An ontology-based information extractor for data-rich documents in the information technology domain

This paper presents an information extraction method, suitable for data-rich documents, based on the knowledge represented in a domain ontology. The extractor combines a fuzzy string matcher and a word sense disambiguation (WSD) algorithm. The fuzzy string matcher finds mentions of terms combining c...

Full description

Autores:
Jiménez Vargas, Sergio Gonzalo
González Osorio, Fabio Augusto
Tipo de recurso:
Article of journal
Fecha de publicación:
2008
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/24330
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/24330
http://bdigital.unal.edu.co/15367/
Palabra clave:
Knowledge Management
Information Extraction
Ontologies
Fuzzy String Searching
Word Sense Disambiguation
Semantic Relatedness
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:This paper presents an information extraction method, suitable for data-rich documents, based on the knowledge represented in a domain ontology. The extractor combines a fuzzy string matcher and a word sense disambiguation (WSD) algorithm. The fuzzy string matcher finds mentions of terms combining character-level and token-level similarity measures dealing with non-standardized acronyms and inconsistent abbreviation styles. We propose a new character-level edit distance sensitive to prefixes called root distance and a token-level similarity algorithm for fuzzy acronym detection. Additionally, a WSD strategy using an ontology-based semantic relatedness measure is used to solve the inherent ambiguity of some entities. The WSD module finds a sense combination over all the document length optimizing the document semantic coherence. Our approach seems to be suitable to extract information from data-rich documents describing Orly one main object (i.e. product) by document. The results showed a precision of 78.9% with 99.5% recall using documents and an ontology related to laptop computers domain.