Event-triggered control of multi-robot systems applied to seeding in rice crops
ilustraciones, gráficas, tablas
- Autores:
-
Pabón Arias, Juan David
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79937
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Control
Robótica
Control basado en eventos
Control desencadenado por eventos
Sistemas multi-robot
Sistemas multi-agente
Robotics
Event-Based Control
Event-Triggered Control
Multi-Robot Systems
Multi-Agent Systems
Control
Automatización
Automation
Control automático
Automatic control
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_32d121f51acac0b81a4e36a09356cce7 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79937 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Event-triggered control of multi-robot systems applied to seeding in rice crops |
dc.title.translated.spa.fl_str_mv |
Control desencadenado por eventos de sistemas multi-robot aplicado a la siembra en cultivos de arroz |
title |
Event-triggered control of multi-robot systems applied to seeding in rice crops |
spellingShingle |
Event-triggered control of multi-robot systems applied to seeding in rice crops 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Control Robótica Control basado en eventos Control desencadenado por eventos Sistemas multi-robot Sistemas multi-agente Robotics Event-Based Control Event-Triggered Control Multi-Robot Systems Multi-Agent Systems Control Automatización Automation Control automático Automatic control |
title_short |
Event-triggered control of multi-robot systems applied to seeding in rice crops |
title_full |
Event-triggered control of multi-robot systems applied to seeding in rice crops |
title_fullStr |
Event-triggered control of multi-robot systems applied to seeding in rice crops |
title_full_unstemmed |
Event-triggered control of multi-robot systems applied to seeding in rice crops |
title_sort |
Event-triggered control of multi-robot systems applied to seeding in rice crops |
dc.creator.fl_str_mv |
Pabón Arias, Juan David |
dc.contributor.advisor.none.fl_str_mv |
Mojica Nava, Eduardo Alirio |
dc.contributor.author.none.fl_str_mv |
Pabón Arias, Juan David |
dc.contributor.researchgroup.spa.fl_str_mv |
PROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Control Robótica Control basado en eventos Control desencadenado por eventos Sistemas multi-robot Sistemas multi-agente Robotics Event-Based Control Event-Triggered Control Multi-Robot Systems Multi-Agent Systems Control Automatización Automation Control automático Automatic control |
dc.subject.proposal.spa.fl_str_mv |
Control Robótica Control basado en eventos Control desencadenado por eventos Sistemas multi-robot Sistemas multi-agente |
dc.subject.proposal.eng.fl_str_mv |
Robotics Event-Based Control Event-Triggered Control Multi-Robot Systems Multi-Agent Systems Control |
dc.subject.unesco.none.fl_str_mv |
Automatización Automation Control automático Automatic control |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-12T21:44:01Z |
dc.date.available.none.fl_str_mv |
2021-08-12T21:44:01Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79937 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79937 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Departamento Administrativo Nacional de Estadística (DANE), Producto Interno Bruto, Principales Resultados Año 2019 y IV Trismestre. DANE, 2020. Ministerio de Agricultura y Desarrollo Rural, Informe de Gestión Institucional, Vigencia 2019. Ministerio de Agricultura y Desarrollo Rural, 2020. Departamento Administrativo Nacional de Estad ́ıstica (DANE), Encuesta Nacional de Arroz Mecanizado, segundo Semestre 2018. DANE, 2019. Federación Nacional de Arroceros (Fedearroz), IV Censo Nacional Arrocero 2016. Fondo Nacional del Arroz, División de Investigaciones Económicas, 2017. Federación Nacional de Arroceros (Fedearroz), “Estadísticas Arroceras.” http://www. fedearroz.com.co/new/apr_public.php. March 2019. United States Department of Agriculture, “Historical Cost and Returns: Rice.” https://www.ers.usda.gov/data-products/commodity-costs-and-returns/. March 2019 Grupo Técnico Fedearroz and Fondo Nacional del Arroz, Adopción Masiva de Tecnología (AMTEC) – Guía de trabajo. Fedearroz, 2015. T. Blender, T. Buchner, B. Fernandez, B. Pichlmaier, and C. Schlegel, “Mobile agricul- tural robot swarm for a seeding task,” University of Applied Sciences Ulm, Germany, 2016. Swarm Farm, “Swarm Farm Robots.” http://www.swarmfarm.com. May, 2019. J. Roldán, P. Garcia-Aunon, M. Garzón, J. de León, J. del Cerro, and A. Barrientos, “Heterogeneous multi-robot system for mapping environmental variables of green- houses,” Sensors, 2016. D. Albani, J. IJsselmuiden, R. Haken, and V. Trianni, “Monitoring and mapping with robot swarms for agricultural applications,” in Proc. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6, 2017. J. Kim and H. I. Son, “A voronoi diagram-based workspace partition for weak cooper- ation of multi-robot system in orchard,” IEEE Access, vol. 8, pp. 20676–20686, 2020. C. Wu, R. Zeng, J. Pan, C. C. L. Wang, and Y. Liu, “Plant phenotyping by deep- learning-based planner for multi-robots,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3113–3120, 2019. P. Singh, R. Tiwari, and M. Bhattacharya, “Navigation in multi robot system using co- operative learning: A survey,” in Proc. 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), pp. 145–150, 2016. F. J. Mendiburu, M. R. A. Morais, and A. M. N. Lima, “Behavior coordination in multi-robot systems,” in Proc. 2016 IEEE International Conference on Automatica (ICA-ACCA), pp. 1–7, 2016. D. Chandrasekhar Rao and M. Ranjan Kabat, “A trust based navigation control for multi-robot to avoid deadlock in a static environment using improved krill herd,” in Proc. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 810–817, 2018. Y. Zhou, H. Hu, Y. Liu, S.-W. Lin, and Z. Ding, “A distributed approach to robust control of multi-robot systems,” Automatica, vol. 98, pp. 1 – 13, 2018. G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based broadcasting for multi-agent average consensus,” Automatica, vol. 49, pp. 245–252, jan 2013 J. P. L. S. de Almeida, R. T. Nakashima, F. Neves-Jr, and L. V. R. de Arruda, “Bio- inspired on-line path planner for cooperative exploration of unknown environment by a multi-robot system,” Robotics and Autonomous Systems, vol. 112, pp. 32 – 48, 2019. W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-triggered and self-triggered control,” in Proc. 51 st IEEE Conference on Decision and Control (CDC), pp. 3270–3285, 2012. L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.-P. Richard, and S. I. Niculescu, “Recent developments on the stability of systems with aperiodic sampling: An overview,” Automatica, vol. 76, pp. 309–335, 2017. D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed Event-Triggered Control for Multi-Agent Systems,” IEEE Transactions on Automatic Control, vol. 57, pp. 1291–1297, may 2012. M. Cao, F. Xiao, and L. Wang, “Event-based second-order consensus control for multi- agent systems via synchronous periodic event detection,” IEEE Transactions on Auto- matic Control, vol. 60, no. 9, pp. 2452–2457, 2015. N. T. Hung, F. C. Rego, and A. M. Pascoal, “Event-triggered communications for the synchronization of nonlinear multi agent systems on weight-balanced digraphs,” in Proc. 2019 18th European Control Conference (ECC), pp. 2713–2718, 2019. P. Tallapragada, M. Franceschetti, and J. Cort ́es, “Event-triggered control under time- varying rates and channel blackouts,” IFAC Journal of Systems and Control, vol. 9, p. 100064, 2019. W. Hu, C. Yang, T. Huang, and W. Gui, “A distributed dynamic event-triggered control approach to consensus of linear multiagent systems with directed networks,” IEEE Transactions on Cybernetics, vol. 50, no. 2, pp. 869–874, 2020. Mehran Mesbahi and Magnus Egerstedt, Graph Theoretic Methods in Multiagent Net-works. Princeton University Press, 2010. Dimitri P. Bertsekas, Network Optimization: Continuous and Discrete Models. Athena Scientific, 1998. J. Banasiak, “Logarithmic norms and regular perturbations of differential equations,” Annales Universitatis Mariae Curie-Sklodowska, vol. 73, no. 2, pp. 245 – 252, 2019. G. S ̈oderling, The Logarithmic Norm. History and Modern Theory. Lund University, 2006. J. Cort ́es and M. Egerstedt, “Coordinated control of multi-robot systems: A survey,” SICE Journal of Control, Measurement, and System Integration, vol. 10, pp. 495–503, 2017. KHUN, “ Ficha T ́ecnica Sembradoras Neum ́aticas Monograno – MAXIMA 3.” https: //zoom.kuhn.com/event/demoagro/_pdf/leaflets/MAXIMA_3_ES.pdf. March 2019. MASSEY FERGUSON, “ Sembradora Abonadora Versi ́on M.” http://mayfer.com. uy/web/wp-content/themes/mayfer/fichas-tecnicas/MF-300.pdf. April 2019. WINTERSTEIGER, “Sembradoras Monograno.” https://www.wintersteiger.com/ download/?file=8395. April 2019. Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario del Cono Sur, Agricultura de Precisi ́on: Integrando Conocimientos para una Agricultura Moderna y Sustentable. Instituto Interamericano de Cooperación para la Agricultura, 2015. Programa Cooperativo para el Desarrollo Tecnol ́ogico Agroalimentario del Cono Sur, Manual de Agricultura de Precisión. Instituto Interamericano de Cooperación para la Agricultura, 2014. Leiva, Fabio, “La Agricultura de precisi ́on: una producci ́on m ́as sostenible y competitiva con visi ́on futurista,” VIII Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de Cultivos. Bogotá, 2003. X. Gao, J. Li, L. Fan, Q. Zhou, K. Yin, J. Wang, C. Song, L. Huang, and Z. Wang, “Review of wheeled mobile robots’ navigation problems and application prospects in agriculture,” IEEE Access, vol. 6, pp. 49248–49268, 2018. P. M. Blok, K. van Boheemen, F. K. van Evert, J. IJsselmuiden, and G. H. Kim, “Robot navigation in orchards with localization based on Particle filter and Kalman filter,” Computers and Electronics in Agriculture, vol. 157, pp. 261–269, 2019. H. Yu, P. Shi, C.-C. Lim, and D. Wang, “Formation control for multi-robot systems with collision avoidance,” International Journal of Control, vol. 92, no. 10, pp. 2223–2234, 2019. R. Lal, A. Sharda, and P. Prabhakar, “Optimal multi-robot path planning for pesticide spraying in agricultural fields,” in Proc. 56 th IEEE Annual Conference on Decision and Control (CDC), pp. 5815–5820, 2017. A. G. Millard, R. Ravikanna, R. Groß, and D. Chesmore, “Towards a swarm robotic system for autonomous cereal harvesting,” in Proc. Annual Conference Towards Au- tonomous Robotic Systems, pp. 458–461, Springer, 2019. C. Zhang and N. Noguchi, “Development of a multi-robot tractor system for agriculture field work,” Computers and Electronics in Agriculture, vol. 142, pp. 79 – 90, 2017. L. Monostori, “Cyber-physical production systems: Roots, expectations and r&d chal- lenges,” Procedia Cirp, vol. 17, pp. 9–13, 2014. C. Wang, H. Tnunay, Z. Zuo, B. Lennox, and Z. Ding, “Fixed-time formation con- trol of multirobot systems: Design and experiments,” IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 6292–6301, 2019. C. Nowzari and J. Cort ́es, “Distributed event-triggered coordination for average con- sensus on weight-balanced digraphs,” Automatica, vol. 68, pp. 237 – 244, 2016. F. Bullo, J. Cortes, and S. Martinez, Distributed control of robotic networks: a mathe- matical approach to motion coordination algorithms, vol. 27. Princeton University Press, 2009. A. Rahmani, J. Meng, M. Mehran, and E. Magnus, “Controllability of multi-agent sys- tems from a graph-theoretic perspective,” SIAM Journal on Control and Optimization, vol. 48, pp. 162–186, 2009. Hassan K. Khalil, Nonlinear Systems. Prentice Hall, 3 ed., 2002. S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and M. Egersted, “The robotarium: Globally impactful opportunities, challenges, and lessons learned in remote-access, distributed control of multirobot systems,” IEEE Control Systems Magazine, vol. 40, pp. 26–44, 2020. Federación Nacional de Arroceros (Fedearroz) and Fondo Nacional del Arroz, Informe de Gestión. Fondo Nacional del Arroz, División de Investigaciones Económicas, 2017. C. Nowzari and J. Cortés, “Zeno-free, distributed event-triggered communication and control for multi-agent average consensus,” in Proc. 2014 American Control Conference, pp. 2148–2153, 2014. S. S. Kia, J. Cortés, and S. Martínez, “Dynamic average consensus under limited control authority and privacy requirements,” International Journal of Robust and Nonlinear Control, vol. 25, pp. 1941–1966, sep 2015. C. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication and control of networked systems for multi-agent consensus,” Automatica, vol. 105, pp. 1–27, 2019. |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados al autor, 2021 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
133 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79937/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79937/2/1015457117.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79937/3/1015457117.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 c28a4ba4ddfd8122e89fe299ee548f9b cd7466c11e0c25c9fe7f83e6959e3df5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089458848366592 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mojica Nava, Eduardo Alirioe4a1a8ad2ab3b2c45a8785177a841de1Pabón Arias, Juan Davida094210011c46519a804f6529f321a26PROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN2021-08-12T21:44:01Z2021-08-12T21:44:01Z2021https://repositorio.unal.edu.co/handle/unal/79937Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasThis work presents the results of developing two event-triggered control laws for the navigation task of multi-robot systems. It is expected to apply the control laws in the seeding task of rice crops, where guaranteeing the correct navigation of multi-robot systems allows the precise seeding of the crops. The event-triggered control approach is implemented to guarantee that the control laws can operate on real robots where it is impossible to perform continuous-time communication. In addition to this, robots perform asynchronous communication caused by event-trigger functions that determine the times in which robots communicate among them. Depending on the velocity of robots and the characteristics of the desired trajectories, the event-trigger functions modify the times in which robots interchange information. It allows reducing energy consumption and the processing load in the sections of the trajectories where the speed of the robots is low. When the reference trajectories determine that robots need to have a higher velocity, the same functions allow robots to increase the information exchange. Thus, the control laws allow the systems to decrease the energy consumption of communication devices. To design the control laws, first, a Lyapunov function approach is used to find a function that ensures the stability of the first control law. It imposes the restriction that the control can only operate on undirected communication networks. The second control law is designed using a differential equations approach. With this, the restriction imposed by the first control law is removed. With the second control law, one of the most difficult issues in the field of event-triggered control is solved, the event-triggered control of weight-unbalanced directed networks. Finally, the control laws are tested in simulation and real robots. With this, the correct operation of multi-robot systems is proved and the design process of the control laws is completed. (Text taken from source)Este trabajo presenta los resultados del desarrollo de dos leyes de control activadas por eventos para la tarea de navegación de sistemas de múltiples robots. Se espera aplicar las leyes de control en la tarea de siembra de cultivos de arroz, donde garantizar la correcta navegación de los sistemas multi-robot permite la siembra precisa de los cultivos. El enfoque de control activado por eventos se implementa para garantizar que las leyes de control puedan operar en robots reales donde es imposible realizar comunicación de tiempo continuo. Además de esto, los robots realizan una comunicación asincrónica causada por funciones de activación de eventos que determinan los tiempos en que los robots se comunican entre ellos. Dependiendo de la velocidad de los robots y las características de las trayectorias deseadas, las funciones de activación de eventos modifican los tiempos en los que los robots intercambian información. Esto permite reducir el consumo de energía y la carga de procesamiento en los tramos de las trayectorias donde la velocidad de los robots es baja. Cuando las trayectorias de referencia determinan que los robots necesitan tener una velocidad más alta, las mismas funciones permiten a los robots aumentar el intercambio de información. Por lo tanto, las leyes de control permiten que los sistemas disminuyan el consumo de energía de los dispositivos de comunicación. Para diseñar las leyes de control, primero, se utiliza un enfoque de funciónes de Lyapunov para encontrar una función que asegure la estabilidad de la primera ley de control. Esto impone la restricción de que el control solo puede operar en redes de comunicación no dirigidas. La segunda ley de control se diseña utilizando un enfoque de ecuaciónes diferenciales. Con esto, se elimina la restricción impuesta por la primera ley de control. Con la segunda ley de control, se resuelve uno de los problemas más difíciles en el campo del control activado por eventos, el control activado por eventos de redes dirigidas no balanceadas. Finalmente, las leyes de control se prueban en simulación y robots reales. Con esto, se demuestra el correcto funcionamiento de los sistemas multi-robot y se completa el proceso de diseño de las leyes de control. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Automatización IndustrialControl y Robótica133 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Automatización IndustrialDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaControlRobóticaControl basado en eventosControl desencadenado por eventosSistemas multi-robotSistemas multi-agenteRoboticsEvent-Based ControlEvent-Triggered ControlMulti-Robot SystemsMulti-Agent SystemsControlAutomatizaciónAutomationControl automáticoAutomatic controlEvent-triggered control of multi-robot systems applied to seeding in rice cropsControl desencadenado por eventos de sistemas multi-robot aplicado a la siembra en cultivos de arrozTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMDepartamento Administrativo Nacional de Estadística (DANE), Producto Interno Bruto, Principales Resultados Año 2019 y IV Trismestre. DANE, 2020.Ministerio de Agricultura y Desarrollo Rural, Informe de Gestión Institucional, Vigencia 2019. Ministerio de Agricultura y Desarrollo Rural, 2020.Departamento Administrativo Nacional de Estad ́ıstica (DANE), Encuesta Nacional de Arroz Mecanizado, segundo Semestre 2018. DANE, 2019.Federación Nacional de Arroceros (Fedearroz), IV Censo Nacional Arrocero 2016. Fondo Nacional del Arroz, División de Investigaciones Económicas, 2017.Federación Nacional de Arroceros (Fedearroz), “Estadísticas Arroceras.” http://www. fedearroz.com.co/new/apr_public.php. March 2019.United States Department of Agriculture, “Historical Cost and Returns: Rice.” https://www.ers.usda.gov/data-products/commodity-costs-and-returns/. March 2019Grupo Técnico Fedearroz and Fondo Nacional del Arroz, Adopción Masiva de Tecnología (AMTEC) – Guía de trabajo. Fedearroz, 2015.T. Blender, T. Buchner, B. Fernandez, B. Pichlmaier, and C. Schlegel, “Mobile agricul- tural robot swarm for a seeding task,” University of Applied Sciences Ulm, Germany, 2016.Swarm Farm, “Swarm Farm Robots.” http://www.swarmfarm.com. May, 2019.J. Roldán, P. Garcia-Aunon, M. Garzón, J. de León, J. del Cerro, and A. Barrientos, “Heterogeneous multi-robot system for mapping environmental variables of green- houses,” Sensors, 2016.D. Albani, J. IJsselmuiden, R. Haken, and V. Trianni, “Monitoring and mapping with robot swarms for agricultural applications,” in Proc. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6, 2017.J. Kim and H. I. Son, “A voronoi diagram-based workspace partition for weak cooper- ation of multi-robot system in orchard,” IEEE Access, vol. 8, pp. 20676–20686, 2020.C. Wu, R. Zeng, J. Pan, C. C. L. Wang, and Y. Liu, “Plant phenotyping by deep- learning-based planner for multi-robots,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3113–3120, 2019.P. Singh, R. Tiwari, and M. Bhattacharya, “Navigation in multi robot system using co- operative learning: A survey,” in Proc. 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), pp. 145–150, 2016.F. J. Mendiburu, M. R. A. Morais, and A. M. N. Lima, “Behavior coordination in multi-robot systems,” in Proc. 2016 IEEE International Conference on Automatica (ICA-ACCA), pp. 1–7, 2016.D. Chandrasekhar Rao and M. Ranjan Kabat, “A trust based navigation control for multi-robot to avoid deadlock in a static environment using improved krill herd,” in Proc. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 810–817, 2018.Y. Zhou, H. Hu, Y. Liu, S.-W. Lin, and Z. Ding, “A distributed approach to robust control of multi-robot systems,” Automatica, vol. 98, pp. 1 – 13, 2018.G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based broadcasting for multi-agent average consensus,” Automatica, vol. 49, pp. 245–252, jan 2013J. P. L. S. de Almeida, R. T. Nakashima, F. Neves-Jr, and L. V. R. de Arruda, “Bio- inspired on-line path planner for cooperative exploration of unknown environment by a multi-robot system,” Robotics and Autonomous Systems, vol. 112, pp. 32 – 48, 2019.W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-triggered and self-triggered control,” in Proc. 51 st IEEE Conference on Decision and Control (CDC), pp. 3270–3285, 2012.L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.-P. Richard, and S. I. Niculescu, “Recent developments on the stability of systems with aperiodic sampling: An overview,” Automatica, vol. 76, pp. 309–335, 2017.D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed Event-Triggered Control for Multi-Agent Systems,” IEEE Transactions on Automatic Control, vol. 57, pp. 1291–1297, may 2012.M. Cao, F. Xiao, and L. Wang, “Event-based second-order consensus control for multi- agent systems via synchronous periodic event detection,” IEEE Transactions on Auto- matic Control, vol. 60, no. 9, pp. 2452–2457, 2015.N. T. Hung, F. C. Rego, and A. M. Pascoal, “Event-triggered communications for the synchronization of nonlinear multi agent systems on weight-balanced digraphs,” in Proc. 2019 18th European Control Conference (ECC), pp. 2713–2718, 2019.P. Tallapragada, M. Franceschetti, and J. Cort ́es, “Event-triggered control under time- varying rates and channel blackouts,” IFAC Journal of Systems and Control, vol. 9, p. 100064, 2019.W. Hu, C. Yang, T. Huang, and W. Gui, “A distributed dynamic event-triggered control approach to consensus of linear multiagent systems with directed networks,” IEEE Transactions on Cybernetics, vol. 50, no. 2, pp. 869–874, 2020.Mehran Mesbahi and Magnus Egerstedt, Graph Theoretic Methods in Multiagent Net-works. Princeton University Press, 2010.Dimitri P. Bertsekas, Network Optimization: Continuous and Discrete Models. Athena Scientific, 1998.J. Banasiak, “Logarithmic norms and regular perturbations of differential equations,” Annales Universitatis Mariae Curie-Sklodowska, vol. 73, no. 2, pp. 245 – 252, 2019.G. S ̈oderling, The Logarithmic Norm. History and Modern Theory. Lund University, 2006.J. Cort ́es and M. Egerstedt, “Coordinated control of multi-robot systems: A survey,” SICE Journal of Control, Measurement, and System Integration, vol. 10, pp. 495–503, 2017.KHUN, “ Ficha T ́ecnica Sembradoras Neum ́aticas Monograno – MAXIMA 3.” https: //zoom.kuhn.com/event/demoagro/_pdf/leaflets/MAXIMA_3_ES.pdf. March 2019.MASSEY FERGUSON, “ Sembradora Abonadora Versi ́on M.” http://mayfer.com. uy/web/wp-content/themes/mayfer/fichas-tecnicas/MF-300.pdf. April 2019.WINTERSTEIGER, “Sembradoras Monograno.” https://www.wintersteiger.com/ download/?file=8395. April 2019.Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario del Cono Sur, Agricultura de Precisi ́on: Integrando Conocimientos para una Agricultura Moderna y Sustentable. Instituto Interamericano de Cooperación para la Agricultura, 2015.Programa Cooperativo para el Desarrollo Tecnol ́ogico Agroalimentario del Cono Sur, Manual de Agricultura de Precisión. Instituto Interamericano de Cooperación para la Agricultura, 2014.Leiva, Fabio, “La Agricultura de precisi ́on: una producci ́on m ́as sostenible y competitiva con visi ́on futurista,” VIII Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de Cultivos. Bogotá, 2003.X. Gao, J. Li, L. Fan, Q. Zhou, K. Yin, J. Wang, C. Song, L. Huang, and Z. Wang, “Review of wheeled mobile robots’ navigation problems and application prospects in agriculture,” IEEE Access, vol. 6, pp. 49248–49268, 2018.P. M. Blok, K. van Boheemen, F. K. van Evert, J. IJsselmuiden, and G. H. Kim, “Robot navigation in orchards with localization based on Particle filter and Kalman filter,” Computers and Electronics in Agriculture, vol. 157, pp. 261–269, 2019.H. Yu, P. Shi, C.-C. Lim, and D. Wang, “Formation control for multi-robot systems with collision avoidance,” International Journal of Control, vol. 92, no. 10, pp. 2223–2234, 2019.R. Lal, A. Sharda, and P. Prabhakar, “Optimal multi-robot path planning for pesticide spraying in agricultural fields,” in Proc. 56 th IEEE Annual Conference on Decision and Control (CDC), pp. 5815–5820, 2017.A. G. Millard, R. Ravikanna, R. Groß, and D. Chesmore, “Towards a swarm robotic system for autonomous cereal harvesting,” in Proc. Annual Conference Towards Au- tonomous Robotic Systems, pp. 458–461, Springer, 2019.C. Zhang and N. Noguchi, “Development of a multi-robot tractor system for agriculture field work,” Computers and Electronics in Agriculture, vol. 142, pp. 79 – 90, 2017.L. Monostori, “Cyber-physical production systems: Roots, expectations and r&d chal- lenges,” Procedia Cirp, vol. 17, pp. 9–13, 2014.C. Wang, H. Tnunay, Z. Zuo, B. Lennox, and Z. Ding, “Fixed-time formation con- trol of multirobot systems: Design and experiments,” IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 6292–6301, 2019.C. Nowzari and J. Cort ́es, “Distributed event-triggered coordination for average con- sensus on weight-balanced digraphs,” Automatica, vol. 68, pp. 237 – 244, 2016.F. Bullo, J. Cortes, and S. Martinez, Distributed control of robotic networks: a mathe- matical approach to motion coordination algorithms, vol. 27. Princeton University Press, 2009.A. Rahmani, J. Meng, M. Mehran, and E. Magnus, “Controllability of multi-agent sys- tems from a graph-theoretic perspective,” SIAM Journal on Control and Optimization, vol. 48, pp. 162–186, 2009.Hassan K. Khalil, Nonlinear Systems. Prentice Hall, 3 ed., 2002.S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and M. Egersted, “The robotarium: Globally impactful opportunities, challenges, and lessons learned in remote-access, distributed control of multirobot systems,” IEEE Control Systems Magazine, vol. 40, pp. 26–44, 2020.Federación Nacional de Arroceros (Fedearroz) and Fondo Nacional del Arroz, Informe de Gestión. Fondo Nacional del Arroz, División de Investigaciones Económicas, 2017.C. Nowzari and J. Cortés, “Zeno-free, distributed event-triggered communication and control for multi-agent average consensus,” in Proc. 2014 American Control Conference, pp. 2148–2153, 2014.S. S. Kia, J. Cortés, and S. Martínez, “Dynamic average consensus under limited control authority and privacy requirements,” International Journal of Robust and Nonlinear Control, vol. 25, pp. 1941–1966, sep 2015.C. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication and control of networked systems for multi-agent consensus,” Automatica, vol. 105, pp. 1–27, 2019.EspecializadaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79937/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1015457117.2021.pdf1015457117.2021.pdfTesis de Maestría en Ingeniería - Automatización Industrialapplication/pdf6082231https://repositorio.unal.edu.co/bitstream/unal/79937/2/1015457117.2021.pdfc28a4ba4ddfd8122e89fe299ee548f9bMD52THUMBNAIL1015457117.2021.pdf.jpg1015457117.2021.pdf.jpgGenerated Thumbnailimage/jpeg4366https://repositorio.unal.edu.co/bitstream/unal/79937/3/1015457117.2021.pdf.jpgcd7466c11e0c25c9fe7f83e6959e3df5MD53unal/79937oai:repositorio.unal.edu.co:unal/799372024-07-27 00:15:57.967Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |