High-quality genome assembly and comparative genomics of Pseudocercospora ulei GCL012, the causal agent of the South American leaf blight (SALB) in natural rubber tree Hevea brasiliensis: Towards the prediction of molecular components associated with its pathogenicity and virulence

ilustraciones, gráficas, fotografías a color, tablas

Autores:
González Sáyer, Sandra Milena
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80147
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80147
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología
Patología vegetal
Hongos fitopatógenos
Microorganismos fitopatógenos
Plant diseases
Phytopathogenic fungi
Micro-organisms, phytopathogenic
Micro-organismes - phytopathogen
Natural rubber
South American Leaf Blight
PacBio
Nanopore
Transposable elements
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_33351d533fcc7c69c597664839781857
oai_identifier_str oai:repositorio.unal.edu.co:unal/80147
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv High-quality genome assembly and comparative genomics of Pseudocercospora ulei GCL012, the causal agent of the South American leaf blight (SALB) in natural rubber tree Hevea brasiliensis: Towards the prediction of molecular components associated with its pathogenicity and virulence
dc.title.translated.spa.fl_str_mv Ensamblaje del genoma de alta calidad y genómica comparativa de Pseudocercospora ulei GCL012, el agente causal del tizón foliar sudamericano (SALB) en el árbol de caucho natural Hevea brasiliensis: hacia la predicción de componentes moleculares asociados con su patogenicidad y virulencia
title High-quality genome assembly and comparative genomics of Pseudocercospora ulei GCL012, the causal agent of the South American leaf blight (SALB) in natural rubber tree Hevea brasiliensis: Towards the prediction of molecular components associated with its pathogenicity and virulence
spellingShingle High-quality genome assembly and comparative genomics of Pseudocercospora ulei GCL012, the causal agent of the South American leaf blight (SALB) in natural rubber tree Hevea brasiliensis: Towards the prediction of molecular components associated with its pathogenicity and virulence
570 - Biología
Patología vegetal
Hongos fitopatógenos
Microorganismos fitopatógenos
Plant diseases
Phytopathogenic fungi
Micro-organisms, phytopathogenic
Micro-organismes - phytopathogen
Natural rubber
South American Leaf Blight
PacBio
Nanopore
Transposable elements
title_short High-quality genome assembly and comparative genomics of Pseudocercospora ulei GCL012, the causal agent of the South American leaf blight (SALB) in natural rubber tree Hevea brasiliensis: Towards the prediction of molecular components associated with its pathogenicity and virulence
title_full High-quality genome assembly and comparative genomics of Pseudocercospora ulei GCL012, the causal agent of the South American leaf blight (SALB) in natural rubber tree Hevea brasiliensis: Towards the prediction of molecular components associated with its pathogenicity and virulence
title_fullStr High-quality genome assembly and comparative genomics of Pseudocercospora ulei GCL012, the causal agent of the South American leaf blight (SALB) in natural rubber tree Hevea brasiliensis: Towards the prediction of molecular components associated with its pathogenicity and virulence
title_full_unstemmed High-quality genome assembly and comparative genomics of Pseudocercospora ulei GCL012, the causal agent of the South American leaf blight (SALB) in natural rubber tree Hevea brasiliensis: Towards the prediction of molecular components associated with its pathogenicity and virulence
title_sort High-quality genome assembly and comparative genomics of Pseudocercospora ulei GCL012, the causal agent of the South American leaf blight (SALB) in natural rubber tree Hevea brasiliensis: Towards the prediction of molecular components associated with its pathogenicity and virulence
dc.creator.fl_str_mv González Sáyer, Sandra Milena
dc.contributor.advisor.none.fl_str_mv Fabio Ancizar, Aristizabal Gutierrez
Diego Mauricio, Riaño Pachón
dc.contributor.author.none.fl_str_mv González Sáyer, Sandra Milena
dc.contributor.researchgroup.spa.fl_str_mv Bioprocesos y bioprospección - Linea Caucho Natural
Laboratório de Biologia Computacional, Evolutiva e de Sistemas (LabBCES) Centro de Energia Nuclear na Agricultura (CENA)
dc.subject.ddc.spa.fl_str_mv 570 - Biología
topic 570 - Biología
Patología vegetal
Hongos fitopatógenos
Microorganismos fitopatógenos
Plant diseases
Phytopathogenic fungi
Micro-organisms, phytopathogenic
Micro-organismes - phytopathogen
Natural rubber
South American Leaf Blight
PacBio
Nanopore
Transposable elements
dc.subject.lemb.spa.fl_str_mv Patología vegetal
Hongos fitopatógenos
Microorganismos fitopatógenos
dc.subject.lemb.eng.fl_str_mv Plant diseases
Phytopathogenic fungi
Micro-organisms, phytopathogenic
Micro-organismes - phytopathogen
dc.subject.proposal.spa.fl_str_mv Natural rubber
dc.subject.proposal.eng.fl_str_mv South American Leaf Blight
PacBio
Nanopore
Transposable elements
description ilustraciones, gráficas, fotografías a color, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-09T18:34:48Z
dc.date.available.none.fl_str_mv 2021-09-09T18:34:48Z
dc.date.issued.none.fl_str_mv 2021-08-04
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80147
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80147
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv • Akinsanmi, O and Carvalhais L. (2020) Draft Genome of the Macadamia Husk Spot Pathogen, Pseudocercospora macadamiae. Phytopathology. 110:1503-1506 https://doi.org/10.1094/PHYTO-12-19-0460-A • Albera S. (2016). Biotrophic Fungi Infection and Plant Defense Mechanism. Journal of Plant Pathology & Microbiology, 7(9), 1–6. • Alic, A., Ruzafa, D., Dopazo, J., Blanquer, I. (2016). Objective review of de novo stand-alone error correction methods for NGS data. Wiley Interdisciplinary Reviews: Computational Molecular Science, 6(2), 111–146. doi:10.1002/wcms.1239 • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403-410. • Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc • Angelo, S., Yamagishi, B., Cruz, C., Silva, G, & Gasparotto, L. (2020). Differential expression and structural polymorphism in rubber tree genes related to South American leaf blight resistance. Physiological and Molecular Plant Pathology, 110, 101477. doi:10.1016/j.pmpp.2020.101477 • Asai, S., & Shirasu, K. (2015). Plant cells under siege: plant immune system versus pathogen effectors. Current Opinion in Plant Biology, 28, 1–8. doi:10.1016/j.pbi.2015.08.008 • Auyong, S. (2015). The Role of Cutinase and its Impact on Pathogenicity of Colletotrichum truncatum. Journal of Plant Pathology & Microbiology, 06(03). https://doi.org/10.4172/2157-7471.1000259 • Bakhshi, Marzanlou, M., Babai-Ahari, A., Groenewald, J., Crous, P. (2014). Multi-gene analyses of Pseudocercospora spp. from Iran. Phytotaxa 184: 245 – 264 • Ballester, A., Marcet-Houben, M., Levin, E., Sela, N., Selma-Lázaro, C., Carmona, L., Wisniewski, M., Droby, S., González, L., Gabaldón, T. (2015). Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity. Molecular Plant-Microbe Interactions, 28(3), 232–248. doi:10.1094/MPMI-09-14-0261-FI • Bankevich, A., Nurk, S., Antipov, D., Gurevich, A., Dvorkin, M., Kulikov, A. S., Lesin, V., Nikolenko, S., Pham S., Prjibelski A., Pyshkin A., Sirotkin A., Vyahhi N., Tesler G., Alekseyev M. A., Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology • Bao, W., Kojima, K., Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6(1):11. Available from: http://www.mobilednajournal.com/content/6/1/11. • Bayry, A., Guijarro, J., Sunde, M., Latgé, J. (2012) Hydrophobins Unique Fungal In Biological Adhesives Vol. 107, pp. 25–55 • Beacham, G. M., Partlow, E. A., Lange, J. J., & Hollopeter, G. (2018). NECAPs are negative regulators of the AP2 clathrin adaptor complex. ELife, 7. https://doi.org/10.7554/eLife.32242 • Beckerman, L., and Ebbole, D. (1996). MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol. Plant-Microbe Interact. 9:450-456. • Bedre, R., Avila, C., Mandadi, K. (2021). HTSeqQC: A Flexible and One-Step Quality Control Software for High-throughput Sequence Data Analysis. BioRxiv https://doi.org/10.1101/2020.07.23.214536 • Benavidez. T, Jaron. K Schatz. Michael . (2020). GenomeScope 2.0 and Smudgeplot for reference- free profiling of polyploid genomes NATURE COMMUNICATIONS (2020)11:1432:https://doi.org/10.1038/s41467-020-14998-3 • Berlin, K., Koren, S., Chi, X., Drake, J., Landolin, J.,Phillippy, A (2015). Assembling large genomes with single-molecule sequencing and locality-sensitive hashing Nature Biotechnology 33, 623–630 • Bigeard, J., Colcombet, J., Heribert, H. (2015). Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Molecular Plant 8, 521–539 • Blackwell, M. (2011). The Fungi: 1, 2, 3...5.1 million species? American Journal of Botany 98:426-438 • Blango, M., Kniemeyer, O., Brakhage, A., Sheppard, D. (2019). Conidial surface proteins at the interface of fungal infections. PLOS Pathogens, 15(9), e1007939–. doi:10.1371/journal.ppat.1007939 • Blatzer, M., Binder, U., Haas, H. (2011). The metalloreductase FreB is involved in adaptation of Aspergillus fumigatus to iron starvation. , 48(11), 0–1033. doi:10.1016/j.fgb.2011.07.009 • Blin, K., Medema, M., Kazempour, D., Fischbach, M., Breitling, R., Takano, E., et al. (2013). antiSMASH 2.0 a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 41(1), Pages 204-212. • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014 Aug 1;30(15):2114-20. doi: 10.1093/bioinformatics/btu170. • Boller, T., Yang, S. (2009). Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science. May 8; 324(5928): 742–744. • Bolton, M., van Esse, R., Vossen, J., de Jonge, R et al. (2008). The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Molecular Microbiology 69(1), 119–136 • Breen, J., Wicker, T., Kong, X., Zhang, J., Ma, W., Paux, E., et al. (2010). A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block. BMC Plant Biol. 2010;10:98. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/20507561. • Breen J, Wicker T, Kong X, Zhang J, Ma W, Paux E, et al. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block. BMC Plant Biol. 2010;10:98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20507561 • Brown, A., Antoniw, J., & Hammond-Kosack, K. E. (2012). The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis. PLoS ONE, 7(4), e33731. doi:10.1371/journal.pone.0033731 • Buermans, J., & Dunnen, T. (2014). Next generation sequencing technology: Advances and applications. BBA - Molecular Basis of Disease, 1842(10), 1932–1941. • Bushnell, B. (2014). BBMap: A Fast, Accurate, Splice-Aware-aligner. LBNL Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, USA. • Butler, E & Jones, S. (1949) Tomato Leaf Mould, Cladosporium fulvum Cooke. London: Macmillan. • Camargo, A.P., Marin, F.R., Camargo, M.B.P., 2003. Zoneamento Climático da Hevea no Brasil, Documento 24. Embrapa, Campinas, SP, ISSN 0103-78110. • Cantarel, L., Coutinho, M., Rancurel, C., Bernard, T., Lombard,V., Henrissat,B. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res., 37, D233–D238. • Capella, S., Silla, J., Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25(15): Pages 1972- 3. • Casadevall, A., Rosas, L., Nosanchuk, D. (2000). Melanin and virulence in Cryptococcus neoformans. Curr Opin Microbiol. 2000 Aug;3(4):354-8. doi: 10.1016/s1369-5274(00)00103-x. PMID: 10972493. • Casadevall, A. (2007).Determinants of virulence in the pathogenic fungi. Fungal Biol Rev. 2007 November ; 21(4): 130–132. doi:10.1016/j.fbr.2007.02.007. • Castro., E, Sigrist, A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, S., Gasteiger, E et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006;34(Web Server issue):W362-W5. doi: 10.1093/nar/gkl124. PubMed PMID: PMC1538847. • Cayla, V., Petch, D. (1911). La lutte contre les maladies cryptogamiques dans les plantations d'Hévéa Jour, Agro. Trop,. Ann. 11 p 329-335. Review of Petch, Physiology and Diseases of Hevea brasiliensis. London 1911 • Chang, T., Salvucci, A., Crous, P., Stergiopoulos, I. (2016) Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and Increased Virulence on the Banana Host. PLoS Genetic 12(8) • Chee, K.H.; Holliday, P. (1986). Enfermedad suramericana de la hoja del hule (caucho) Hevea. Instituto para la Investigación y Desarrollo del Hule de Malasia, MRRDB. Monografía n° 13. Presentado en la serie técnica n° 37 Avances de la investigación en caucho natural. CONIF. 1997 Santa Fe de Bogotá. • Chee, K. H. (1976). Assessing susceptibility of Hevea clones to Microcyclus ulei. Annals Of Applied Biology, 84, 135-145 • Chen, X., Ebbole, D., Wang, Z. (2015). The exocyst complex: delivery hub for morphogenesis and pathogenesis in filamentous fungi. Current Opinion in Plant Biology, 28(), 48–54. doi:10.1016/j.pbi.2015.09.003 • Chen, Y., Nie, F., Xie, SQ. et al. (2021). Efficient assembly of nanopore reads via highly accurate and intact error correction. Nat Commun 12, 60. https://doi.org/10.1038/s41467-020-20236-7 • Chikhi, R., & Medvedev, P. (2014) Informed and automated k-mer size selection for genome assembly, Bioinformatics, Volume 30, Issue 1, 1 January 2014, Pages 31–37 • Chin, et al. (2013). Non Hybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods. 10(6), 563. • Chinchilla, D., Bauer, Z., Regenass, M., Boller, T. & Felix, G. (2006). The Arabidopsis Receptor Kinase FLS2 Binds flg22 and Determines the Specificity of Flagellin Perception. The Plant Cell Online, 18, 465-476. • Chin et al. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods. 13(12), 1050. • Chisholm, T., Coaker, G., Day, B., Staskawicz, B. (2006). Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803–814. • Choi, J., & Kim, S. (2017). A genome Tree of Life for the Fungi kingdom. Proceedings of the National Academy of Sciences, (), 201711939–. doi:10.1073/pnas.1711939114 • Churngchow, N., Rattarasarn, M. (2001). Biosynthesis of scopoletin in Hevea brasiliensis leaves inoculated with Phytophthora palmivora. , 158(7), 0–882. doi:10.1078/0176-1617-00230 • Collemare, J., Griffiths, S., Iida, Y., Karimi, M., Battaglia, E., Cox, R., & de Wit, P. (2014). Secondary Metabolism and Biotrophic Lifestyle in the Tomato Pathogen Cladosporium fulvum. PLoS ONE, 9(1), e85877. doi:10.1371/journal.pone.0085877 • Compagnon P (1986) In: Maisonneuve GP, Larose (eds) Le caoutchouc naturel. P3 • Compeau, E., Pevzner, A., & Tesler, G. (2011). How to apply de Bruijn graphs to genome assembly. Nature biotechnology, 29(11), 987–991. https://doi.org/10.1038/nbt.2023 • Cornish K, Siler DJ, Grosjean OK, Godman N (1993). Fundamental similarities in rubber particle architecture and function in three evolutionarily divergent plant species. J. Nat. Rubber Res. 8:275-285. • Costa, R., Resende, M., Araujo, AJ., Gonçalves, P., Higa, A. (2000). Selection and genetic gain in rubber tree (Hevea) populations using a mixed mating system. Genet. Mol. Biol. 23(3): 671-679. • Couturier M, Navarro D, Olive C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin JG: Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics 2012, 13:57. • Crescente, M., Zavallo, D., Helguera, M., Vanzetti, S. (2018). MITE Tracker: an accurate approach to identify miniature inverted-repeat transposable elements in large genomes. BMC Bioinformatics. 2018;19(1):348. Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2376-y • Croll, D., & McDonald, B. (2012) The Accessory Genome as a Cradle for Adaptive Evolution in Pathogens. PLoS Pathog 8(4): e1002608. doi:10.1371/ journal.ppat.1002608 • Cross, A.S. (2008). What is a virulence factor? Critical care 12(6): 196. • Crous, W., Braun, U., Hunter, GC., et al. (2013). Phylogenetic lineages in Pseudocercospora. Studies in Mycology 75: 37–114. • Daboussi, J., & Capy, P. (2003). Transposable Elements in Filamentous Fungi. Annual Review of Microbiology, 57(1), 275–299. doi:10.1146/annurev.micro.57.030502.091029 • Damien J. Fleetwood, Anar K. Khan, Richard D. Johnson, Carolyn A. Young, Shipra Mittal, Ruth E. Wrenn, Uljana Hesse, Simon J. Foster, Christopher L. Schardl, Barry Scott, Abundant Degenerate Miniature Inverted-Repeat Transposable Elements in Genomes of Epichloid Fungal Endophytes of Grasses, Genome Biology and Evolution, Volume 3, 2011, Pages 1253–1264, • De Jonge, R., Van Esse, P., Kombrink, A., Shinya, T., Desaki, Y., Bours, R., Van der Krol, S., Shibuya, N., Joosten, J., Thomma, B. (2010). Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants. Science, 329(5994), 953–955. doi:10.1126/science.1190859 • Deshmukh, S., Rai, M. (2005). Biodiversity of fungi: their role in human life. India. Science Pub Inc.https://cast.arizona.edu/mycoherb/arnoldlab/Arnold2005.chapter • Djamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., Osorio, S., Tohge, T., Fernie, A., Feussner, I., Feussner, K., Meinicke, P., Stierhof, Y., Schwarz, H., Macek, B., Mann, Ma., Kahmann, R. (2011). Metabolic priming by a secreted fungal effector. Nature, 478(7369), 395–398. doi:10.1038/nature10454 • Dodds, P & Thrall P. 2009. Recognition events and host-pathogen co-evolution in gene-for-gene resistance to flax rust. FunctionalPlant Biology 36: 395–408. • Doehlemann, G., & Hemetsberger, C. (2013). Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytologist, 198(4), 1001–1016. doi:10.1111/nph.12277 • Doehlemann, H and Hemetsberger, C. (2013) Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytologist 198: 1001–1016 • Dohm, J., Peters, P., Stralis-Pavese, N., Himmelbauer, H. (2020). Benchmarking of long-read correction methods. NAR Genomics and Bioinformatics, 2(2), lqaa037–. doi:10.1093/nargab/lqaa037 • Dong, S., Raffaele, D., Kamoun S. (2015). The two-speed genomes of filamentous pathogens: waltz with plants Current Opinion in Genetics & Development, 35:57–65 • Duplessis, S., Cuomo, A., Lin, Y., Aerts, A., Tisserant, E., Veneault-Fourrey, C., Joly, D. L., Hacquard, S., Amselem, J., Cantarel, B. L., Chiu, R., et al. (2011). Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences, 108(22), 9166–9171. doi:10.1073/pnas.1019315108 • Edathil, T. (1986). South American leaf blight‐A potential threat to the natural rubber industry in Asia and Africa. Tropical Pest Management, 32(4), 296–303. doi:10.1080/09670878609371083 • Eddy, R. (2009). A new generation of homology search tools based on probabilistic inference. Genome Inform., 23, 205–211. • Eid, J. et al. Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323, 133–138 (2009). • Ejigu, F., & Jung, J. (2020). Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing. Biology. 2020; 9(9):295. https://doi.org/10.3390/biology9090295 • Ejigu, G & Jung, J. (2020).Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing. Biology 2020, 9, 295; doi:10.3390/biology9090295 • Emms, D., & Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol, 16, 157. • Engelsdorf, T., Will, C., Hofmann, J., Schmitt,C., Merritt, B., Rieger, L., Frenger, M Marschall, A., Franke, R., Pattathil, R., Voll, L. (2017) Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants. Journal of Experimental Botany, Vol. 68, No. 3 pp. 701–713, 2017 • Epstein, L., & Nicholson, R. (2006). Adhesion and Adhesives of Fungi and Oomycetes. Biological Adhesives (Vol. 107, pp. 25–55). Cham: Springer International Publishing. • Ericsson, O., Hawksworth, D. (1993). Outline of the ascomycetes-1993. Syst Ascomycetum 12: 51–257 • Esse, H. P. van, Bolton, M. D., Stergiopoulos, I., Wit, P. J. G. M. de, & Thomma, B. P. H. J. (2007, agosto 8). The Chitin-Binding Cladosporium fulvum Effector Protein Avr4 Is a Virulence Factor (world) [Research-article]. Http://Dx.Doi.Org/10.1094/MPMI-20-9-1092; The American Phytopathological Society. https://doi.org/10.1094/MPMI-20-9-1092 • Feschotte, C, Swamy, L, Wessler. (2003). SR: Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with Stowaway MITEs. Genetics 2003,163:747-758. • Feschotte, C., & Mouchès, C. (2000) Evidence that a Family of Miniature Inverted-Repeat Transposable Elements (MITEs) from the Arabidopsis thaliana Genome Has Arisen from a pogo-like DNA Transposon, Molecular Biology and Evolution, Volume 17, Issue 5, May 2000, Pages 730–737, https://doi.org/10.1093/oxfordjournals.molbev.a026351 • Feschotte, N., Zhang, X., & Wessler, R. (2004). Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Current Opinion in Plant Biology, 7(2), 115–119. doi:10.1016/j.pbi.2004.01.004 • Feschotte C, Mouche` s C: Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol 2000, 17:730-737. • Fischer, M. (2003). The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic Acids Research, 31(1), 319–321. doi:10.1093/nar/gkg015 • Flor, H. H. (1971). Current Status of the Gene-For-Gene Concept. Annual Review of Phytopathology, 9, 275- 296. • Fouché, S., Plissonneau, C., & Croll, D. (2018). The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Current Opinion in Microbiology, 46, 34–42. doi:10.1016/j.mib.2018.01.020 • Francois Bucchini, Andrea Del Cortona, Łukasz Kreft, Alexander Botzki, Michiel Van Bel, Klaas Vandepoele. (2020). TRAPID 2.0: a web application for taxonomic and functional analysis of de novo transcriptomes, doi: https://doi.org/10.1101/2020.10.19.345835 • Frantzeskakis, L., Kracher, B., Kusch, S. et al. (2018). Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 19, 381 (2018). https://doi.org/10.1186/s12864-018-4750-6 • Freeman, B.C. and G.A. Beattie. (2008). An Overview of Plant Defenses against Pathogens and Herbivores. The Plant Health Instructor. DOI: 10.1094/PHI-I-2008-0226-01 • Frey, K., & Pucker, B. (2020). Animal, Fungi, and Plant Genome Sequences Harbor Different Non-Canonical Splice Sites. Cells, 9(2), 458. doi:10.3390/cells902045 • Furtado E.L., de Jesus Junior W.C., Moraes W.B. (2020) Forest Diseases in Brazil: Status and Management. In: Estay S. (eds) Forest Pest and Disease Management in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-030-35143-4_14 • Galagan, J. (2005). Genomics of the fungal kingdom: Insights into eukaryotic biology. Genome Research, 15(12), 1620–1631. doi:10.1101/gr.3767105 • Gallone, B., Steensels, J., Prahl, T., Soriaga, L., Saels, V., Herrera‐Malaver, B.,Verstrepen, K. J. (2016). Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell, 166, 1397–1410.e16. https://doi.org/10.1016/j.cell.2016.08.020 • Gao, D., Li, Y., Do, K., Abernathy, B., Jackson, A. (2016). Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes. Genome Biol. 2016;17(1):7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26781660 • Garcia, D., Sanier, C., Macheix, J., D'Auzac, J. (1995). Accumulation of scopoletin in Hevea brasiliensis infected by Microcyclus ulei (P. Henn.) V. ARX and evaluation of its fungitoxicity for three leaf pathogens of rubber tree. , 47(4), 0–223. doi:10.1006/pmpp.1995.1053 • García, I., Aristizábal, F., Montoya, D. A review of the Microcyclus ulei Ascomycetes fungus causative agent of South American rubber-leaf blight. (2006). Rev. Colomb. Biotecnol. Vol. VIII N° 2 Diciembre 2006 50-59 • García, R. I. A. (2012). Estudio de la interacción planta – patógeno en clones comerciales de Hevea brasiliensis presentes en jardines clonales de Colombia, susceptibles y resistentes al mal suramericano de la hoja del caucho [Thesis -Doctorado]. Universidad Nacional de Colombia. • Garnica, D., Nemri, A., Upadhyaya, N., Rathjen, J., Dodds, P. (2014). The ins and outs of rust haustoria. PLoS Pathogens 10: e1004329 • Gasparatto, L., Figueiredo, A., Rezende, J.C., Ferreira, F.A. (1997). Doenças da Seringueira no Brasil. Empresa Brasilera de Pesquisa Agropecuarias. 39-41. EMBRAPA. • Gasparotto, L., Lieberei, R., Trindade, D. (1984). In vitro conidia germination of Microcyclus ulei and its sensitivity to fungicides. Fitopatologia Brasileira. 9: 505-511. • Geoghegan, I., Steinberg, G., Gurr, S. (2017) The Role of the Fungal Cell Wall in the Infection of Plants, Undefine. • Giraldo, M. C., Dagdas, Y. F., Gupta, Y. K., Mentlak, T. A., Yi, M., Martinez-Rocha, A. L., ... & Valent, B. (2013). Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature communications, 4(1), 1-12. • Gomez, C., Murua, A., Garrido, M., Gonzalez, P., Mongue, R., Barber, D., Palacios, L., & Diáz, A. (2014). Alt a 1 from Alternaria interacts with PR5 thaumatin-like proteins. FEBS Letters, 588(9), 1501-1508. https://doi.org/10.1016/j.febslet.2014.02.044 • Gonçalves, P., Ortolani, A., Cardoso, M. (1997). Melhoramento genético da seringueira: uma revisão. Instituto Agronômico, Campinas (Brazil): Instituto Agronômico, Campinas (Brazil);. • Gonzalez, S., Oggenffus, U., García, I., Aristizábal, F., Croll, D., & Riaño-Pachon, D. M. (2020, julio 13). The Pseudocercospora genome assembly reveals a significant size expansion mediated by specific transposable elements. ISBM-2020. • Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next- generation sequencing technologies. Nature Publishing Group, 17(6), 333–351. • Goodwin, S. B., Ben M’Barek, S., Dhillon, B., Wittenberg, A. H. J., Crane, C. F., Hane, J. K., Foster, A. J., Van der Lee, T. A. J., Grimwood, J., Aerts. Et al. (2011). Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 7:e1002070. • Govers, F., & Gijzen, M. (2006). Phytophthora Genomics: The Plant Destroyers' Genome Decoded. Molecular Plant-Microbe Interactions, 19(12), 1295–1301. • Graovac, M. & Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc. Bioinformatics 25, 4.10.1–4.10.14. • Grigoriev, IV., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42 (Database issue): D699–704. • Gui, J., Zhang, Q., Zhang,D., Zhou, L., Short, G., Wang, J., Ma, F., Li, G., Kong, Q., Wang, L., Wang, D., Li, Y., Subbarao, V., Chen, Y., & Dai, F. (2017). A Verticillium dahliae Extracellular Cutinase Modulates Plant Immune Responses. Molecular Plant-Microbe Interactions. https://doi.org/10.1094/MPMI-06-17-0136-R • Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. doi:10.1093/bioinformatics/btt086 • Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England), 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086 • Guyot, J., & Le Guen, V. (2017). A review of a century of studies on South American Leaf Blight of the rubber tree. Plant Disease, PDIS-04-17-0592-FE–. doi:10.1094/PDIS-04-17-0592-FE • Haas, B., Papanicolaou, A., Yassour, M. et al. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8, 1494–1512 (2013). https://doi.org/10.1038/nprot.2013.084 • Haas, B. J., Zeng, Q., Pearson, M. D., Cuomo, C. A., & Wortman, J. R. (2011). Approaches to Fungal Genome Annotation. Mycology, 2(3), 118–141. https://doi.org/10.1080/21501203.2011.606851 • Haas, H., Eisendle, M., Turgeon, G. (2008). Siderophores in Fungal Physiology and Virulence. , 46(1), 149–187. doi:10.1146/annurev.phyto.45.062806.094338 • Haas et al. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology 2008, 9:R7doi:10.1186/gb-2008-9-1-r7. • Haft, H., Selengut, D., Richter, A., Harkins, D., Basu, K., Beck, E. (2013). TIGRFAMs and Genome Properties in 2013. Nucleic Acids Res. 2013 Jan;41(Database issue):D387-95. doi: 10.1093/nar/gks1234. Epub 2012 Nov 28. PMID: 23197656; PMCID: PMC3531188. • Hall, B., DeRego, T., & Geib, S. (2014). GAG: the Genome Annotation Generator (Version 1.0). Available from http://genomeannotation.github.io/GAG. • Han, J., Pluhackova, K., & Böckmann, R. A. (2017). The Multifaceted Role of SNARE Proteins in Membrane Fusion. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00005 • Han, J., Pluhackova, K., & Böckmann, R. A. (2017). The Multifaceted Role of SNARE Proteins in Membrane Fusion. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00005 • Hane, J., Paxman, J., Jones, D., Oliver, R & de Wit, Pierre. (2020) “CATAStrophy,” a Genome-Informed Trophic Classification of Filamentous Plant Pathogens – How Many Different Types of Filamentous Plant Pathogens Are There?. Frontiers in Microbiology (10): 3088.p.1-12 • Haridas S, Albert R, Binder M, et al. (2020). 101 Dothideomycetes Genomes: a test case for predicting lifestyles and emergence of pathogens. Studies in Mycology. S0166061620300038–. doi:10.1016/j.simyco.2020.01.003 • Hashim, I., Chee, K., Dunkan, E. (1978) Reaction of Hevea Leaves to Infection with Microcyclus ulei. Rubb. Res. Imt. Malaysia, 26(2), 67-7 • Hashim, I., Chee, K. H., & Duncan, E. J. (1978). Reaction of Hevea leaves to infection with Microcyclus ulei. 26(2), 67-75. • Hayashi, Y. Production of natural rubber from Para rubber tree. (2009) Plant Biotechnology 26, 67–70 • Heng, Li. (2018) Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics, Volume 34, Issue 18, 15 September 2018, Pages 3094–3100, https://doi.org/10.1093/bioinformatics/bty191 • Hennings P (1904) Uber die auf Hevea –arten bisher beobachteten parasitischen pilze. Notizbl bot Gart Mus Berl 4: 133–139. • Hernández, M., Pérez, L., Niño, G., & Mora, M. (2017). Fungal Strategies to Evade the Host Immune Recognition. Journal of fungi (Basel, Switzerland), 3(4), 51. https://doi.org/10.3390/jof3040051 • Hoff, K., & Stanke, M. (2015). Current methods for automated annotation of protein-coding genes. Current Opinion in Insect Science, 7, 8–14. doi:10.1016/j.cois.2015.02.008 • Hoff, K.J., Lange, S., Lomsadze, A., Borodovsky, M., Stanke, M. 2015. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32: 767–769. • Holloway, P. (1982). Structure and histochemistry of plant cuticular membranes: An overview. Pages 1-32 in: The Plant Cuticle. D. F. Cutler, K. L. Alvin. and C. E. Price, eds. Academic Press, New York. • Hora, D., de Macedo, M., Barreto, W., Evans, C., Mattos, C., Maffia, A., & Mizubuti, E. S. G. (2014). Erasing the Past: A New Identity for the Damoclean Pathogen Causing South American Leaf Blight of Rubber. PLoS ONE, 9(8), e104750–12. • Horbachab, R., Navarro, A., Wolfgang, B., Deising, B. (2011). When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. Journal of Plant Physiology 168 (2011) 51–62 • Horton, P., Park, K., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C., Nakai, K. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res. Jul; 35(Web Server issue): Pages 585–587. • Houston, K., Tucker, M., Chowdhury, J., Shirley, N., Little, A. (2016). The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions. Frontiers in Plant Science, 7(), –. doi:10.3389/fpls.2016.00984 • Howard, R., Ferrari, M., Roach, D., Money, N. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings of the National Academy of Sciences, USA 88: 11281– 11284. • Hunter S. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014 May 1;30(9):1236-40. doi: 10.1093/bioinformatics/btu031. Epub 2014 Jan 21. PMID: 24451626; PMCID: PMC3998142. • Hurtado, U., García, IA., Restrepo, S., Aristizábal, F., Montoya D. (2015) Assembly and Analysis of Differential Transcriptome Responses of Hevea brasiliensis on Interaction with Microcyclus ulei. PLoS ONE 10(8): e0134837. doi:10.1371/journal. pone.0134837 • International Rubber Study Group (IRSG). Rubber Statistical Bulletin. Sri Lanka; 2019. • Isaza, R., Diaz, C., Dhillon, B., Aerts, A., Carlier, J., Crane, CF. (2016) Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genetic 12(8) 1-36 • Jacobson, E. (2000) pathogenic roles for fungal melanins. clinical microbiology p. 708–717 vol. 13, no. 4 0893-8512 • Jaswal, R., Kiran, K., Rajarammohan, S., Dubey, H., Singh, P. K., Sharma, Y., Deshmukh, R., Sonah, H., Gupta, N., & Sharma, T. R. (2020). Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiological Research, 241, 126567. https://doi.org/10.1016/j.micres.2020.126567 • Jiang N., Feschotte, C., Zhang, X., Wessler, S. (2004). Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). , 7(2), 115–119. doi:10.1016/j.pbi.2004.01.004 • Johnson, L. (2008). Iron and sidero
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 164 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Biotecnología
dc.publisher.department.spa.fl_str_mv Instituto de Biotecnología (IBUN)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80147/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80147/4/Sandra_Gonzalez_Sayer_PhD_final_version_2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80147/5/Sandra_Gonzalez_Sayer_PhD_final_version_2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
1f872a328eb83b25e7ee9e3708e328eb
bfdefeb11702cef407554ae371a60ed9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090054352502784
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fabio Ancizar, Aristizabal Gutierrez99ad53acba2927fcd045f4cf8b415c1fDiego Mauricio, Riaño Pachón68a688b0bcf35111a273332db619bc3eGonzález Sáyer, Sandra Milenabf59611e315912569a47430ad847d994Bioprocesos y bioprospección - Linea Caucho NaturalLaboratório de Biologia Computacional, Evolutiva e de Sistemas (LabBCES) Centro de Energia Nuclear na Agricultura (CENA)2021-09-09T18:34:48Z2021-09-09T18:34:48Z2021-08-04https://repositorio.unal.edu.co/handle/unal/80147Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, fotografías a color, tablasPseudocercospora ulei is the causal agent of South American Leaf Blight (SALB), the main threat of Hevea brasiliensis an Amazonia native species that represent the commercial source of natural rubber. H. brasiliensis crop is an important economical alternative to Latino american countries however, SALB disease control strategies are inefficient as a reason for the difficulty of traditional plant breeding in this perennial species and also for the lack of genetic data about this fungus. Our main goal was to understand the molecular mechanisms that govern the basic biology and pathogenicity process of this fungus. For that, we sequenced, assembled, and annotated its genome through a whole-genome shotgun sequencing using long and short reads. We built the biggest genome of the Mycospharelaceae family with 98.3 Mbps comprising 214 scaffolds with an N50 value of 2.8 Mbps and a BUSCOs completeness of 97.5%. The P. ulei genome harbour 12’745 gene models form which 756 were classed as secreted proteins and 113 were as effectors candidates including 54 presenting potential activity in the host apoplast. P.ulei exhibits a remarkably reduced content of CAZymes and secondary metabolism genes clusters with 216 and fourteen assignments respectively. This genome bears an exceptional repetitive content, 80% of the genome size is occupied by repetitive elements mainly classified in Class I revealing a genome size expansion via repetitive elements which could play an essential role in the environment fungal adaptation and the pathogenicity mechanisms evolution.Pseudocercospora ulei es el agente causal del mal suramericano de las hojas del caucho (SALB), la principal amenaza de Hevea brasiliensis, una especie nativa de la Amazonía que representa la fuente comercial de caucho natural. El cultivo de H. brasiliensis es una alternativa económica importante para los países latinoamericanos; sin embargo, las estrategias de control de la enfermedad SALB son ineficientes debido a la dificultad del fitomejoramiento tradicional en esta especie perenne y también a la falta de datos genéticos sobre este hongo. Nuestro principal objetivo fue comprender los mecanismos moleculares que gobiernan la biología básica y el proceso de patogenicidad de P. ulei. Para eso, secuenciamos, ensamblamos y anotamos su genoma a través de una secuenciación de escopeta de genoma completo usando lecturas largas y cortas. Construimos el genoma más grande de la familia Mycospharelaceae con 98,3 Mbps que comprende 214 andamios con un valor N50 de 2,8 Mbps y una integridad BUSCO del 97,5%. El genoma de P. ulei alberga 12'745 modelos de genes de los cuales 756 se clasificaron como proteínas secretadas y 113 fueron candidatos a efectores, incluidos 54 que presentan actividad potencial en el apoplasto del huésped. P. ulei exhibe un contenido notablemente reducido de CAZymes y de agrupaciones de genes asociados a metabolismo secundario con 216 y catorce asignaciones respectivamente. Este genoma tiene un contenido repetitivo excepcional, el 80% del tamaño del genoma está ocupado por elementos repetitivos clasificados principalmente en Clase I revelando una expansión del tamaño del genoma a través de elementos repetitivos que podrían jugar un papel esencial en la adaptación fúngica ambiental y la evolución de los mecanismos de patogenicidad. (Texto tomado de la fuente)DoctoradoDoctor en BiotecnologíaGenómica comparativaBiología computacionalMicrobiologíaxx, 164 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en BiotecnologíaInstituto de Biotecnología (IBUN)Facultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - BiologíaPatología vegetalHongos fitopatógenosMicroorganismos fitopatógenosPlant diseasesPhytopathogenic fungiMicro-organisms, phytopathogenicMicro-organismes - phytopathogenNatural rubberSouth American Leaf BlightPacBioNanoporeTransposable elementsHigh-quality genome assembly and comparative genomics of Pseudocercospora ulei GCL012, the causal agent of the South American leaf blight (SALB) in natural rubber tree Hevea brasiliensis: Towards the prediction of molecular components associated with its pathogenicity and virulenceEnsamblaje del genoma de alta calidad y genómica comparativa de Pseudocercospora ulei GCL012, el agente causal del tizón foliar sudamericano (SALB) en el árbol de caucho natural Hevea brasiliensis: hacia la predicción de componentes moleculares asociados con su patogenicidad y virulenciaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD• Akinsanmi, O and Carvalhais L. (2020) Draft Genome of the Macadamia Husk Spot Pathogen, Pseudocercospora macadamiae. Phytopathology. 110:1503-1506 https://doi.org/10.1094/PHYTO-12-19-0460-A • Albera S. (2016). Biotrophic Fungi Infection and Plant Defense Mechanism. Journal of Plant Pathology & Microbiology, 7(9), 1–6. • Alic, A., Ruzafa, D., Dopazo, J., Blanquer, I. (2016). Objective review of de novo stand-alone error correction methods for NGS data. Wiley Interdisciplinary Reviews: Computational Molecular Science, 6(2), 111–146. doi:10.1002/wcms.1239 • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403-410. • Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc • Angelo, S., Yamagishi, B., Cruz, C., Silva, G, & Gasparotto, L. (2020). Differential expression and structural polymorphism in rubber tree genes related to South American leaf blight resistance. Physiological and Molecular Plant Pathology, 110, 101477. doi:10.1016/j.pmpp.2020.101477 • Asai, S., & Shirasu, K. (2015). Plant cells under siege: plant immune system versus pathogen effectors. Current Opinion in Plant Biology, 28, 1–8. doi:10.1016/j.pbi.2015.08.008 • Auyong, S. (2015). The Role of Cutinase and its Impact on Pathogenicity of Colletotrichum truncatum. Journal of Plant Pathology & Microbiology, 06(03). https://doi.org/10.4172/2157-7471.1000259 • Bakhshi, Marzanlou, M., Babai-Ahari, A., Groenewald, J., Crous, P. (2014). Multi-gene analyses of Pseudocercospora spp. from Iran. Phytotaxa 184: 245 – 264 • Ballester, A., Marcet-Houben, M., Levin, E., Sela, N., Selma-Lázaro, C., Carmona, L., Wisniewski, M., Droby, S., González, L., Gabaldón, T. (2015). Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity. Molecular Plant-Microbe Interactions, 28(3), 232–248. doi:10.1094/MPMI-09-14-0261-FI • Bankevich, A., Nurk, S., Antipov, D., Gurevich, A., Dvorkin, M., Kulikov, A. S., Lesin, V., Nikolenko, S., Pham S., Prjibelski A., Pyshkin A., Sirotkin A., Vyahhi N., Tesler G., Alekseyev M. A., Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology • Bao, W., Kojima, K., Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6(1):11. Available from: http://www.mobilednajournal.com/content/6/1/11. • Bayry, A., Guijarro, J., Sunde, M., Latgé, J. (2012) Hydrophobins Unique Fungal In Biological Adhesives Vol. 107, pp. 25–55 • Beacham, G. M., Partlow, E. A., Lange, J. J., & Hollopeter, G. (2018). NECAPs are negative regulators of the AP2 clathrin adaptor complex. ELife, 7. https://doi.org/10.7554/eLife.32242 • Beckerman, L., and Ebbole, D. (1996). MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol. Plant-Microbe Interact. 9:450-456. • Bedre, R., Avila, C., Mandadi, K. (2021). HTSeqQC: A Flexible and One-Step Quality Control Software for High-throughput Sequence Data Analysis. BioRxiv https://doi.org/10.1101/2020.07.23.214536 • Benavidez. T, Jaron. K Schatz. Michael . (2020). GenomeScope 2.0 and Smudgeplot for reference- free profiling of polyploid genomes NATURE COMMUNICATIONS (2020)11:1432:https://doi.org/10.1038/s41467-020-14998-3 • Berlin, K., Koren, S., Chi, X., Drake, J., Landolin, J.,Phillippy, A (2015). Assembling large genomes with single-molecule sequencing and locality-sensitive hashing Nature Biotechnology 33, 623–630 • Bigeard, J., Colcombet, J., Heribert, H. (2015). Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Molecular Plant 8, 521–539 • Blackwell, M. (2011). The Fungi: 1, 2, 3...5.1 million species? American Journal of Botany 98:426-438 • Blango, M., Kniemeyer, O., Brakhage, A., Sheppard, D. (2019). Conidial surface proteins at the interface of fungal infections. PLOS Pathogens, 15(9), e1007939–. doi:10.1371/journal.ppat.1007939 • Blatzer, M., Binder, U., Haas, H. (2011). The metalloreductase FreB is involved in adaptation of Aspergillus fumigatus to iron starvation. , 48(11), 0–1033. doi:10.1016/j.fgb.2011.07.009 • Blin, K., Medema, M., Kazempour, D., Fischbach, M., Breitling, R., Takano, E., et al. (2013). antiSMASH 2.0 a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 41(1), Pages 204-212. • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014 Aug 1;30(15):2114-20. doi: 10.1093/bioinformatics/btu170. • Boller, T., Yang, S. (2009). Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science. May 8; 324(5928): 742–744. • Bolton, M., van Esse, R., Vossen, J., de Jonge, R et al. (2008). The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Molecular Microbiology 69(1), 119–136 • Breen, J., Wicker, T., Kong, X., Zhang, J., Ma, W., Paux, E., et al. (2010). A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block. BMC Plant Biol. 2010;10:98. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/20507561. • Breen J, Wicker T, Kong X, Zhang J, Ma W, Paux E, et al. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block. BMC Plant Biol. 2010;10:98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20507561 • Brown, A., Antoniw, J., & Hammond-Kosack, K. E. (2012). The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis. PLoS ONE, 7(4), e33731. doi:10.1371/journal.pone.0033731 • Buermans, J., & Dunnen, T. (2014). Next generation sequencing technology: Advances and applications. BBA - Molecular Basis of Disease, 1842(10), 1932–1941. • Bushnell, B. (2014). BBMap: A Fast, Accurate, Splice-Aware-aligner. LBNL Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, USA. • Butler, E & Jones, S. (1949) Tomato Leaf Mould, Cladosporium fulvum Cooke. London: Macmillan. • Camargo, A.P., Marin, F.R., Camargo, M.B.P., 2003. Zoneamento Climático da Hevea no Brasil, Documento 24. Embrapa, Campinas, SP, ISSN 0103-78110. • Cantarel, L., Coutinho, M., Rancurel, C., Bernard, T., Lombard,V., Henrissat,B. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res., 37, D233–D238. • Capella, S., Silla, J., Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25(15): Pages 1972- 3. • Casadevall, A., Rosas, L., Nosanchuk, D. (2000). Melanin and virulence in Cryptococcus neoformans. Curr Opin Microbiol. 2000 Aug;3(4):354-8. doi: 10.1016/s1369-5274(00)00103-x. PMID: 10972493. • Casadevall, A. (2007).Determinants of virulence in the pathogenic fungi. Fungal Biol Rev. 2007 November ; 21(4): 130–132. doi:10.1016/j.fbr.2007.02.007. • Castro., E, Sigrist, A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, S., Gasteiger, E et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006;34(Web Server issue):W362-W5. doi: 10.1093/nar/gkl124. PubMed PMID: PMC1538847. • Cayla, V., Petch, D. (1911). La lutte contre les maladies cryptogamiques dans les plantations d'Hévéa Jour, Agro. Trop,. Ann. 11 p 329-335. Review of Petch, Physiology and Diseases of Hevea brasiliensis. London 1911 • Chang, T., Salvucci, A., Crous, P., Stergiopoulos, I. (2016) Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and Increased Virulence on the Banana Host. PLoS Genetic 12(8) • Chee, K.H.; Holliday, P. (1986). Enfermedad suramericana de la hoja del hule (caucho) Hevea. Instituto para la Investigación y Desarrollo del Hule de Malasia, MRRDB. Monografía n° 13. Presentado en la serie técnica n° 37 Avances de la investigación en caucho natural. CONIF. 1997 Santa Fe de Bogotá. • Chee, K. H. (1976). Assessing susceptibility of Hevea clones to Microcyclus ulei. Annals Of Applied Biology, 84, 135-145 • Chen, X., Ebbole, D., Wang, Z. (2015). The exocyst complex: delivery hub for morphogenesis and pathogenesis in filamentous fungi. Current Opinion in Plant Biology, 28(), 48–54. doi:10.1016/j.pbi.2015.09.003 • Chen, Y., Nie, F., Xie, SQ. et al. (2021). Efficient assembly of nanopore reads via highly accurate and intact error correction. Nat Commun 12, 60. https://doi.org/10.1038/s41467-020-20236-7 • Chikhi, R., & Medvedev, P. (2014) Informed and automated k-mer size selection for genome assembly, Bioinformatics, Volume 30, Issue 1, 1 January 2014, Pages 31–37 • Chin, et al. (2013). Non Hybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods. 10(6), 563. • Chinchilla, D., Bauer, Z., Regenass, M., Boller, T. & Felix, G. (2006). The Arabidopsis Receptor Kinase FLS2 Binds flg22 and Determines the Specificity of Flagellin Perception. The Plant Cell Online, 18, 465-476. • Chin et al. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods. 13(12), 1050. • Chisholm, T., Coaker, G., Day, B., Staskawicz, B. (2006). Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803–814. • Choi, J., & Kim, S. (2017). A genome Tree of Life for the Fungi kingdom. Proceedings of the National Academy of Sciences, (), 201711939–. doi:10.1073/pnas.1711939114 • Churngchow, N., Rattarasarn, M. (2001). Biosynthesis of scopoletin in Hevea brasiliensis leaves inoculated with Phytophthora palmivora. , 158(7), 0–882. doi:10.1078/0176-1617-00230 • Collemare, J., Griffiths, S., Iida, Y., Karimi, M., Battaglia, E., Cox, R., & de Wit, P. (2014). Secondary Metabolism and Biotrophic Lifestyle in the Tomato Pathogen Cladosporium fulvum. PLoS ONE, 9(1), e85877. doi:10.1371/journal.pone.0085877 • Compagnon P (1986) In: Maisonneuve GP, Larose (eds) Le caoutchouc naturel. P3 • Compeau, E., Pevzner, A., & Tesler, G. (2011). How to apply de Bruijn graphs to genome assembly. Nature biotechnology, 29(11), 987–991. https://doi.org/10.1038/nbt.2023 • Cornish K, Siler DJ, Grosjean OK, Godman N (1993). Fundamental similarities in rubber particle architecture and function in three evolutionarily divergent plant species. J. Nat. Rubber Res. 8:275-285. • Costa, R., Resende, M., Araujo, AJ., Gonçalves, P., Higa, A. (2000). Selection and genetic gain in rubber tree (Hevea) populations using a mixed mating system. Genet. Mol. Biol. 23(3): 671-679. • Couturier M, Navarro D, Olive C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin JG: Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics 2012, 13:57. • Crescente, M., Zavallo, D., Helguera, M., Vanzetti, S. (2018). MITE Tracker: an accurate approach to identify miniature inverted-repeat transposable elements in large genomes. BMC Bioinformatics. 2018;19(1):348. Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2376-y • Croll, D., & McDonald, B. (2012) The Accessory Genome as a Cradle for Adaptive Evolution in Pathogens. PLoS Pathog 8(4): e1002608. doi:10.1371/ journal.ppat.1002608 • Cross, A.S. (2008). What is a virulence factor? Critical care 12(6): 196. • Crous, W., Braun, U., Hunter, GC., et al. (2013). Phylogenetic lineages in Pseudocercospora. Studies in Mycology 75: 37–114. • Daboussi, J., & Capy, P. (2003). Transposable Elements in Filamentous Fungi. Annual Review of Microbiology, 57(1), 275–299. doi:10.1146/annurev.micro.57.030502.091029 • Damien J. Fleetwood, Anar K. Khan, Richard D. Johnson, Carolyn A. Young, Shipra Mittal, Ruth E. Wrenn, Uljana Hesse, Simon J. Foster, Christopher L. Schardl, Barry Scott, Abundant Degenerate Miniature Inverted-Repeat Transposable Elements in Genomes of Epichloid Fungal Endophytes of Grasses, Genome Biology and Evolution, Volume 3, 2011, Pages 1253–1264, • De Jonge, R., Van Esse, P., Kombrink, A., Shinya, T., Desaki, Y., Bours, R., Van der Krol, S., Shibuya, N., Joosten, J., Thomma, B. (2010). Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants. Science, 329(5994), 953–955. doi:10.1126/science.1190859 • Deshmukh, S., Rai, M. (2005). Biodiversity of fungi: their role in human life. India. Science Pub Inc.https://cast.arizona.edu/mycoherb/arnoldlab/Arnold2005.chapter • Djamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., Osorio, S., Tohge, T., Fernie, A., Feussner, I., Feussner, K., Meinicke, P., Stierhof, Y., Schwarz, H., Macek, B., Mann, Ma., Kahmann, R. (2011). Metabolic priming by a secreted fungal effector. Nature, 478(7369), 395–398. doi:10.1038/nature10454 • Dodds, P & Thrall P. 2009. Recognition events and host-pathogen co-evolution in gene-for-gene resistance to flax rust. FunctionalPlant Biology 36: 395–408. • Doehlemann, G., & Hemetsberger, C. (2013). Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytologist, 198(4), 1001–1016. doi:10.1111/nph.12277 • Doehlemann, H and Hemetsberger, C. (2013) Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytologist 198: 1001–1016 • Dohm, J., Peters, P., Stralis-Pavese, N., Himmelbauer, H. (2020). Benchmarking of long-read correction methods. NAR Genomics and Bioinformatics, 2(2), lqaa037–. doi:10.1093/nargab/lqaa037 • Dong, S., Raffaele, D., Kamoun S. (2015). The two-speed genomes of filamentous pathogens: waltz with plants Current Opinion in Genetics & Development, 35:57–65 • Duplessis, S., Cuomo, A., Lin, Y., Aerts, A., Tisserant, E., Veneault-Fourrey, C., Joly, D. L., Hacquard, S., Amselem, J., Cantarel, B. L., Chiu, R., et al. (2011). Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences, 108(22), 9166–9171. doi:10.1073/pnas.1019315108 • Edathil, T. (1986). South American leaf blight‐A potential threat to the natural rubber industry in Asia and Africa. Tropical Pest Management, 32(4), 296–303. doi:10.1080/09670878609371083 • Eddy, R. (2009). A new generation of homology search tools based on probabilistic inference. Genome Inform., 23, 205–211. • Eid, J. et al. Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323, 133–138 (2009). • Ejigu, F., & Jung, J. (2020). Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing. Biology. 2020; 9(9):295. https://doi.org/10.3390/biology9090295 • Ejigu, G & Jung, J. (2020).Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing. Biology 2020, 9, 295; doi:10.3390/biology9090295 • Emms, D., & Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol, 16, 157. • Engelsdorf, T., Will, C., Hofmann, J., Schmitt,C., Merritt, B., Rieger, L., Frenger, M Marschall, A., Franke, R., Pattathil, R., Voll, L. (2017) Cell wall composition and penetration resistance against the fungal pathogen Colletotrichum higginsianum are affected by impaired starch turnover in Arabidopsis mutants. Journal of Experimental Botany, Vol. 68, No. 3 pp. 701–713, 2017 • Epstein, L., & Nicholson, R. (2006). Adhesion and Adhesives of Fungi and Oomycetes. Biological Adhesives (Vol. 107, pp. 25–55). Cham: Springer International Publishing. • Ericsson, O., Hawksworth, D. (1993). Outline of the ascomycetes-1993. Syst Ascomycetum 12: 51–257 • Esse, H. P. van, Bolton, M. D., Stergiopoulos, I., Wit, P. J. G. M. de, & Thomma, B. P. H. J. (2007, agosto 8). The Chitin-Binding Cladosporium fulvum Effector Protein Avr4 Is a Virulence Factor (world) [Research-article]. Http://Dx.Doi.Org/10.1094/MPMI-20-9-1092; The American Phytopathological Society. https://doi.org/10.1094/MPMI-20-9-1092 • Feschotte, C, Swamy, L, Wessler. (2003). SR: Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with Stowaway MITEs. Genetics 2003,163:747-758. • Feschotte, C., & Mouchès, C. (2000) Evidence that a Family of Miniature Inverted-Repeat Transposable Elements (MITEs) from the Arabidopsis thaliana Genome Has Arisen from a pogo-like DNA Transposon, Molecular Biology and Evolution, Volume 17, Issue 5, May 2000, Pages 730–737, https://doi.org/10.1093/oxfordjournals.molbev.a026351 • Feschotte, N., Zhang, X., & Wessler, R. (2004). Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Current Opinion in Plant Biology, 7(2), 115–119. doi:10.1016/j.pbi.2004.01.004 • Feschotte C, Mouche` s C: Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol 2000, 17:730-737. • Fischer, M. (2003). The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic Acids Research, 31(1), 319–321. doi:10.1093/nar/gkg015 • Flor, H. H. (1971). Current Status of the Gene-For-Gene Concept. Annual Review of Phytopathology, 9, 275- 296. • Fouché, S., Plissonneau, C., & Croll, D. (2018). The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Current Opinion in Microbiology, 46, 34–42. doi:10.1016/j.mib.2018.01.020 • Francois Bucchini, Andrea Del Cortona, Łukasz Kreft, Alexander Botzki, Michiel Van Bel, Klaas Vandepoele. (2020). TRAPID 2.0: a web application for taxonomic and functional analysis of de novo transcriptomes, doi: https://doi.org/10.1101/2020.10.19.345835 • Frantzeskakis, L., Kracher, B., Kusch, S. et al. (2018). Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 19, 381 (2018). https://doi.org/10.1186/s12864-018-4750-6 • Freeman, B.C. and G.A. Beattie. (2008). An Overview of Plant Defenses against Pathogens and Herbivores. The Plant Health Instructor. DOI: 10.1094/PHI-I-2008-0226-01 • Frey, K., & Pucker, B. (2020). Animal, Fungi, and Plant Genome Sequences Harbor Different Non-Canonical Splice Sites. Cells, 9(2), 458. doi:10.3390/cells902045 • Furtado E.L., de Jesus Junior W.C., Moraes W.B. (2020) Forest Diseases in Brazil: Status and Management. In: Estay S. (eds) Forest Pest and Disease Management in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-030-35143-4_14 • Galagan, J. (2005). Genomics of the fungal kingdom: Insights into eukaryotic biology. Genome Research, 15(12), 1620–1631. doi:10.1101/gr.3767105 • Gallone, B., Steensels, J., Prahl, T., Soriaga, L., Saels, V., Herrera‐Malaver, B.,Verstrepen, K. J. (2016). Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell, 166, 1397–1410.e16. https://doi.org/10.1016/j.cell.2016.08.020 • Gao, D., Li, Y., Do, K., Abernathy, B., Jackson, A. (2016). Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes. Genome Biol. 2016;17(1):7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26781660 • Garcia, D., Sanier, C., Macheix, J., D'Auzac, J. (1995). Accumulation of scopoletin in Hevea brasiliensis infected by Microcyclus ulei (P. Henn.) V. ARX and evaluation of its fungitoxicity for three leaf pathogens of rubber tree. , 47(4), 0–223. doi:10.1006/pmpp.1995.1053 • García, I., Aristizábal, F., Montoya, D. A review of the Microcyclus ulei Ascomycetes fungus causative agent of South American rubber-leaf blight. (2006). Rev. Colomb. Biotecnol. Vol. VIII N° 2 Diciembre 2006 50-59 • García, R. I. A. (2012). Estudio de la interacción planta – patógeno en clones comerciales de Hevea brasiliensis presentes en jardines clonales de Colombia, susceptibles y resistentes al mal suramericano de la hoja del caucho [Thesis -Doctorado]. Universidad Nacional de Colombia. • Garnica, D., Nemri, A., Upadhyaya, N., Rathjen, J., Dodds, P. (2014). The ins and outs of rust haustoria. PLoS Pathogens 10: e1004329 • Gasparatto, L., Figueiredo, A., Rezende, J.C., Ferreira, F.A. (1997). Doenças da Seringueira no Brasil. Empresa Brasilera de Pesquisa Agropecuarias. 39-41. EMBRAPA. • Gasparotto, L., Lieberei, R., Trindade, D. (1984). In vitro conidia germination of Microcyclus ulei and its sensitivity to fungicides. Fitopatologia Brasileira. 9: 505-511. • Geoghegan, I., Steinberg, G., Gurr, S. (2017) The Role of the Fungal Cell Wall in the Infection of Plants, Undefine. • Giraldo, M. C., Dagdas, Y. F., Gupta, Y. K., Mentlak, T. A., Yi, M., Martinez-Rocha, A. L., ... & Valent, B. (2013). Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature communications, 4(1), 1-12. • Gomez, C., Murua, A., Garrido, M., Gonzalez, P., Mongue, R., Barber, D., Palacios, L., & Diáz, A. (2014). Alt a 1 from Alternaria interacts with PR5 thaumatin-like proteins. FEBS Letters, 588(9), 1501-1508. https://doi.org/10.1016/j.febslet.2014.02.044 • Gonçalves, P., Ortolani, A., Cardoso, M. (1997). Melhoramento genético da seringueira: uma revisão. Instituto Agronômico, Campinas (Brazil): Instituto Agronômico, Campinas (Brazil);. • Gonzalez, S., Oggenffus, U., García, I., Aristizábal, F., Croll, D., & Riaño-Pachon, D. M. (2020, julio 13). The Pseudocercospora genome assembly reveals a significant size expansion mediated by specific transposable elements. ISBM-2020. • Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next- generation sequencing technologies. Nature Publishing Group, 17(6), 333–351. • Goodwin, S. B., Ben M’Barek, S., Dhillon, B., Wittenberg, A. H. J., Crane, C. F., Hane, J. K., Foster, A. J., Van der Lee, T. A. J., Grimwood, J., Aerts. Et al. (2011). Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 7:e1002070. • Govers, F., & Gijzen, M. (2006). Phytophthora Genomics: The Plant Destroyers' Genome Decoded. Molecular Plant-Microbe Interactions, 19(12), 1295–1301. • Graovac, M. & Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc. Bioinformatics 25, 4.10.1–4.10.14. • Grigoriev, IV., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42 (Database issue): D699–704. • Gui, J., Zhang, Q., Zhang,D., Zhou, L., Short, G., Wang, J., Ma, F., Li, G., Kong, Q., Wang, L., Wang, D., Li, Y., Subbarao, V., Chen, Y., & Dai, F. (2017). A Verticillium dahliae Extracellular Cutinase Modulates Plant Immune Responses. Molecular Plant-Microbe Interactions. https://doi.org/10.1094/MPMI-06-17-0136-R • Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. doi:10.1093/bioinformatics/btt086 • Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England), 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086 • Guyot, J., & Le Guen, V. (2017). A review of a century of studies on South American Leaf Blight of the rubber tree. Plant Disease, PDIS-04-17-0592-FE–. doi:10.1094/PDIS-04-17-0592-FE • Haas, B., Papanicolaou, A., Yassour, M. et al. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8, 1494–1512 (2013). https://doi.org/10.1038/nprot.2013.084 • Haas, B. J., Zeng, Q., Pearson, M. D., Cuomo, C. A., & Wortman, J. R. (2011). Approaches to Fungal Genome Annotation. Mycology, 2(3), 118–141. https://doi.org/10.1080/21501203.2011.606851 • Haas, H., Eisendle, M., Turgeon, G. (2008). Siderophores in Fungal Physiology and Virulence. , 46(1), 149–187. doi:10.1146/annurev.phyto.45.062806.094338 • Haas et al. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology 2008, 9:R7doi:10.1186/gb-2008-9-1-r7. • Haft, H., Selengut, D., Richter, A., Harkins, D., Basu, K., Beck, E. (2013). TIGRFAMs and Genome Properties in 2013. Nucleic Acids Res. 2013 Jan;41(Database issue):D387-95. doi: 10.1093/nar/gks1234. Epub 2012 Nov 28. PMID: 23197656; PMCID: PMC3531188. • Hall, B., DeRego, T., & Geib, S. (2014). GAG: the Genome Annotation Generator (Version 1.0). Available from http://genomeannotation.github.io/GAG. • Han, J., Pluhackova, K., & Böckmann, R. A. (2017). The Multifaceted Role of SNARE Proteins in Membrane Fusion. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00005 • Han, J., Pluhackova, K., & Böckmann, R. A. (2017). The Multifaceted Role of SNARE Proteins in Membrane Fusion. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00005 • Hane, J., Paxman, J., Jones, D., Oliver, R & de Wit, Pierre. (2020) “CATAStrophy,” a Genome-Informed Trophic Classification of Filamentous Plant Pathogens – How Many Different Types of Filamentous Plant Pathogens Are There?. Frontiers in Microbiology (10): 3088.p.1-12 • Haridas S, Albert R, Binder M, et al. (2020). 101 Dothideomycetes Genomes: a test case for predicting lifestyles and emergence of pathogens. Studies in Mycology. S0166061620300038–. doi:10.1016/j.simyco.2020.01.003 • Hashim, I., Chee, K., Dunkan, E. (1978) Reaction of Hevea Leaves to Infection with Microcyclus ulei. Rubb. Res. Imt. Malaysia, 26(2), 67-7 • Hashim, I., Chee, K. H., & Duncan, E. J. (1978). Reaction of Hevea leaves to infection with Microcyclus ulei. 26(2), 67-75. • Hayashi, Y. Production of natural rubber from Para rubber tree. (2009) Plant Biotechnology 26, 67–70 • Heng, Li. (2018) Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics, Volume 34, Issue 18, 15 September 2018, Pages 3094–3100, https://doi.org/10.1093/bioinformatics/bty191 • Hennings P (1904) Uber die auf Hevea –arten bisher beobachteten parasitischen pilze. Notizbl bot Gart Mus Berl 4: 133–139. • Hernández, M., Pérez, L., Niño, G., & Mora, M. (2017). Fungal Strategies to Evade the Host Immune Recognition. Journal of fungi (Basel, Switzerland), 3(4), 51. https://doi.org/10.3390/jof3040051 • Hoff, K., & Stanke, M. (2015). Current methods for automated annotation of protein-coding genes. Current Opinion in Insect Science, 7, 8–14. doi:10.1016/j.cois.2015.02.008 • Hoff, K.J., Lange, S., Lomsadze, A., Borodovsky, M., Stanke, M. 2015. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32: 767–769. • Holloway, P. (1982). Structure and histochemistry of plant cuticular membranes: An overview. Pages 1-32 in: The Plant Cuticle. D. F. Cutler, K. L. Alvin. and C. E. Price, eds. Academic Press, New York. • Hora, D., de Macedo, M., Barreto, W., Evans, C., Mattos, C., Maffia, A., & Mizubuti, E. S. G. (2014). Erasing the Past: A New Identity for the Damoclean Pathogen Causing South American Leaf Blight of Rubber. PLoS ONE, 9(8), e104750–12. • Horbachab, R., Navarro, A., Wolfgang, B., Deising, B. (2011). When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. Journal of Plant Physiology 168 (2011) 51–62 • Horton, P., Park, K., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C., Nakai, K. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res. Jul; 35(Web Server issue): Pages 585–587. • Houston, K., Tucker, M., Chowdhury, J., Shirley, N., Little, A. (2016). The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions. Frontiers in Plant Science, 7(), –. doi:10.3389/fpls.2016.00984 • Howard, R., Ferrari, M., Roach, D., Money, N. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings of the National Academy of Sciences, USA 88: 11281– 11284. • Hunter S. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014 May 1;30(9):1236-40. doi: 10.1093/bioinformatics/btu031. Epub 2014 Jan 21. PMID: 24451626; PMCID: PMC3998142. • Hurtado, U., García, IA., Restrepo, S., Aristizábal, F., Montoya D. (2015) Assembly and Analysis of Differential Transcriptome Responses of Hevea brasiliensis on Interaction with Microcyclus ulei. PLoS ONE 10(8): e0134837. doi:10.1371/journal. pone.0134837 • International Rubber Study Group (IRSG). Rubber Statistical Bulletin. Sri Lanka; 2019. • Isaza, R., Diaz, C., Dhillon, B., Aerts, A., Carlier, J., Crane, CF. (2016) Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genetic 12(8) 1-36 • Jacobson, E. (2000) pathogenic roles for fungal melanins. clinical microbiology p. 708–717 vol. 13, no. 4 0893-8512 • Jaswal, R., Kiran, K., Rajarammohan, S., Dubey, H., Singh, P. K., Sharma, Y., Deshmukh, R., Sonah, H., Gupta, N., & Sharma, T. R. (2020). Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiological Research, 241, 126567. https://doi.org/10.1016/j.micres.2020.126567 • Jiang N., Feschotte, C., Zhang, X., Wessler, S. (2004). Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). , 7(2), 115–119. doi:10.1016/j.pbi.2004.01.004 • Johnson, L. (2008). Iron and siderophores in fungal–host interactions. , 112(2), 170–183. doi:10.1016/j.mycres.2007.11.012 • Jones, J & Dangl, J. (2006). The plant immune system. Nature, 444, 323-329. • Jones, P., Binns, D., Chang, H., Fraser, M., Li, W., McAnulla, C., MacWillian, H., Maslen, J., Mitchel, A., Nuka, G. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics. 30(9): Pages 1236–40. • Jones, P., Binns, D., Chang, Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014 May 1;30(9):1236-40. doi: 10.1093/bioinformatics/btu031. Epub 2014 Jan 21. PMID: 24451626; PMCID: PMC3998142. • Jun-Ma, L., Fedorova, N. (2010). A practical guide to fungal genome projects: strategy, technology, cost and completion. Mycology, 1(1), 9–24. doi:10.1080/21501201003680943 • Junqueira, N., Chaves, G., Zambolim, L., Alfenas, A., Gasparotto, L. (1988). Reacao de clones de seringueira a vários isolados de Microcyclus ulei. Pesquisa Agropecuária Brasileira 23: 877–893 • Junqueira, N., Chaves, G., Zambolim, L., Alfenas, A., Gasparotto, L. (1988). Reacao de clones de seringueira a vários isolados de Microcyclus ulei. Pesquisa Agropecuária Brasileira 23: 877–893 • Junqueira, N., Kalili, F,. Araujo, A., 1992. Genètica da resistência da seringueira ao Microcyclus ulei. Fitopatologia Brasileira. 14 (2): 149. • Kalpani, K., Withange, S., Palihakkara, R. (2020) Selection of Superior Genotypes at Early Stage of the Rubber (Hevea brasiliensis) Breeding Cycle. ISSN: 2349-8889 Volume-7, Issue-4 • Kamoun P. (2014) How do filamentous pathogens deliver effector proteins into plant cells? PLoS Biol. 2014, 12
 • Katoh, K., Kuma, K., Toh, H., Miyata, T. (2005). MAFFT version 5: Improvement in accuracy of multiple sequences alignment. Nucleic Acids Res 33: Pages 511-518. • Keilwagen, J., Hartung, F., Paulini, M. et al. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinformatics 19, 189 (2018). https://doi.org/10.1186/s12859-018-2203-5 • Keller, N., Turner, G., Bennett, J. (2005). Fungal secondary metabolism — from biochemistry to genomics. , 3(12), 937–947. doi:10.1038/nrmicro1286 • Keller, O., Odronitz, F., Stanke, M., Kollmar, M., & Waack, S. (2008). Scipio: Using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species. BMC Bioinformatics, 9(1), 278. doi:10.1186/1471-2105-9-278 • Kempken, F., & Kück, U. (1998). Transposons in filamentous fungi--facts and perspectives. Bioessays. 1998 Aug;20(8):652-9. Doi: 10.1002/(SICI)1521-1878(199808)20:8<652::AID-BIES8>3.0.CO;2-K. PMID: 9841641. • Khaldi, N., Seifuddin, F., Turner, G., Haft, D., Nierman, W., Wolfe, K., Fedorova, N (2010). SMURF: Genomic mapping of fungal secondary metabolite clusters. , 47(9), 0–741. doi:10.1016/j.fgb.2010.06.003 • Kim, D., Langmead, B., Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10 .1038/nmeth.3317. • Kingston, E. (2000). Preparation and Analysis of RNA. UNIT 4.3: Phenol/SDS Method for Plant RNA Preparation. In J. Whiley & &. Sons (Eds) Current Protocols in Molecular Biology (pp. 4.3.1-4.3.4). • Kleemann, J., Rincon, J., Takahara, H., Neumann, U., van Themaat, E., van der Does, C., O’Connell, R. (2012). Sequential Delivery of Host-Induced Virulence Effectors by Appressoria and Intracellular Hyphae of the Phytopathogen Colletotrichum higginsianum. PLoS Pathogens, 8(4), e1002643. doi:10.1371/journal.ppat.1002643 • Kleemann, Jochen; Rincon-Rivera, Linda J.; Takahara, Hiroyuki; Neumann, Ulla; van Themaat, Emiel Ver Loren; van der Does, H. Charlotte; Hacquard, Stéphane; Stüber, Kurt; Will, Isa; Schmalenbach, Wolfgang; Schmelzer, Elmon; O'Connell, Richard J.; Howlett, Barbara J. (2012). Sequential Delivery of Host-Induced Virulence Effectors by Appressoria and Intracellular Hyphae of the Phytopathogen Colletotrichum higginsianum. PLoS Pathogens, 8(4), e1002643–. doi:10.1371/journal.ppat.1002643 • Knogge, W. (1998). Fungal pathogenicity. Current Opinion in Plant Biology, 1(4), 324–328. • Kolattukudy, P. (1985). Enzymatic penetration of the plant cuticle by fungal pathogens. Annu. Rev. Phytopathol. 23:223-250. • Kombrink,A., Rovenich, A., Shi-Kunne, X., Rojas,Eduardo., Van Den Berg G et al. (2017) Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts Molecular plant pathology 18(4), 596–608 • Koonin, V., Galperin, Y. (2003). Sequence - Evolution - Function: Computational Approaches in Comparative Genomics. Boston: Kluwer Academic; Chapter 5, Genome Annotation and Analysis. Available from: https://www.ncbi.nlm.nih.gov/books/NBK20253/ • Koop, D. M., Rio, M., Sabau, X., Cardoso, S. E. A., Cazevieille, C., Leclercq, J., & Garcia, D. (2016). Expression analysis of ROS producing and scavenging enzyme-encoding genes in rubber tree infected by Pseudocercospora ulei. Plant Physiology and Biochemistry, 104, 188-199. • Koren, S., & Phillippy, A. (2015). One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Current Opinion in Microbiology 2015, 23:110–120 • Koren, S., Brian, P., Walenz Berlin, K.,Miller, J., Bergman, N., Phillip, A. (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation • Krishnan, P., Ma, X., McDonald, B. A., & Brunner, P. C. (2018). Widespread signatures of selection for secreted peptidases in a fungal plant pathogen. BMC Evolutionary Biology, 18(1). doi:10.1186/s12862-018-1123-3 • Kroken, S., Glass, L., Taylor, W., Yoder, C., Turgeon, G. (2003). Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proceedings of the NationalAcademyof Sciences. 2003; 100(26):15670–5. https://doi.org/10.1073/pnas.2532165100 PMID: 14676319 • Kuana, T., Zhaia, Y., Maa, W. (2016) Small RNAs regulate plant responses to filamentous pathogens. Cell & Developmental Biology 56 (2016) 190–200 • Kubicek, P., Starr, L., & Glass, N. L. (2014). Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annual Review of Phytopathology, 52, 427-451. https://doi.org/10.1146/annurev-phyto-102313-045831 • Kück, P & Longo, G. (2014). FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool 11, Page 81. • Kupfer, M., Drabenstot, D., Buchanan, L., Lai, H., Zhu, H., Dyer, W., Murphy, W. (2004). Introns and Splicing Elements of Five Diverse Fungi. Eukaryotic Cell, 3(5), 1088–1100. doi:10.1128/ec.3.5.1088-1100.2004 • Laehnemann,D., Borkhardt, A., & McHardy, C. (2016) . Denoising DNA deep sequencing data-high-throughput sequencing errors and their correction. Brief. Bioinformatics, 17, 154–179. • Laetsch, R., & Blaxter L. (2017). BlobTools: Interrogation of genome assemblies [version 1; peer review: 2 approved with reservations]. F1000Research, 6:1287 • Langfelder, K., Streibel, M., Jahn, B., Haase, G., Brakhage, A. (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genetics and Biology 38: 143–158. • Le Guen, V.,, Rodier-Goud, M., Troispoux,V., Xiong, ., Brottier, P., Billot, P., Seguin, (2004) Characterization of polymorphic microsatellite markers for Microcyclus ulei, causal agent of South American leaf blight of rubber trees.Molecular Ecology Notes (2004) 4, 122–124 • Le Guen, V., Garcia, D., Mattos. C., Doaré, F., Lespinasse, D. (2006) Bypassing of a polygenic Microcyclus ulei resistance in rubber tree, analyzed by QTL detection. New Phytologist;173(2): 335 –345. • Le Guen, V., Garcia, D., Mattos. C., Doaré, F., Lespinasse, D. (2008). Bypassing of a polygenic Microcyclus ulei resistance in rubber tree, analyzed by QTL detection. New Phytologist;173(2): 335 –345 • Le Guen, V., Guyot, J., Mattos, C. R. R., Seguin, M. & Garcia, D. (2008). Long-lasting rubber tree resistance to Microcyclus ulei characterized by reduced conidial emission and absence of teleomorph. Crop Protection, 27, 1498-1503 • Le Guen, V., Lespinasse, D., Oliver, G., Rodier-Goud, M., Pinard, F. & Seguin, M. (2003). Molecular mapping of genes conferring field resistance to South American Leaf Blight (Microcyclus ulei) in rubber tree. TAG Theoretical and Applied Genetics, 108, 160-167. • Lelwala, R., Korhonen, P., Young, N., Scott, J., Ades, P., Gasser, R., Taylor, P.,Coleman, C. (2019). Comparative genome analysis indicates high evolutionary potential of pathogenicity genes in Colletotrichum tanaceti. PLOS ONE, 14(5), e0212248–. doi:10.1371/journal.pone.0212248 • Lelwala, R., Korhonen, P., Young, N., Scott, J., Ades, P., Gasser, R., Taylor, P., Coleman, C. (2019). Comparative genome analysis indicates high evolutionary potential of pathogenicity genes in Colletotrichum tanaceti. PLOS ONE, 14(5), e0212248–. doi:10.1371/journal.pone.0212248 • Lespinasse, D., Grivet, L., Troispoux, V., Rodier-Goud, M., Pinard, F. & Seguin, M. (2000a). Identification of QTLs involved in the resistance to South American leaf blight (Microcyclus ulei) in the rubber tree. TAG Theoretical and Applied Genetics, 100, 975-984. • Lespinasse, D., Rodier-Goud, M., Grivet, L., Leconte, A., Legnate, H. & Seguin, M. (2000b). A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. Theoretical and Applied Genetics, 100, 127-138. • Letunic, I., Doerks, T., Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012 Jan;40(Database issue):D302-5. doi: 10.1093/nar/gkr931. Epub 2011 Nov 3. PMID: 22053084; PMCID: PMC3245027. • Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., … Wang, J. (2009). De novo assembly of human genomes with massively parallel short read sequencing. Genome Research, 20(2), 265–272. doi:10.1101/gr.097261.109 • Li, X., Griffin, K., Langeveld, S., Frommhagen, M., Underlin, E., Kabel, M., de Vries, R., Dilokpimol, A. (2020). Functional Validation of Two Fungal Subfamilies in Carbohydrate Esterase Family 1 by Biochemical Characterization of Esterases From Uncharacterized Branches. Frontiers in Bioengineering and Biotechnology, 8, 694–. doi:10.3389/fbioe.2020.00694 • Li, X., Griffin, K., Langeveld, S., Frommhagen, M., Underlin, E. N., Kabel, M. A., … Dilokpimol, A. (2020). Functional Validation of Two Fungal Subfamilies in Carbohydrate Esterase Family 1 by Biochemical Characterization of Esterases From Uncharacterized Branches. Frontiers in Bioengineering and Biotechnology, 8. doi:10.3389/fbioe.2020.00694 • Li. Z, Chen. Y, Mu. D, Yuan. J, Shi. Y, Zhang. H, Gan. J, Li. N, Hu. X, Liu. B, Yang, B and Fan. W. (2011) Comparison of the two major classes of assembly algorithms: overlap layout consensus and de-bruijn-graph. Briefings in functional genomics. Vol 11. NO 1. 25- 37 • Lieberei, R., Schrader, A., Biehl, B., Chee, K. (1983). Effect of cyanide on Microcyclus ulei cultures. Journal of the Rubber Research, Institute of Malaysia, 31, 227-235. Babraham Bioinformatics, Cambridge, UK. • Lieberei, R. (2006). Physiological characteristics of Microcyclus ulei (P. Henn.) V.ARX. - A fungal pathogen of the cyanogenic host Hevea brasiliensis. Journal of Applied Botany and Food Quality, 80, 63-68. • Lieberei, R. (2007). South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Annals of Botany, 100(6), 1125–1142 • Lin, Y., Yuan, J., Kolmogorov, M., Shen, M. W., Chaisson, M., & Pevzner, P. A. (2016). Assembly of long error-prone reads using de Bruijn graphs. Proceedings of the National Academy of Sciences, 113(52), E8396–E8405. doi:10.1073/pnas.1604560113 • Linder M., Szilvay, G., Nakari-Setälä, T., Penttilä, M. (2005). Hydrophobins: the protein-amphiphiles of filamentous fungi. 29(5), 877–896. doi:10.1016/j.femsre.2005.01.004 • Liu, B., Shi, Y., Yuan, J., Hu, X., Zhang, H., Li, N., Li, Z., Chen, Y., Mu. et al. (2012) Estimation of genomic characteristics by analyzing kmer frequency in de novo genome projects. • Liu, Z., Zhang, Z., Faris, J., Oliver R.P, Syme R, et al. (2012) The Cysteine Rich Necrotrophic Effector SnTox1 Produced by Stagonospora nodorum Triggers Susceptibility of Wheat Lines Harboring Snn1. PLoS Pathog 8(1) • Loehrer, M. Vogel, A. Huettel, B. Reinhardt, R. Benes, V. Duplessis, S. Usadel, B. Schaffrath, U.(2014). On the current status of Phakopsora pachyrhizi genome sequencing.Frontiers in Plant Science (5): 1-5 • Lombard, V., Golaconda, H., Drula, El., Coutinho, P., Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Research, Volume 42, Issue D1, 1 January, Pages D490–D495, https://doi.org/10.1093/nar/gkt1178 • Lombard,V., Golaconda Ramulu,H., Drula,E., Coutinho,P.M. and Henrissat,B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res., 42, D490–D495. • Lomsadze, A., Burns, P. D., & Borodovsky, M. (2014). Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithms. Nucleic acids research, 42(15), e119. https://doi.org/10.1093/nar/gku557 • Lomsadze A. et al. . (2014) Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithms. Nucleic Acids Res., 42, e119. • Lopez, D., Ribeiro, S., Label, P., Fumanal, B., Venisse, J., Kohler, A., de Oliveira, R., Labutti, K., Lipzen, A., Lail, Ka., Bauer, D., Ohm, R., Barry, K., Spatafora, J., Grigoriev, I., Martin, F., Pujade-Renaud, V. (2018). Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors. Frontiers in Microbiology, 9(), 276–. doi:10.3389/fmicb.2018.00276 • Lo Presti, L., & Kahmann, R. (2017). How filamentous plant pathogen effectors are translocated to host cells. Current Opinion in Plant Biology, 38, 19–24. doi:10.1016/j.pbi.2017.04.005 • Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A., Reissmann, S., Kahmann, R. (2015). Fungal Effectors and Plant Susceptibility. Annual Review of Plant Biology, 66(1), 513–545. doi:10.1146/annurev-arplant-043014-114623 • Lumbsch TH, Huhndorf SM. (2007). "Outline of Ascomycota – 2007". Myconet. Chicago, USA: The Field Museum, Department of Botany. 13: 1–58. • Luo et al., (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler GigaScience, Vol. 1, No. 1, 18, doi:10.1186/2047-217x-1-18 • Lyu, X., Shen, C., Fu, Y., Xie, J., Jiang, D., Li, G., & Cheng, J. (2015). Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Scientific Reports, 5(1). doi:10.1038/srep15565 • Lyu, X., Shen, C., Fu, Y. et al. Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Sci Rep 5, 15565 (2015). https://doi.org/10.1038/srep15565 • Ma, B., Li, T., Xiang, Z., et al. (2015). TE db a collective resource for mulberry transposable elements. Database. 2015;2015 Available from: https://academic.oup.com/database/article/doi/10.1093/database/bav004/2433136 • Macheleidt, J., Mattern, D., Fischer, J., Netzker, T., Weber, J., Schroeckh, V., Valiante, V.,Brakhage, A. (2016). Regulation and Role of Fungal Secondary Metabolites.Annu. Rev. Genet. 2016. 50:16.1–16.22 • Magi, A., Giusti, B. & Tattini, L. Characterization of MinION nanopore data for resequencing analyses. Brief. Bioinforma. 18, 940–953 (2016). • Mao, H., Wang, H. (2017). SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets. Bioinformatics. 2017;33(5):btw718. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28062442 • Marcais, G., Kingsford, C., (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27(6): 764-770 • Mattos, C., García, D., Pinard, F., Le Guen, V. (2003). Variabilidade de Isolados de Microcyclus ulei no Sudeste de Bahia. Fitopatologia Brasileira 28 (5): 502-507 • Mattos, C., García, D., Pinard, F., Le Guen, V. (2003). Variabilidade de Isolados de Microcyclus ulei no Sudeste de Bahia. Fitopatologia Brasileira 28 (5): 502-507 • Mendez, T. M. E. (2017). Identificación de moléculas candidatas a proteínas efectoras de Microcyclus ulei presentes en la interacción con Hevea brasiliensis [Maestria]. Universidad Nacional de Colombia. • Mendgen, K., Hahn, M., & Deising, H. (1996). Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annual Review of Phytopathology, 34(1), 367–386. • Menzel P., Ng L., Krogh A. (2016) Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7:11257 • Mesarich, C. H., Ökmen, B., Rovenich, H., Griffiths, S. A., Wang, C., Jashni, M. K., Mihajlovski, A., Collemare, J., Hunziker, L., Deng, C. H., Burgt, A. van der, Beenen, H. G., Templeton, M. D., Bradshaw, R. E., & Wit, P. J. G. M. de. (2017). Specific hypersensitive response-associated recognition of new apoplastic effectors from Cladosporium fulvum in wild tomato. BioRxiv, 127746. https://doi.org/10.1101/127746 • Mikheyev, A., & Tin, Y. (2014). A first look at the Oxford Nanopore MinION sequencer. Molecular Ecology Resources, 14(6), 1097–1102. doi:10.1111/1755-0998.12324 • Miller, J., Koren, S., Sutton, G. (2010) Assembly algorithms for next-generation sequencing data. Genomics 2010;95: 315–27. • Miller, R., Zhou, P, Mudge, J, Gurtowski J, Lee, H , Ramaraj, T, Walenz, P, Liu, J, Stupar, M, et al. (2017) Hybrid assembly with long and short reads improves discovery of gene family expansions. BMC Genomics 18:541 • Mohanta & Bae 2015.The diversity of fungal genome. Biological Procedures Online 17:8 DOI 10.1186/s12575-015-0020-z • Mohanta & Bae 2015. The diversity of fungal genome. Biological Procedures Online 17:8 DOI 10.1186/s12575-015-0020-z • Möller, M., Stukenbrock, E. (2017). Evolution and genome architecture in fungal plant pathogens. Nature Reviews (15):757-769 • Möller, M., Stukenbrock. E. (2017) Evolution and genome architecture in fungal plant pathogens. Nature reviews (15):757-769 • Mooibroek H, Cornish K (2000). Alternative sources of natural rubber. Appl. Microbiol. Biotechnol. 53:355-365. • Mueller, O., Kahmann, R., Aguilar, G., Trejo, B., Wu, A., P. de Vries, P. (2008).The secretome of the maize pathogen Ustilago maydis. Fungal Genetics and Biology 45 S63–S70 • Mukund, K., Gupta, S., Prabhakar, K., Ranjekar. (2001). Differential Distribution of Simple Sequence Repeats in Eukaryotic Genome Sequences. Plant Molecular Biology 1–7. • Muñoz, C., Vitte, C., Ross, J., Gout, S., Tenaillon, I. (2012). Using Nextgen Sequencing to Investigate Genome Size Variation and Transposable Element Content, Topics in Current Genetics 24,3-642-31842-93 • Muszewska, A., Hoffman, M., Grynberg, M. (2011) LTR Retrotransposons in Fungi. PLoS ONE 6(12): e29425. https://doi.org/10.1371/journal.pone.0029425 • Nakashima, C., Motohashi, K., Chen, C., Groenewald, J., Crous, P. (2016) Species diversity of Pseudocercospora from Far East Asia. Mycol Prog, 15, 1093–1117 • Niedringhaus, P., Milanova, D., Kerby, B., Snyder, A., Barron, E., (2011) Landscape of next-generation sequencing technologies Anal. Chem., 83 (2011), pp. 4327-4341 • Nielsen, H. (2017). Predicting Secretory Proteins with SignalP. In: Kihara D, editor. Protein Function Prediction: Methods and Protocols. New York, NY: Springer New York; Pages 59–73. • Nietsch, R., Haas, J., Lai, A., Oehler, D., Mester, S., Frese, K., Sedaghat-Hamedani, F., Kayvanpour, E., Keller, A., Meder, B. (2016). The Role of Quality Control in Targeted Next-generation Sequencing Library Preparation.Genomics Proteomics Bioinformatics 14 (2016) 200–206 • Nilton, T., Junqueira, N., Lima, M., Gasparotto, L., Luis, A. (1992). Integrated control of rubber tree leaf Blight association between genetic resistente and chemical control. Pesq. Agropec. Bras. 27 (7): 1027-1034 • Oghenekome, U. (2004). Natural rubber, Hevea brasiliensis (Willd. ex A. Juss.) Mull. Arg, germplasm collection in the Amazon Basin, Brazil: A retrospective. Economic Botany, 58, 544-555 • O’Connell, R., Panstruga
 , R. (2006) Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes New Phytologist 171: 699–718 • Parisot, N., Vargas, C., Goubert, C., Baa-Puyoulet, P., Balmand,S., Beranger, L., Blanc, C., Bonnamour, A., Boulesteix, M,m Burlet, N., Calevro,F. (2021).The genome sequence of the cereal pest Sitophilus oryzae: an unprecedented transposable element content bioRxiv 2021.03.03.408021; doi: https://doi.org/10.1101/2021.03.03.408021 • Pascoal, A., Estevinho, L. M., Martins, I. M., & Choupina, A. B. (2018). Novel sources and functions of microbial lipases and their role in infection mechanisms. Physiological and Molecular Plant Pathology. doi:10.1016/j.pmpp.2018.08.003 • Pathak, D., Ngai, K., & Ollis, D. (1988). X-ray crystallographic structure of dienelactone hydrolase at 2.8 Å. Journal of Molecular Biology, 204(2), 435-445. https://doi.org/10.1016/0022-2836(88)90587-6 • Pertea, M., Kim, D., Pertea, M., Leek, T., Salzberg, L. (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown, Nature Protocols 11, 1650-1667, doi:10.1038/nprot.2016.095 • Pertea, M., Pertea, M., Antonescu, M., Chang, C., Mendell, T., Salzberg L. (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads Nature Biotechnology, doi:10.1038/nbt.3122 • Pertea G and Pertea M. GFF Utilities: GffRead and GffCompare [version 1; peer review: 3 approved]. F1000Research 2020, 9:304 (https://doi.org/10.12688/f1000research.23297.1) • Petrini, O. (1991) in Microbial Ecology of Leaves, eds. Andrews, J. H. & Hirano, S. S. Springer, New York, pp. 179–197. • Pierleoni, A., Martelli, L., Casadio, R. (2008). PredGPI: a GPI-anchor predictor. BMC Bioinformatics. 2008;9(1):392. doi: 10.1186/1471-2105-9-392. • Plissonneau, C., Benevenuto, J., Mohd-Assaad, N., Fouché, S., Hartmann, F. E., & Croll, D. (2017). Using Population and Comparative Genomics to Understand the Genetic Basis of Effector-Driven Fungal Pathogen Evolution. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00119 • Priest, S., Yadav, V., & Heitman J. (2020). Advances in understanding the evolution of fungal genome architecture [version 1; peer review: 2 approved]. F1000Research, 9(Faculty Rev):776 (https://doi.org/10.12688/f1000research.25424.1) • Priyadarshan, M., Gonçalves, P & Omokhafe, K. O. (2009). Breeding Hevea Rubber. Breeding Plantation Tree Crops: Tropical Species, 469–522. doi:10.1007/978-0-387-71201-7_13 • Pusztahelyi, T., Holb, J., Pócsi, I. (2015). Secondary metabolites in fungus-plant interactions. Frontiers in Plant Science, 6(), –. doi:10.3389/fpls.2015.00573 • Pusztahelyi, T. (2018). Chitin and chitin-related compounds in plant–fungal interactions. Mycology, (), 1–13. doi:10.1080/21501203.2018.1473299 • Quaedvlieg, W., Groenewald, J., Yáñez-Morales, M de Jesús., Crous, P. (2012). DNA barcoding of Mycosphaerella species of quarantine importance to Europe. Persoonia 29: 101–115 • Quinlan, A., & Hall, I. (2010) BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, Volume 26, Issue 6, 15 March 2010, Pages 841–842, https://doi.org/10.1093/bioinformatics/btq033 • Rahman, A., Usharraj, O., Misra, B. B., Thottathil, G. P., Jayasekaran, K., Feng, Y., et al. (2013). Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics, 14, 75–75. • Rajarammohan, S., Paritosh, K., Pental, D., Kaur, J. (2019). Comparative genomics of Alternaria species provides insights into the pathogenic lifestyle of Alternaria brassicae a pathogen of the Brassicaceae family. BMC Genomics, 20(1), 1036–. doi:10.1186/s12864-019-6414-6 • Rang, F. J., Kloosterman, W. P. & Ridder, J. D. From squiggle to base-pair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 19, 90 (2018). • Rao, S., Sharda, S., Oddi, V., Nandineni, R. (2018). The Landscape of Repetitive Elements in the Refined Genome of Chilli Anthracnose Fungus Colletotrichum truncatum. Frontiers in Microbiology, 9(), 2367–. doi:10.3389/fmicb.2018.02367 • Rawlings, D., Barrett, J., Thomas, D., Huang, X., Bateman, A. & Finn, R.D. (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46, D624-D632. • Rawlings, D., Waller, M., Barrett, J., and Bateman, A. (2014). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42, D503–D509. doi: 10.1093/nar/gkt953 • Rebollo, R., Romanish, M., Mager, D. (2012). Transposable Elements: An Abundant and Natural Source of Regulatory Sequences for Host Genes. Annual Review of Genetics, 46(1), 21–42. doi:10.1146/annurev-genet-110711-155621 • Reuter, J., Spacek, D,. Snyder, M. (2015). High-Throughput Sequencing Technologies. Molecular Cell 58. P:586-597 • Rivano, F., Martinez, M., Cevallos, V., & Cilas, C. (2010). Assessing resistance of rubber tree clones to Microcyclus ulei in large-scale clone trials in Ecuador: A less time-consuming field method. European Journal of Plant Pathology, 126(4), 541–552. • Rivano, F., Mattos, C., Cardoso, S., Martinez, M., Cevallos, V., Le Guen, V., & Garcia, D. (2013). Breeding Hevea brasiliensis for yield, growth and SALB resistance for high disease environments. Industrial Crops and Products, 44, 659–670. doi:10.1016/j.indcrop.2012.09.005 • Rivano, F., Vera, J., Cevallos, V., Almeida, D., Maldonado, L., & Flori, A. (2016). Performance of 10 Hevea brasiliensis clones in Ecuador, Under South American Leaf Blight escape conditions. Industrial Crops and Products, 94, 762–773 • Rocha, H.M.; Medeiros, A.G. Vasconcelos, A.P. 1978. Comparação de fungicidas para controle do mal-dos-folhas de seringueira (Microcyclus ulei (P. Henn.) v. Arx) em viveiro. Fitopatologia Brasileira. 3: 163. • Rodriguez, L., Ebert, M., Bolton, D., Thomma B. (2018). Tools of the crook-infection strategies of fungal plant pathogens. Plant J 93:664–674. • Ruan, J., & Li, H. (2019) Fast and accurate long-read assembly with wtdbg2. Nat Methods doi:10.1038/s41592-019-0669-3 • Ryder, L and Talbot, N. (2015) Regulation of appressorium development in pathogenic fungi. Current Opinion in Plant Biology, 26:8–13 • Sandhya, V., Rajesh, K., Gazara, Shadab, N., Sabiha, P., Debasis, C., Praveen, K.V (2016). Draft genome sequencing and secretome analysis of fungal phytopathogen Ascochyta rabiei provides insight into the necrotrophic effector repertoire Nature scientific reports. 6:24638 ;1-7 • Sato, M., Ogura, Y., Nakamura, K., Nishida, R., Gotoh, Y., Hayashi, M., Hisatsune, J., Sugai, M., Takehiko, I., Hayashi, T. (2019). Comparison of the sequencing bias of currently available library preparation kits for Illumina sequencing of bacterial genomes and metagenomes. DNA Research, (), dsz017–. doi:10.1093/dnares/dsz017 • Scharf, D., Heinekamp, T., Brakhage, A., Heitman, J. (2014). Human and Plant Fungal Pathogens: The Role of Secondary Metabolites. PLoS Pathogens, 10(1), e1003859–. doi:10.1371/journal.ppat.1003859 • Schubert, K., Ritschel, A. & Braun, U. (2003). A monograph of Fusicladium s. lat. (Hyphomycetes). Schlechtendalia, 9, 1-132. • Schultzhaus, Z., S., & Shaw, D. (2015). Endocytosis and exocytosis in hyphal growth. Fungal Biology Reviews, 29(2), 43-53. https://doi.org/10.1016/j.fbr.2015.04.002 • Schuster, C. (2007). Next-generation sequencing transforms today's biology. Nat. Methods 5, 16–18 • Schuster, S.C. (2007). Next-generation sequencing transforms today's biology. Nat. Methods 5, 16–18 • Sedlackova, T., Repiska, G., Celec, P. et al. (2013). Fragmentation of DNA affects the accuracy of the DNA quantitation by the commonly used methods. Biol Proced Online 15, 5 . https://doi.org/10.1186/1480-9222-15-5 • Shirasu, A (2015). Plant cells under siege: plant immune system versus pathogen effectors. Current Opinion in Plant Biology 28: 1–8. • Sibley, R., Blazquez, L., & Ule, J. (2016). Lessons from non-canonical splicing. Nature Reviews Genetics, 17(7), 407–421. doi:10.1038/nrg.2016.46 • Silva, K., S. Deraniyagala, A., Wijesundera, C., Karunanayake, Priyanka, S.(2002). Isolation of scopoletin from leaves of Hevea brasiliensis and the effect of scopoletin on pathogens ofH. brasiliensis. , 153(4), 199–202. doi:10.1023/a:101491013259 • Silva, M., Barreto, W ., Pereira , L., Freitas, M., Groenewald, Z., Crous, P. (2016). Exploring fungal mega-diversity: Pseudocercospora from Brazil. Persoonia 37: 142–172 • Simão, F., Waterhouse, R., Evgenia, P., Kriventseva, E., Zdobnov, M. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, Volume 31, Issue 19, Pages 3210–3212 • Sivashankari, S., & Shanmughavel P. (2006). Functional annotation of hypothetical proteins - A review. Bioinformation. 2006 Dec 29;1(8):335-8. doi: 10.6026/97320630001335. PMID: 17597916; PMCID: PMC1891709. • Skamnioti, F., & Sj, G. (2008). Evolutionary history of the ancient cutinase family in five filamentous Ascomycetes reveals differential gene duplications and losses and in Magnaporthe grisea shows evidence of sub- and neo-functionalization. The New Phytologist; New Phytol. https://doi.org/10.1111/j.1469-8137.2008.02598.x • Smit, A., Hubley, R., Green, P. (2015). Repeat masker Open-4.0 . Available from: http://repeatmasker.org • Soanes, D. M., Alam, I., Cornell, M., Wong, H. M., Hedeler, C., Paton, N. W., … Talbot, N. J. (2008). Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis. PLoS ONE, 3(6), e2300. doi:10.1371/journal.pone.0002300 • Sonah, H., Deshmukh, R. K., & Bélanger, R. (2016). Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges. Frontiers in Plant Science, 7(e3), 390–14. • Spanu, D., Abbott, C., Amselem, J., Burgis, A., Soanes, M., Stüber, K., Ver Loren, van Themaat, E., Brown., K., Butcher, A., Gurr, J., et al. (2010). Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science. 2010 Dec 10;330(6010):1543-6. doi: 10.1126/science.1194573. PMID: 21148392. • Sperschneider, J., Dodds, P. N., Singh, K. B., Taylor, J.(2018). ApoplastP: prediction of effectors and plant proteins in the apoplast using machine learning. New Phytol, 217(4): Pages 1764-1778. • Sperschneider. J., Gardiner, D., Dodds, P., Tini, F., Covarelli, L., Singh, K., et al. (2015). EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol. 210(2): Pages 743–61. • Stahl, E., Bishop, J. (2000) Plant–pathogen arms races at the molecular level. Current Opinion in Plant Biology 2000, 3:299–304 • Stajich, Jason E. (2017). Fungal Genomes and Insights into the Evolution of the Kingdom. Microbiology Spectrum, 5(4), –. doi:10.1128/microbiolspec.FUNK-0055-2016 • Stam, R., Jupe, J., Howden, A., Morris, J., Boevink, P., Hedley, P., Huitema, E., Arnold, D. (2013). Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity. PLoS ONE, 8(3), e59517–. doi:10.1371/journal.pone.0059517 • Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., Morgenstern, B. (2006). AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res; (Web Server issue): Pages 4–9. • Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res; 34(Web Server issue):W435–9. Epub 2006/07/18. https://doi.org/10.1093/nar/gkl200 PMID: 16845043; PubMed Central PMCID: PMCPmc1538822. • Staples, R. (2001). Nutrients for a rust fungus: the role of haustoria. , 6(11), 0–498. doi:10.1016/s1360-1385(01)02126-4 • Stergiopoulos, I., & De Wit, P.(2009). Fungal Effector Proteins. Annual Review of Phytopathology, 47, 233-263. • Stergiopoulos, I., & Wit, P. J. G. M. de. (2009, agosto 3). Fungal Effector Proteins.; Annual Reviews. https://doi.org/10.1146/annurev.phyto.112408.132637 • Sterling, A., & Rodríguez, C. (2018). Estrategias de manejo para las principales enfermedades y plagas del cultivo del caucho con énfasis en la amazonia colombiana. Bogotá: Instituto Amazónico de Investigaciones Científicas SINCHI. • Sterling, A., Galindo, L., Suárez, D., Velasco, G., Andrade, T., & Gómez, A. (2019). Early assessing performance and resistance of Colombian rubber tree genotypes under high south American leaf blight pressure in Amazon. Industrial Crops and Products, 141, 111775. • Sterling, A & Melgarejo, L. (2018). Leaf gas exchange and chlorophyll a fluorescence in Hevea brasiliensis in response to Pseudocercospora ulei infection. Physiological and Molecular Plant Pathology, 103(), 143–150. doi:10.1016/j.pmpp.2018.07.006 • Stirling, D. (2004) DNA extraction from fungi, Yeast and Bacteria. In J. M. Barlert & D. Stirling (Eds) PCR protocols Method in Molecular Biology pp. 53-54 • Stukenbrock E, Croll D. (2014). The evolving fungal genome. fungal biology reviews journal 28: 1-12 • Stukenbrock E., Croll, D. (2014). The evolving fungal genome. Fungal biology reviews 28 (2014) 1e12 • Szabo, J., & Bushnell, W. (2001). Hidden robbers: The role of fungal haustoria in parasitism of plants. Proceedings of the National Academy of Sciences, 98(14), 7654–7655. doi:10.1073/pnas.151262398 • Talbot, N.J., Ebbole, D.J. and Hamer, J.E. (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 5, 1575 – 1590. • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol, 57:177-202. 
 • Tanaka, S., Han, X and Kahmann. (2016). Microbial effectors target multiple step in the salicylic acid production and signaling pathway.frontiers in Plant Science (6)349 • Tang, C., Yang, M., Fang, Y., Luo, Y., Gao, S., Xiao, X., et al. (2016). The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants, 2(6), 16073–10. • TerBush, R., & Novick P. (1995). Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol. 130, 299-312. 10.1083/jcb.130.2.299 • TerBush R., Maurice, T., Roth, D., & Novick P. (1996). The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483-6494. • Tian, L., Sun, W., Li, J., Chen, J., Dai, X., Qiu, N., & Zhang, D. (2021). Unconventionally Secreted Manganese Superoxide Dismutase VdSOD3 Is Required for the Virulence of Verticillium dahliae. Agronomy, 11(1), 13. https://doi.org/10.3390/agronomy11010013 • Trapnell, C., Williams, B., Pertea, G., Mortazavi, A., Kwan,G. et al . Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol. 2010 May ; 28(5): 511–515 • Tudzynski, P & Sharon, A. (2003). Fungal Pathogenicity Genes. Applied Mycology and Biotechnology (Vol. 3, pp. 187–212). Elsevier. • Urban, M., Cuzick, A., Rutherford, K., Irvine, A., Helder, P., Pant, Ra., Sadanadan, V, Khamari, L., et al. (2017) PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database, Nucleic Acids Research, Volume 45, Issue D1, January 2017, Pages D604–D610, https://doi.org/10.1093/nar/gkw1089 • Van Bel, M., Proost, S., Van Neste, C. et al. TRAPID: an efficient online tool for the functional and comparative analysis of de novoRNA-Seq transcriptomes. Genome Biol 14, R134 (2013). https://doi.org/10.1186/gb-2013-14-12-r134 • Venkatachalam, P., Geetha, N., Sangeetha, P., Thulaseedharan, A. (2013) Natural rubber producing plants: An overview. African J Biotechnol; 12: 1297–1310. https://doi.org/10.5897/AJBX12.016 • Viklund H, Elofsson A. Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci. 2004;13(7):1908-1917. doi:10.1110/ps.04625404 • Vogel, J. (2008). Unique aspects of the grass cell wall. Current Opinion in Plant Biology; Curr Opin Plant Biol. https://doi.org/10.1016/j.pbi.2008.03.002 • Vurture, W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017). • Walker, J., Abeel, T., Shea, T., Priest, M., Abouelleil, A., Sakthikumar, S., et al. (2014). Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome • Wang, H., Fewer, P., Holm, L., Rouhiainen, L., Sivonen, K. (2014). Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of non-modular enzymes. Proceedings of the National Academy of Sciences, 111(25), 9259–9264. doi:10.1073/pnas.1401734111 • Wang, Z., Lienemann, M., Qiau, M., Linder, M. (2010). Mechanisms of Protein Adhesion on Surface Films of Hydrophobin. Langmuir, 26(11), 8491–8496. doi:10.1021/la101240e • Warren, L., Yang, C., Vandervalk, P. et al. (2015). LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads. GigaSci 4, 35 . https://doi.org/10.1186/s13742-015-0076-3 • Warris, A., & Ballou, E. R. (2019). Oxidative responses and fungal infection biology. Seminars in Cell & Developmental Biology, 89, 34-46. https://doi.org/10.1016/j.semcdb.2018.03.004 • Waterhouse, A., Procter, J., Martin, D., Clamp, M., Barton, G. (2009). Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: Pages 1189-1191. • Webster, J., & Weber, R., (2007). Introduction to fungí. Cambridge – United Kingdom.http://www.dbbe.fcen.uba.ar/contenido/objetos/webster 30521807395_1400021643840195.pd • Wenger, M., Peluso, P., Rowell, W. J., Chang, P.-C., Hall, R. J., Concepcion, G. T., Hunkapiller, M. W. (2019). Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nature Biotechnology. doi:10.1038/s41587-019-0217-9 • White, T., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols a guide to methods and applications Academic Press. • Wicker, T., Oberhaensli, S., Parlange, F., Buchmann, J., Shatalina, M., Roffler, S., Ben-David, R., Doležel, J., Šimková, H., Schulze-Lefert, P., Spanu, P., Bruggmann, R., Amselem, J., Quesneville, H., et al (2013). The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature Genetics, 45(9), 1092–1096. doi:10.1038/ng.2704 • Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O. (2007). A unified classification system for eukaryotic transposable elements. , 8(12), 973–982. doi:10.1038/nrg2165 • Wit, P. J. G. M. de, Burgt, A. van der, Ökmen, B., Stergiopoulos, I., Abd-Elsalam, K. A., Aerts, A. L., Bahkali, A. H., Beenen, H. G., Chettri, P., Cox, M. P., Datema, E., Vries, R. P. de, Dhillon, B., Ganley, A. R., Griffiths, S. A., Guo, Y., Hamelin, R. C., Henrissat, B., Kabir, M. S., … Bradshaw, R. E. (2012). The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry. PLOS Genetics, 8(11), e1003088. https://doi.org/10.1371/journal.pgen.1003088 • Xu, Z., Wang, H. (2007). LTR-FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35 • Yamashita, S., Takahashi, S. (2020). Molecular Mechanisms of Natural Rubber Biosynthesis. Annu Rev Biochem, 2020 89:1, 821-851 • Yandell, M., & Ence, D. (2012). A beginner’s guide to eukaryotic genome annotation. Nature Reviews Genetics, 13(5), 329–342. doi:10.1038/nrg3174 • Yeadon, P. J., and D. E. Catcheside. 1995. Guest: a 98 bp inverted repeat transposable element in Neurospora crassa. Mol. Gen. Genet. 247:105–109. • Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., Xu, Y. (2012). dbCAN: a web resource for automated carbohydrate- active enzyme annotation. Nucleic Acids Res. 40(Web Server issue): Pages 445–W51. • Zaccaron, A. Z., & Stergiopoulos, I. (2020). First Draft Genome Resource for the Tomato Black Leaf Mold Pathogen Pseudocercospora fuligena. Molecular Plant-Microbe Interactions. https://doi.org/10.1094/MPMI-06-20-0139-A • Zhang, C., Maryam R., Erfan S., Siavash, M. (2018). “ASTRAL-III: Polynomial Time Species Tree Reconstruction from Partially Resolved Gene Trees.” BMC Bioinformatics 19 (S6): Page 153. • Zhang, D., He, J., Haddadi, P., Zhu, j., Yang, Z., Ma, L. (2018). Genome sequence of the potato pathogenic fungus Alternaria solani HWC-168 reveals clues for its conidiation and virulence. BMC Microbiology, 18(1), 176–. doi:10.1186/s12866-018-1324-3 • Zhang, G., Zhang, Q., Zhou, D., Short, L., Wang G., Ma J., Li, F., Kong, T., Wang Z., et al (2017). A Verticillium dahliae Extracellular Cutinase Modulates Plant Immune Responses. Molecular Plant-Microbe Interactions. https://doi.org/10.1094/MPMI-06-17-0136-R • Zhang, H., Jain, C., & Aluru, S. (2020). A comprehensive evaluation of long read error correction methods. BMC Genomics, 21(S6). doi:10.1186/s12864-020-07227-0 • Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P., Xu, Y., Yin, Y. (2018). dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, –. doi:10.1093/nar/gky418 • Zhang, N., Luo, J., Bhattacharya, D. (2017).Advances in Fungal Phylogenomics and Their Impact on Fungal Systematics. Advances in Genetics, Volume 100. ISSN 0065-2660 • Zhang, Q., Arbuckle, J., and Wessler, S.(2000). Recently extensive and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker (Hbr) into genic regions of maize. Proc. Natl. Acad. Sci. USA 97:1160 – 1165. • Zhao, C., Waalwijk, C., de Wit, P. J. G. M., Tang, D., & van der Lee, T. (2013). RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genomics, 14(1), 21. doi:10.1186/1471-2164-14-21 • Zhao, Z., Liu, H., Wang, C., & Xu, J.-R. (2013). Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics, 14(1), 1-15. https://doi.org/10.1186/1471-2164-14-274 • Zhong, Z., Marcel, TC., Hartmann. E., Ma, X., Plissonneau, C., Zala, M., Ducasse, A., Confais, J., Compain, J., Lapalu, N. et al. (2017) A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. • Žifčáková, L., & Baldrian, P. (2012). Fungal polysaccharide monooxygenases: new players in the decomposition of cellulose. Fungal Ecology, 5(5), 481–489. doi:10.1016/j.funeco.2012.05.001 • Zimin, V., Marçais, G., Puiu, D., Roberts, M., Salzberg SL., Yorke, A. (2013). The MaSuRCA genome assembler. Bioinformatics;29:2669–77. • Zipfel, C. (2008). Pattern-recognition receptors in plant innate immunity. Current Opinion in Immunology, 20, 10-16. • Zipfel, C. & Felix, G. (2005). Plants and animals: a different taste for microbes? Current Opinion in Plant Biology, 8, 353-360.High-quality genome assembly and comparative genomics of Pseudocercospora ulei GCL012, the causal agent of the South American leaf blight (SALB) in natural rubber tree Hevea brasiliensis: Towards the prediction of molecular components associated with its pathogenicity and virulenceColcienciasPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80147/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53ORIGINALSandra_Gonzalez_Sayer_PhD_final_version_2021.pdfSandra_Gonzalez_Sayer_PhD_final_version_2021.pdfTesis de Doctorado en Biotecnologíaapplication/pdf4791865https://repositorio.unal.edu.co/bitstream/unal/80147/4/Sandra_Gonzalez_Sayer_PhD_final_version_2021.pdf1f872a328eb83b25e7ee9e3708e328ebMD54THUMBNAILSandra_Gonzalez_Sayer_PhD_final_version_2021.pdf.jpgSandra_Gonzalez_Sayer_PhD_final_version_2021.pdf.jpgGenerated Thumbnailimage/jpeg5408https://repositorio.unal.edu.co/bitstream/unal/80147/5/Sandra_Gonzalez_Sayer_PhD_final_version_2021.pdf.jpgbfdefeb11702cef407554ae371a60ed9MD55unal/80147oai:repositorio.unal.edu.co:unal/801472023-07-27 23:03:55.797Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==