New candidates for multivariate trapdoor functions and new multivariate public key encryption schemes

Abstract: In this thesis we present a new method for building pairs of HFE1 polynomials of high degree, in such a way that the map constructed with this pair is easy to invert. The inversion is accomplished using a low degree polynomial of Hamming weight three, which is derived from a special reduct...

Full description

Autores:
Porras Barrera, Jaiberth
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/21674
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/21674
http://bdigital.unal.edu.co/12643/
Palabra clave:
51 Matemáticas / Mathematics
Polynomials
Low degree polynomial
Polynomial of Hamming
HFE polynomials
Cryptosystem
Polinomios HFE
Polinomios
Polinomio de grado bajo
Polinomios de peso de Hamming
Criptosistema
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_31e48d435b074e95623b771e36ac8357
oai_identifier_str oai:repositorio.unal.edu.co:unal/21674
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Baena, John BayronDing, JintaiPorras Barrera, Jaiberthedd44292-f41a-4f63-aa84-5c7ab5a8d4143002019-06-25T19:32:29Z2019-06-25T19:32:29Z2014https://repositorio.unal.edu.co/handle/unal/21674http://bdigital.unal.edu.co/12643/Abstract: In this thesis we present a new method for building pairs of HFE1 polynomials of high degree, in such a way that the map constructed with this pair is easy to invert. The inversion is accomplished using a low degree polynomial of Hamming weight three, which is derived from a special reduction via Hamming weight three polynomials produced by these two HFE polynomials. This allows us to build new candidates for multivariate trapdoor functions in which we use the pair of HFE polynomials to fabricate the core map. Using this new multivariate trapdoor function we derive an encryption scheme in a similar way as the HFE scheme is created. We show that this encryption scheme is relatively efficient and that it resists the attacks that have threatened the security of HFE. Finally, we propose parameters for a practical implementation of our cryptosystem.Resumen: En esta tesis presentamos un nuevo método para construir parejas de polinomios HFE2 de grado alto, de tal manera que la función construida con esta pareja es fácil de invertir. La inversión se lleva a cabo utilizando un polinomio de grado bajo y de peso de Hamming tres, el cual se deriva por medio de una reducción especial, a través de polinomios de peso de Hamming tres producidos a partir de estos dos polinomios HFE. Esto nos permite construir nuevas candidatas para funciones de puerta trasera multivariadas, en las cuales utilizamos la pareja de polinomios HFE para construir la función central. Utilizando esta nueva función de puerta trasera multivariada derivamos un esquema de cifrado de una manera similar a como se construye el esquema HFE. Demostramos que este esquema de cifrado es relativamente eficiente y que resiste los ataques que han amenazado la seguridad de HFE. Finalmente, proponemos parámetros para una aplicación práctica de nuestro criptosistema.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de MatemáticasEscuela de MatemáticasPorras Barrera, Jaiberth (2014) New candidates for multivariate trapdoor functions and new multivariate public key encryption schemes. Doctorado thesis, Universidad Nacional de Colombia Sede Medellín.51 Matemáticas / MathematicsPolynomialsLow degree polynomialPolynomial of HammingHFE polynomialsCryptosystemPolinomios HFEPolinomiosPolinomio de grado bajoPolinomios de peso de HammingCriptosistemaNew candidates for multivariate trapdoor functions and new multivariate public key encryption schemesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL70581525.2014.pdfTesis de Doctorado en Ciencias - Matemáticasapplication/pdf705003https://repositorio.unal.edu.co/bitstream/unal/21674/1/70581525.2014.pdfd63ed570f11949b3c75b024b2901571aMD51THUMBNAIL70581525.2014.pdf.jpg70581525.2014.pdf.jpgGenerated Thumbnailimage/jpeg4321https://repositorio.unal.edu.co/bitstream/unal/21674/2/70581525.2014.pdf.jpg4c2a42e4c2a8cb97e7523758b85b2894MD52unal/21674oai:repositorio.unal.edu.co:unal/216742023-10-03 23:04:37.98Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv New candidates for multivariate trapdoor functions and new multivariate public key encryption schemes
title New candidates for multivariate trapdoor functions and new multivariate public key encryption schemes
spellingShingle New candidates for multivariate trapdoor functions and new multivariate public key encryption schemes
51 Matemáticas / Mathematics
Polynomials
Low degree polynomial
Polynomial of Hamming
HFE polynomials
Cryptosystem
Polinomios HFE
Polinomios
Polinomio de grado bajo
Polinomios de peso de Hamming
Criptosistema
title_short New candidates for multivariate trapdoor functions and new multivariate public key encryption schemes
title_full New candidates for multivariate trapdoor functions and new multivariate public key encryption schemes
title_fullStr New candidates for multivariate trapdoor functions and new multivariate public key encryption schemes
title_full_unstemmed New candidates for multivariate trapdoor functions and new multivariate public key encryption schemes
title_sort New candidates for multivariate trapdoor functions and new multivariate public key encryption schemes
dc.creator.fl_str_mv Porras Barrera, Jaiberth
dc.contributor.author.spa.fl_str_mv Porras Barrera, Jaiberth
dc.contributor.spa.fl_str_mv Baena, John Bayron
Ding, Jintai
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Polynomials
Low degree polynomial
Polynomial of Hamming
HFE polynomials
Cryptosystem
Polinomios HFE
Polinomios
Polinomio de grado bajo
Polinomios de peso de Hamming
Criptosistema
dc.subject.proposal.spa.fl_str_mv Polynomials
Low degree polynomial
Polynomial of Hamming
HFE polynomials
Cryptosystem
Polinomios HFE
Polinomios
Polinomio de grado bajo
Polinomios de peso de Hamming
Criptosistema
description Abstract: In this thesis we present a new method for building pairs of HFE1 polynomials of high degree, in such a way that the map constructed with this pair is easy to invert. The inversion is accomplished using a low degree polynomial of Hamming weight three, which is derived from a special reduction via Hamming weight three polynomials produced by these two HFE polynomials. This allows us to build new candidates for multivariate trapdoor functions in which we use the pair of HFE polynomials to fabricate the core map. Using this new multivariate trapdoor function we derive an encryption scheme in a similar way as the HFE scheme is created. We show that this encryption scheme is relatively efficient and that it resists the attacks that have threatened the security of HFE. Finally, we propose parameters for a practical implementation of our cryptosystem.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014
dc.date.accessioned.spa.fl_str_mv 2019-06-25T19:32:29Z
dc.date.available.spa.fl_str_mv 2019-06-25T19:32:29Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/21674
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/12643/
url https://repositorio.unal.edu.co/handle/unal/21674
http://bdigital.unal.edu.co/12643/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Matemáticas
Escuela de Matemáticas
dc.relation.references.spa.fl_str_mv Porras Barrera, Jaiberth (2014) New candidates for multivariate trapdoor functions and new multivariate public key encryption schemes. Doctorado thesis, Universidad Nacional de Colombia Sede Medellín.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/21674/1/70581525.2014.pdf
https://repositorio.unal.edu.co/bitstream/unal/21674/2/70581525.2014.pdf.jpg
bitstream.checksum.fl_str_mv d63ed570f11949b3c75b024b2901571a
4c2a42e4c2a8cb97e7523758b85b2894
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089975722934272