J. ; Ferris, Fred- erick L. ; Hampton, G. R. ; Jhaveri, Chirag ; Melia, Michele ; Beck, Roy W.: Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema Two-Year Re- sults from a Comparative Effectiveness Randomized Clinical Trial. In: Ophthalmology 123 (2016), Nr. 6, S. 1351–1359Wilkinson, C. P. ; Ferris, Frederick L. ; Klein, Ronald E. ; Lee, Paul P. ; Agardh, Carl D. ; Davis, Matthew ; Dills, Diana ; Kampik, Anselm ; Pararajasegaram, R. ; Verdaguer, Juan T. ; Lum, Flora: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. In: Ophthalmology 110 (2003), Nr. 9, S. 1677–1682Wilson, Andrew ; Nickisch, Hannes: Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP). In: Proceedings of the 32nd International Conference on Machine Learning, JMLR: W&CP. Lille, France, 2015World Health Organisation: World report on vision. 2019 ( 14). – Forschungs- bericht. – 180–235 S. – ISBN 9789241516570Wynne, Niamh ; Carroll, Joseph ; Duncan, Jacque L.: Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). In: Progress in Retinal and Eye Research (2021), Nr. October, S. 100920. – ISSN 18731635Xie, Weidi ; Noble, J. A. ; Zisserman, Andrew: Microscopy cell counting and de- tection with fully convolutional regression networks. In: Computer Methods in Biome- chanics and Biomedical Engineering: Imaging and Visualization 6 (2018), Nr. 3, S. 283–292. – ISSN 21681171Xin, Qiu ; Elliot, Meyerson ; Miikkulainen, Risto: Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel. In: ICLR 2020., 2019, S. 1–17. Addis Ababa, EthiopiaYang, Jialiang ; Ju, Jie ; Guo, Lei ; Ji, Binbin ; Shi, Shufang ; Yang, Zixuan ; Gao, Songlin ; Yuan, Xu ; Tian, Geng ; Liang, Yuebin ; Yuan, Peng: Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. In: Computational and Structural Biotechnology Journal 20 (2022), S. 333–342. – ISSN 2001–0370Yap, Jordan ; Yolland, William ; Tschandl, Philipp: Multimodal skin lesion classification using deep learning. In: Experimental Dermatology 27 (2018), Nr. 11, S. 1261–1267. – ISSN 16000625Yau, Joanne W. ; Rogers, Sophie L. ; Kawasaki, Rho ; Lamoureux, Ecosse L. ; Kowalski, Jonathan W. ; Bek, Toke ; Chen, Shih J. ; Dekker, Jacqueline M. ; Fletcher, Astrid ; Grauslund, Jakob ; Haffner, Steven ; Hamman, Richard F. ; Ikram, M. K. ; Kayama, Takamasa ; Klein, Barbara E. ; Klein, Ronald ; Krish- naiah, Sannapaneni ; Mayurasakorn, Korapat ; O’Hare, Joseph P. ; Orchard, Trevor J. ; Porta, Massimo ; Rema, Mohan ; Roy, Monique S. ; Sharma, Tarun ; Shaw, Jonathan ; Taylor, Hugh ; Tielsch, James M. ; Varma, Rohit ; Wang, Jie J. ; Wang, Ningli ; West, Sheila ; Zu, Liang ; Yasuda, Miho ; Zhang, Xinzhi ; Mitchell, Paul ; Wong, Tien Y.: Global prevalence and major risk factors of diabetic retinopathy. In: Diabetes Care 35 (2012), Nr. 3, S. 556–564Yoo, Tae K. ; Choi, Joon Y. ; Seo, Jeong G. ; Ramasubramanian, Bhoopalan ; Selvaperumal, Sundaramoorthy ; Kim, Deok W.: The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. In: Medical and Biological Engineering and Computing 57 (2019), Nr. 3, S. 677–687. – ISSN 17410444Zadeh, Amir ; Chen, Minghai ; Cambria, Erik ; Poria, Soujanya ; Morency, Louis P.: Tensor fusion network for multimodal sentiment analysis. In: EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings (2017), S. 1103–1114. ISBN 9781945626838Zana, F. ; Klein, J. C.: A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. In: IEEE Transactions on Medical Imaging 18 (1999), May, Nr. 5, S. 419–428. – ISSN 1558–254XZeng, Xianglong ; Chen, Haiquan ; Luo, Yuan ; Ye, Wenbin: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. In: IEEE Access 7 (2019), Nr. c, S. 30744–30753Zhang, Daoqiang ; Wang, Yaping ; Zhou, Luping ; Yuan, Hong: Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment. In: Neuroimage (2011). – ISBN 6176321972Zhang, Yao ; Ni, Qiang: Recent advances in quantum machine learning. In: Quantum Engineering 2 (2020), Nr. 1, S. e34BibliotecariosEstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85336/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032441097.2023.pdf1032441097.2023.pdfTesis de Doctorado en Ingeniería - Sistemas y Computaciónapplication/pdf9858169https://repositorio.unal.edu.co/bitstream/unal/85336/2/1032441097.2023.pdfed38be9cd99a31689159002b50369530MD52THUMBNAIL1032441097.2023.pdf.jpg1032441097.2023.pdf.jpgGenerated Thumbnailimage/jpeg4745https://repositorio.unal.edu.co/bitstream/unal/85336/3/1032441097.2023.pdf.jpgfa0d97ad04818ae542902f58e146b315MD53unal/85336oai:repositorio.unal.edu.co:unal/853362024-01-16 23:03:36.092Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=