Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas
Esta tesis presenta un algoritmo innovador diseñado para realizar detección de anomalías en diversos conjuntos de datos. Este método, denominado Anomaly Detection through Density Matrices and Fourier Features (AD-DMKDE), integra estimación de densidad basada en kernels (en inglés Kernel Density Esti...
- Autores:
-
Bustos-Briñez, Oscar Alberto
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85017
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Algoritmos (computadores)
Computer algorithms
Detección de anomalías
Algoritmos de aprendizaje automático
Estimación de densidad
Aprendizaje automático cuántico
Análisis de datos
Anomaly detection
Machine learning algorithms
Density estimation
Quantum machine learning
Data analysis
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_316bf037ed2511d07b2cb55de92b49bf |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85017 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas |
dc.title.translated.eng.fl_str_mv |
Development of an anomaly detection algorithm based on kernel density estimation, density matrices and quantum measurement |
title |
Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas |
spellingShingle |
Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Algoritmos (computadores) Computer algorithms Detección de anomalías Algoritmos de aprendizaje automático Estimación de densidad Aprendizaje automático cuántico Análisis de datos Anomaly detection Machine learning algorithms Density estimation Quantum machine learning Data analysis |
title_short |
Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas |
title_full |
Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas |
title_fullStr |
Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas |
title_full_unstemmed |
Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas |
title_sort |
Desarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticas |
dc.creator.fl_str_mv |
Bustos-Briñez, Oscar Alberto |
dc.contributor.advisor.none.fl_str_mv |
González Osorio, Fabio Augusto Gallego Mejia, Joseph Alejandro |
dc.contributor.author.none.fl_str_mv |
Bustos-Briñez, Oscar Alberto |
dc.contributor.researchgroup.spa.fl_str_mv |
Mindlab |
dc.contributor.orcid.spa.fl_str_mv |
0000-0003-0704-9117 |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores |
topic |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Algoritmos (computadores) Computer algorithms Detección de anomalías Algoritmos de aprendizaje automático Estimación de densidad Aprendizaje automático cuántico Análisis de datos Anomaly detection Machine learning algorithms Density estimation Quantum machine learning Data analysis |
dc.subject.lemb.spa.fl_str_mv |
Algoritmos (computadores) |
dc.subject.lemb.eng.fl_str_mv |
Computer algorithms |
dc.subject.proposal.spa.fl_str_mv |
Detección de anomalías Algoritmos de aprendizaje automático Estimación de densidad Aprendizaje automático cuántico Análisis de datos |
dc.subject.proposal.eng.fl_str_mv |
Anomaly detection Machine learning algorithms Density estimation Quantum machine learning Data analysis |
description |
Esta tesis presenta un algoritmo innovador diseñado para realizar detección de anomalías en diversos conjuntos de datos. Este método, denominado Anomaly Detection through Density Matrices and Fourier Features (AD-DMKDE), integra estimación de densidad basada en kernels (en inglés Kernel Density Estimation o KDE) y aprendizaje de máquina (conocida como Machine Learning en inglés) con las matrices de densidad y la medición cuántica, dos prometedores conceptos provenientes del campo de la computación cuántica. Se establecen las bases teóricas y metodológicas que sustentan este método; asimismo, se presentan los detalles de su desarrollo e implementación. Se realiza una comparación sistemática del algoritmo propuesto contra doce métodos variados de detección de anomalías; AD-DMKDE muestra un rendimiento competitivo al ser aplicado sobre una selección de veinticuatro conjuntos de datos. Se establecen las fortalezas y limitaciones del algoritmo propuesto y, a partir del análisis estadístico de su rendimiento, se enuncian una serie de conclusiones y posibles líneas de trabajo futuro. (Texto tomado d la fuente) |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-11-29T14:42:39Z |
dc.date.available.none.fl_str_mv |
2023-11-29T14:42:39Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85017 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85017 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aggarwal, Charu C. ; Aggarwal, Charu C.: An introduction to outlier analysis. Springer, 2017 Agrawal, Shikha ; Agrawal, Jitendra: Survey on anomaly detection using data mining techniques. En: Procedia Computer Science 60 (2015), p. 708–713 Ahmed, Faruk ; Courville, Aaron: Detecting semantic anomalies. En: Proceedings of the AAAI Conference on Artificial Intelligence Vol. 34, 2020, p. 3154–3162 Albuquerque Filho, JE ; Brand ̃ao, Laislla C. ; Fernandes, Bruno J. ; Maciel, Alexandre M.: A Review of Neural Networks for Anomaly Detection. En: IEEE Access (2022) Alloqmani, Ahad ; Abushark, Yoosef B. ; Khan, Asif I. ; Alsolami, Fawaz: Deep learning based anomaly detection in images: insights, challenges and recommendations. En: International Journal of Advanced Computer Science and Applications 12 (2021), Nr. 4 Alpaydin, Ethem: Introduction to machine learning. MIT press, 2020 An, Jinwon ; Cho, Sungzoon: Variational autoencoder based anomaly detection using reconstruction probability. En: Special lecture on IE 2 (2015), Nr. 1, p. 1–18 Arshad, Kinza ; Ali, Rao F. ; Muneer, Amgad ; Aziz, Izzatdin A. ; Naseer, Sheraz ; Khan, Nabeel S. ; Taib, Shakirah M.: Deep Reinforcement Learning for Anomaly Detection: A Systematic Review. En: IEEE Access (2022) Ash, Robert B.: Information theory. Courier Corporation, 2012 Breunig, Markus M. ; Kriegel, Hans-Peter ; Ng, Raymond T. ; Sander, J ̈org: LOF: identifying density-based local outliers. En: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 2000, p. 93–104 Brumer, Paul ; Gong, Jiangbin: Born rule in quantum and classical mechanics. En: Physical Review A 73 (2006), Nr. 5, p. 052109 Burkard, Guido ; Ladd, Thaddeus D. ; Nichol, John M. ; Pan, Andrew ; Petta, Jason R.: Semiconductor spin qubits. En: arXiv preprint arXiv:2112.08863 (2021) Chalapathy, Raghavendra ; Chawla, Sanjay: Deep learning for anomaly detection: A survey. En: arXiv preprint arXiv:1901.03407 (2019) Chandola, Varun ; Banerjee, Arindam ; Kumar, Vipin: Anomaly detection: A survey. En: ACM computing surveys (CSUR) 41 (2009), Nr. 3, p. 1–58 Chen, Yen-Chi: A tutorial on kernel density estimation and recent advances. En: Biostatistics & Epidemiology 1 (2017), Nr. 1, p. 161–187 Eimann, Raimund E.: Network event detection with entropy measures, ResearchSpace@ Auckland, Tesis de Grado, 2008 Erhan, Laura ; Ndubuaku, M ; Di Mauro, Mario ; Song, Wei ; Chen, Min ; Fortino, Giancarlo ; Bagdasar, Ovidiu ; Liotta, Antonio: Smart anomaly detection in sensor systems: A multi-perspective review. En: Information Fusion 67 (2021), p. 64–79 Filzmoser, Peter: A multivariate outlier detection method. Citeseer, 2004 Fraser, Katherine ; Homiller, Samuel ; Mishra, Rashmish K. ; Ostdiek, Bryan ; Schwartz, Matthew D.: Challenges for unsupervised anomaly detection in particle physics. En: Journal of High Energy Physics 2022 (2022), Nr. 3, p. 1–31 Gallego M, Joseph A. ; Gonz ́alez, Fabio A.: Quantum Adaptive Fourier Features for Neural Density Estimation. En: arXiv e-prints (2022), p. arXiv–2208 Bergmann, Paul ; Batzner, Kilian ; Fauser, Michael ; Sattlegger, David ; Steger, Carsten: The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. En: International Journal of Computer Vision 129 (2021), Nr. 4, p. 1038–1059 Brukner, ˇCaslav: On the quantum measurement problem. En: Quantum [Un] Speakables II: Half a Century of Bell’s Theorem (2017), p. 95–117 Bustos-Brinez, Oscar ; Gallego-Mejia, Joseph ; Gonz ́alez, Fabio A.: AD-DMKDE: Anomaly Detection through Density Matrices and Fourier Features. (2022 Bustos-Brinez, Oscar ; Gallego-Mejia, Joseph ; Gonz ́alez, Fabio A.: AD-DMKDE: Anomaly Detection Through Density Matrices and Fourier Features. En: Information Technology and Systems: ICITS 2023, Volume 1. Springer, 2023 Ciliberto, Carlo ; Herbster, Mark ; Ialongo, Alessandro D. ; Pontil, Massi- miliano ; Rocchetto, Andrea ; Severini, Simone ; Wossnig, Leonard: Quantum machine learning: a classical perspective. En: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2018), Nr. 2209, p. 20170551 Ding, Kaize ; Zhou, Qinghai ; Tong, Hanghang ; Liu, Huan: Few-shot network anomaly detection via cross-network meta-learning. En: Proceedings of the Web Conference 2021, 2021, p. 2448–2456 Gallego-Mejia, Joseph ; Bustos-Brinez, Oscar ; Gonz ́alez, Fabio A.: LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection. En: arXiv pre-print arXiv:2211.08525 (2022) Gallego-Mejia, Joseph A. ; Bustos-Brinez, Oscar A. ; Gonz ́alez, Fabio A.: InQMAD: Incremental Quantum Measurement Anomaly Detection. En: 2022 IEEE International Conference on Data Mining Workshops (ICDMW) IEEE, 2022, p. 787–796 Goix, Nicolas ; Sabourin, Anne ; Cl ́emenc ̧on, St ́ephan: On anomaly ranking and excess-mass curves. En: Artificial Intelligence and Statistics PMLR, 2015, p. 287–295 Gonz ́alez, Fabio A. ; Gallego, Alejandro ; Toledo-Cort ́es, Santiago ; Vargas- Calder ́on, Vladimir: Learning with density matrices and random features. En: Quan- tum Machine Intelligence 4 (2022), Nr. 2 Gonz ́alez, Fabio A. ; Vargas-Calder ́on, Vladimir ; Vinck-Posada, Herbert: Classification with quantum measurements. En: Journal of the Physical Society of Japan 90 (2021), Nr. 4, p. 044002 G ̈uhne, Otfried ; T ́oth, G ́eza: Entanglement detection. En: Physics Reports 474 (2009), Nr. 1-6, p. 1–75 Hagemann, Tanja ; Katsarou, Katerina: A systematic review on anomaly detection for cloud computing environments. En: 2020 3rd Artificial Intelligence and Cloud Computing Conference, 2020, p. 83–96 Hall, Brian C.: Systems and subsystems, multiple particles. En: Quantum theory for mathematicians. Springer, 2013, p. 419–440 Harrou, Fouzi ; Kadri, Farid ; Chaabane, Sondes ; Tahon, Christian ; Sun, Ying: Improved principal component analysis for anomaly detection: Application to an emer- gency department. En: Computers & Industrial Engineering 88 (2015), p. 63–77 Hayashi, Masahito ; Ishizaka, Satoshi ; Kawachi, Akinori ; Kimura, Gen ; Ogawa, Tomohiro: Introduction to quantum information science. Springer, 2014 Hewitt, Joshua ; Gelfand, Alan E. ; Quick, Nicola J. ; Cioffi, William R. ; Southall, Brandon L. ; DeRuiter, Stacy L. ; Schick, Robert S.: Kernel density estimation of conditional distributions to detect responses in satellite tag data. En: Animal Biotelemetry 10 (2022), Nr. 1, p. 28 Jaeger, Gregg: Quantum information. Springer, 2007 Janssens, J.H.M. ; Huszar, F. ; Postma, E.O. ; van den Herik, H.J.: Stochastic Outlier Selection. En: Tilburg centre for Creative Computing, techreport 1 (2012), p. 2012 Kalair, Kieran ; Connaughton, Colm: Anomaly detection and classification in traffic flow data from fluctuations in the flow–density relationship. En: Transportation Research Part C: Emerging Technologies 127 (2021), p. 103178 Kalinichenko, Leonid ; Shanin, Ivan ; Taraban, Ilia: Methods for anomaly detection: A survey. En: CEUR workshop proceedings Vol. 1297, 2014, p. 2025 Keyl, Michael: Fundamentals of quantum information theory. En: Physics reports 369 (2002), Nr. 5, p. 431–548 Khan, Tariq M. ; Robles-Kelly, Antonio: Machine learning: Quantum vs classical. En: IEEE Access 8 (2020), p. 219275–219294 Kim, Junbong ; Jeong, Kwanghee ; Choi, Hyomin ; Seo, Kisung: GAN-based anomaly detection in imbalance problems. En: Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16 Springer, 2020, p. 128–145 Kingma, Diederik P. ; Welling, Max: Auto-encoding variational bayes. En: arXiv preprint arXiv:1312.6114 (2013) Knorr, Edwin M. ; Ng, Raymond T. ; Tucakov, Vladimir: Distance-based outliers: algorithms and applications. En: The VLDB Journal 8 (2000), Nr. 3, p. 237–253 Kok, Pieter ; Munro, William J. ; Nemoto, Kae ; Ralph, Timothy C. ; Dowling, Jonathan P. ; Milburn, Gerard J.: Linear optical quantum computing with photonic qubits. En: Reviews of modern physics 79 (2007), Nr. 1, p. 135 Kriegel, Hans-Peter ; Kr ̈oger, Peer ; Zimek, Arthur: Outlier detection techniques. En: Tutorial at KDD 10 (2010), p. 1–76 Kulkarni, Viraj ; Kulkarni, Milind ; Pant, Aniruddha: Quantum computing methods for supervised learning. En: Quantum Machine Intelligence 3 (2021), Nr. 2, p. 1–14 Landsman, Nicolaas P.: Born rule and its interpretation. En: Compendium of quantum physics. Springer, 2009, p. 64–70 Leggett, Anthony J.: The quantum measurement problem. En: Science 307 (2005), Nr. 5711, p. 871–872 Li, Zheng ; Zhao, Yue ; Botta, Nicola ; Ionescu, Cezar ; Hu, Xiyang: COPOD: Copula-Based Outlier Detection, 2020. – ISSN 2374–8486, p. 1118–1123 Lindemann, Benjamin ; Maschler, Benjamin ; Sahlab, Nada ; Weyrich, Michael: A survey on anomaly detection for technical systems using LSTM networks. En: Computers in Industry 131 (2021), p. 103498 Liu, Boyang ; Tan, Pang-Ning ; Zhou, Jiayu: Unsupervised anomaly detection by robust density estimation. En: Proceedings of the AAAI Conference on Artificial Intelligence Vol. 36, 2022, p. 4101–4108 Liu, Fei T. ; Ting, Kai M. ; Zhou, Zhi-Hua: Isolation forest. En: 2008 eighth ieee international conference on data mining IEEE, 2008, p. 413–422 Lv, Peng ; Yu, Yanwei ; Fan, Yangyang ; Tang, Xianfeng ; Tong, Xiangrong: Layer-constrained variational autoencoding kernel density estimation model for anomaly detection. En: Knowledge-Based Systems 196 (2020). – ISSN 09507051 Ma, Xiaoxiao ; Wu, Jia ; Xue, Shan ; Yang, Jian ; Zhou, Chuan ; Sheng, Quan Z. ; Xiong, Hui ; Akoglu, Leman: A comprehensive survey on graph anomaly detection with deep learning. En: IEEE Transactions on Knowledge and Data Engineering (2021) M ̈akel ̈a, H ; Messina, Antonino: N-qubit states as points on the Bloch sphere. En: Physica Scripta 2010 (2010), Nr. T140, p. 014054 Mishra, Sidharth P. ; Sarkar, Uttam ; Taraphder, Subhash ; Datta, Sanjay ; Swain, D ; Saikhom, Reshma ; Panda, Sasmita ; Laishram, Menalsh: Multivariate statistical data analysis-principal component analysis (PCA). En: International Journal of Livestock Research 7 (2017), Nr. 5, p. 60–78 Moeller, John ; Srikumar, Vivek ; Swaminathan, Sarathkrishna ; Venkatasubramanian, Suresh ; Webb, Dustin: Continuous kernel learning. En: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II 16 Springer, 2016, p. 657–673 Nachman, Benjamin ; Shih, David: Anomaly detection with density estimation. En: Physical Review D 101 (2020), Nr. 7, p. 075042 Nassif, Ali B. ; Talib, Manar A. ; Nasir, Qassim ; Dakalbab, Fatima M.: Machine learning for anomaly detection: A systematic review. En: Ieee Access 9 (2021), p. 78658–78700 Nayak, Rashmiranjan ; Pati, Umesh C. ; Das, Santos K.: A comprehensive review on deep learning-based methods for video anomaly detection. En: Image and Vision Computing 106 (2021), p. 104078 Nielsen, Michael A. ; Chuang, Isaac L.: Quantum computation and Quantum information. 10th Anniversary edition. Cambridge University Press, 2010 Nowak-Brzezi ́nska, Agnieszka ; Hory ́n, Czeslaw: Outliers in rules-the comparision of LOF, COF and KMEANS algorithms. En: Procedia Computer Science 176 (2020), p. 1420–1429 Pang, Guansong ; Shen, Chunhua ; Cao, Longbing ; Hengel, Anton Van D.: Deep learning for anomaly detection: A review. En: ACM computing surveys (CSUR) 54 (2021), Nr. 2, p. 1–38 Park, Cheong H.: A Comparative Study for Outlier Detection Methods in High Dimensional Text Data. En: Journal of Artificial Intelligence and Soft Computing Research 13 (2023), Nr. 1, p. 5–17 Pedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thirion, B. ; Grisel, O. ; Blondel, M. ; Prettenhofer, P. ; Weiss, R. ; Dubourg, V. ; Vanderplas, J. ; Passos, A. ; Cournapeau, D. ; Brucher, M. ; Perrot, M. ; Duchesnay, E.: Scikit-learn: Machine Learning in Python. En: Journal of Machine Learning Research 12 (2011), p. 2825–2830 Pevn ́y, Tom ́aˇs: Loda: Lightweight on-line detector of anomalies. En: Machine Learning 102 (2016), p. 275–304. – ISSN 1573–0565 Pierna, JA F. ; Wahl, F ; De Noord, OE ; Massart, DL: Methods for outlier detection in prediction. En: Chemometrics and Intelligent Laboratory Systems 63 (2002), Nr. 1, p. 27–39 Rahimi, Ali ; Recht, Benjamin: Random Features for Large-Scale Kernel Machines. En: Proceedings of the 20th International Conference on Neural Information Processing Systems, Curran Associates Inc., 2007 (NIPS’07). – ISBN 9781605603520, p. 1177–1184 Ramaswamy, Sridhar ; Rastogi, Rajeev ; Shim, Kyuseok: Efficient Algorithms for Mining Outliers from Large Data Sets, Association for Computing Machinery, 2000. – ISBN 1581132174, p. 427438 Ramchoun, Hassan ; Ghanou, Youssef ; Ettaouil, Mohamed ; Janati Idrissi, Mohammed A.: Multilayer perceptron: Architecture optimization and training. (2016 Rayana, Shebuti. ODDS Library. 2016 Rettig, Laura ; Khayati, Mourad ; Cudr ́e-Mauroux, Philippe ; Pi ́orkowski, Michal: Online anomaly detection over big data streams. En: Applied Data Science: Lessons Learned for the Data-Driven Business (2019), p. 289–312 Reynolds, Douglas A. [u. a.]: Gaussian mixture models. En: Encyclopedia of biometrics 741 (2009), Nr. 659-663 Rousseeuw, Peter J. ; Driessen, Katrien V.: A fast algorithm for the minimum covariance determinant estimator. En: Technometrics 41 (1999), Nr. 3, p. 212–223 Ruff, L ; Kauffmann, J R. ; Vandermeulen, R A. ; Montavon, G ; Samek, W ; Kloft, M ; Dietterich, T G. ; Muller, K.-R.: A Unifying Review of Deep and Shallow Anomaly Detection. En: Proceedings of the IEEE 109 (2021), p. 756–795 Ruff, Lukas ; Vandermeulen, Robert ; Goernitz, Nico ; Deecke, Lucas ; Siddiqui, Shoaib A. ; Binder, Alexander ; M ̈uller, Emmanuel ; Kloft, Marius: Deep One-Class Classification, PMLR, 3 2018, p. 4393–4402 Sch ̈olkopf, Bernhard ; Platt, John C. ; Shawe-Taylor, John ; Smola, Alex J. ; Williamson, Robert C.: Estimating the support of a high-dimensional distribution. En: Neural computation (2001) Shaukat, Kamran ; Alam, Talha M. ; Luo, Suhuai ; Shabbir, Shakir ; Hameed, Ibrahim A. ; Li, Jiaming ; Abbas, Syed K. ; Javed, Umair: A review of time-series anomaly detection techniques: A step to future perspectives. En: Advances in Information and Communication: Proceedings of the 2021 Future of Information and Communication Conference (FICC), Volume 1 Springer, 2021, p. 865–877 Silverman, Bernard W.: Density estimation for statistics and data analysis. Vol. 26. CRC press, 1986 Soh, Youngsung ; Hae, Yongsuk ; Mehmood, Aamer ; Ashraf, R H. ; Kim, Intaek [u. a.]: Performance evaluation of various functions for kernel density estimation. En: Open J Appl Sci 3 (2013), Nr. 1, p. 58–64 Stadelmann, Thilo ; Amirian, Mohammadreza ; Arabaci, Ismail ; Arnold, Marek ; Duivesteijn, Gilbert F. ; Elezi, Ismail ; Geiger, Melanie ; L ̈orwald, Stefan ; Meier, Benjamin B. ; Rombach, Katharina [u. a.]: Deep learning in the wild. En: Artificial Neural Networks in Pattern Recognition: 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy, September 19–21, 2018, Proceedings 8 Springer, 2018, p. 17–38 Steinwart, Ingo ; Hush, Don ; Scovel, Clint: A Classification Framework for Anomaly Detection. En: Journal of Machine Learning Research 6 (2005), Nr. 2 Sun, Jiayu ; Wang, Xinzhou ; Xiong, Naixue ; Shao, Jie: Learning sparse representation with variational auto-encoder for anomaly detection. En: IEEE Access 6 (2018), p. 33353–33361 Tan, Pang-Ning ; Steinbach, Michael ; Kumar, Vipin: Introduction to data mining. Pearson Education India, 2016 Useche, Diego H. ; Bustos-Brinez, Oscar A. ; Gallego, Joseph A. ; Gonz ́alez, Fabio A.: Computing expectation values of adaptive Fourier density matrices for quantum anomaly detection in NISQ devices. 2022 Walczak, Steven: Artificial neural networks. En: Advanced methodologies and technologies in artificial intelligence, computer simulation, and human-computer interaction. IGI global, 2019, p. 40–53 Warmuth, Manfred K. ; Kuzmin, Dima: Bayesian generalized probability calculus for density matrices. En: Machine learning 78 (2010), Nr. 1-2, p. 63 Weglarczyk, Stanislaw: Kernel density estimation and its application. En: ITM Web of Conferences Vol. 23 EDP Sciences, 2018, p. 00037 Yang, Jie ; Xu, Ruijie ; Qi, Zhiquan ; Shi, Yong: Visual anomaly detection for images: A systematic survey. En: Procedia Computer Science 199 (2022), p. 471–478 Zenati, Houssam ; Romain, Manon ; Foo, Chuan-Sheng ; Lecouat, Bruno ; Chandrasekhar, Vijay: Adversarially learned anomaly detection. En: 2018 IEEE International conference on data mining (ICDM) IEEE, 2018, p. 727–736 Zhai, Shuangfei ; Cheng, Yu ; Lu, Weining ; Zhang, Zhongfei: Deep structured energy based models for anomaly detection. En: International conference on machine learning PMLR, 2016, p. 1100–1109 Zhao, Yue ; Nasrullah, Zain ; Li, Zheng: PyOD: A Python Toolbox for Scalable Outlier Detection. En: Journal of Machine Learning Research 20 (2019), Nr. 96, p. 1–7 Zhou, Fangrong ; Wen, Gang ; Ma, Yi ; Geng, Hao ; Huang, Ran ; Pei, Ling ; Yu, Wenxian ; Chu, Lei ; Qiu, Robert: A Comprehensive Survey for Deep-Learning-Based Abnormality Detection in Smart Grids with Multimodal Image Data. En: Applied Sciences 12 (2022), Nr. 11, p. 5336 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 52 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85017/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85017/2/1012433384.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85017/3/1012433384.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 38b29cce6e13ee48de10b46f1edc7c53 1afc1ae3d6f38ff54ad3617bf1010c26 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090052692606976 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio Augusto35912f60905ba6e179208c70e6024e80600Gallego Mejia, Joseph Alejandroefefb1c0f60204dcaa3f129555307e90600Bustos-Briñez, Oscar Alberto9798ee4fc7d48e13a2f48b78d8374940600Mindlab0000-0003-0704-91172023-11-29T14:42:39Z2023-11-29T14:42:39Z2023https://repositorio.unal.edu.co/handle/unal/85017Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Esta tesis presenta un algoritmo innovador diseñado para realizar detección de anomalías en diversos conjuntos de datos. Este método, denominado Anomaly Detection through Density Matrices and Fourier Features (AD-DMKDE), integra estimación de densidad basada en kernels (en inglés Kernel Density Estimation o KDE) y aprendizaje de máquina (conocida como Machine Learning en inglés) con las matrices de densidad y la medición cuántica, dos prometedores conceptos provenientes del campo de la computación cuántica. Se establecen las bases teóricas y metodológicas que sustentan este método; asimismo, se presentan los detalles de su desarrollo e implementación. Se realiza una comparación sistemática del algoritmo propuesto contra doce métodos variados de detección de anomalías; AD-DMKDE muestra un rendimiento competitivo al ser aplicado sobre una selección de veinticuatro conjuntos de datos. Se establecen las fortalezas y limitaciones del algoritmo propuesto y, a partir del análisis estadístico de su rendimiento, se enuncian una serie de conclusiones y posibles líneas de trabajo futuro. (Texto tomado d la fuente)This thesis presents a novel algorithm designed to perform anomaly detection on multiple data sets. This method, called Anomaly Detection through Density Matrices and Fourier Features (AD-DMKDE), integrates Kernel Density Estimation (KDE) and Machine Learning with density matrices and quantum measurement, two promising concepts from quantum computing. The theoretical and methodological foundations that support this method are established, along with the details of its development and implementation. A systematic comparison of the proposed algorithm with twelve state-of-the-art anomaly detection methods is presented, and AD-DMKDE demonstrates competitive performance when applied on twenty-four benchmark data sets. The strengths and limitations of the proposed algorithm are identified, and based on a statistical analysis of its performance, a series of conclusions and possible lines of future work are stated.MaestríaComputación Teóricaxiv, 52 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresAlgoritmos (computadores)Computer algorithmsDetección de anomalíasAlgoritmos de aprendizaje automáticoEstimación de densidadAprendizaje automático cuánticoAnálisis de datosAnomaly detectionMachine learning algorithmsDensity estimationQuantum machine learningData analysisDesarrollo de un algoritmo para detección de anomalías con base en estimación de densidad basada en kernels, matrices de densidad y medidas cuánticasDevelopment of an anomaly detection algorithm based on kernel density estimation, density matrices and quantum measurementTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAggarwal, Charu C. ; Aggarwal, Charu C.: An introduction to outlier analysis. Springer, 2017Agrawal, Shikha ; Agrawal, Jitendra: Survey on anomaly detection using data mining techniques. En: Procedia Computer Science 60 (2015), p. 708–713Ahmed, Faruk ; Courville, Aaron: Detecting semantic anomalies. En: Proceedings of the AAAI Conference on Artificial Intelligence Vol. 34, 2020, p. 3154–3162Albuquerque Filho, JE ; Brand ̃ao, Laislla C. ; Fernandes, Bruno J. ; Maciel, Alexandre M.: A Review of Neural Networks for Anomaly Detection. En: IEEE Access (2022)Alloqmani, Ahad ; Abushark, Yoosef B. ; Khan, Asif I. ; Alsolami, Fawaz: Deep learning based anomaly detection in images: insights, challenges and recommendations. En: International Journal of Advanced Computer Science and Applications 12 (2021), Nr. 4Alpaydin, Ethem: Introduction to machine learning. MIT press, 2020An, Jinwon ; Cho, Sungzoon: Variational autoencoder based anomaly detection using reconstruction probability. En: Special lecture on IE 2 (2015), Nr. 1, p. 1–18Arshad, Kinza ; Ali, Rao F. ; Muneer, Amgad ; Aziz, Izzatdin A. ; Naseer, Sheraz ; Khan, Nabeel S. ; Taib, Shakirah M.: Deep Reinforcement Learning for Anomaly Detection: A Systematic Review. En: IEEE Access (2022)Ash, Robert B.: Information theory. Courier Corporation, 2012Breunig, Markus M. ; Kriegel, Hans-Peter ; Ng, Raymond T. ; Sander, J ̈org: LOF: identifying density-based local outliers. En: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 2000, p. 93–104Brumer, Paul ; Gong, Jiangbin: Born rule in quantum and classical mechanics. En: Physical Review A 73 (2006), Nr. 5, p. 052109Burkard, Guido ; Ladd, Thaddeus D. ; Nichol, John M. ; Pan, Andrew ; Petta, Jason R.: Semiconductor spin qubits. En: arXiv preprint arXiv:2112.08863 (2021)Chalapathy, Raghavendra ; Chawla, Sanjay: Deep learning for anomaly detection: A survey. En: arXiv preprint arXiv:1901.03407 (2019)Chandola, Varun ; Banerjee, Arindam ; Kumar, Vipin: Anomaly detection: A survey. En: ACM computing surveys (CSUR) 41 (2009), Nr. 3, p. 1–58Chen, Yen-Chi: A tutorial on kernel density estimation and recent advances. En: Biostatistics & Epidemiology 1 (2017), Nr. 1, p. 161–187Eimann, Raimund E.: Network event detection with entropy measures, ResearchSpace@ Auckland, Tesis de Grado, 2008Erhan, Laura ; Ndubuaku, M ; Di Mauro, Mario ; Song, Wei ; Chen, Min ; Fortino, Giancarlo ; Bagdasar, Ovidiu ; Liotta, Antonio: Smart anomaly detection in sensor systems: A multi-perspective review. En: Information Fusion 67 (2021), p. 64–79Filzmoser, Peter: A multivariate outlier detection method. Citeseer, 2004Fraser, Katherine ; Homiller, Samuel ; Mishra, Rashmish K. ; Ostdiek, Bryan ; Schwartz, Matthew D.: Challenges for unsupervised anomaly detection in particle physics. En: Journal of High Energy Physics 2022 (2022), Nr. 3, p. 1–31Gallego M, Joseph A. ; Gonz ́alez, Fabio A.: Quantum Adaptive Fourier Features for Neural Density Estimation. En: arXiv e-prints (2022), p. arXiv–2208Bergmann, Paul ; Batzner, Kilian ; Fauser, Michael ; Sattlegger, David ; Steger, Carsten: The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. En: International Journal of Computer Vision 129 (2021), Nr. 4, p. 1038–1059Brukner, ˇCaslav: On the quantum measurement problem. En: Quantum [Un] Speakables II: Half a Century of Bell’s Theorem (2017), p. 95–117Bustos-Brinez, Oscar ; Gallego-Mejia, Joseph ; Gonz ́alez, Fabio A.: AD-DMKDE: Anomaly Detection through Density Matrices and Fourier Features. (2022Bustos-Brinez, Oscar ; Gallego-Mejia, Joseph ; Gonz ́alez, Fabio A.: AD-DMKDE: Anomaly Detection Through Density Matrices and Fourier Features. En: Information Technology and Systems: ICITS 2023, Volume 1. Springer, 2023Ciliberto, Carlo ; Herbster, Mark ; Ialongo, Alessandro D. ; Pontil, Massi- miliano ; Rocchetto, Andrea ; Severini, Simone ; Wossnig, Leonard: Quantum machine learning: a classical perspective. En: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2018), Nr. 2209, p. 20170551Ding, Kaize ; Zhou, Qinghai ; Tong, Hanghang ; Liu, Huan: Few-shot network anomaly detection via cross-network meta-learning. En: Proceedings of the Web Conference 2021, 2021, p. 2448–2456Gallego-Mejia, Joseph ; Bustos-Brinez, Oscar ; Gonz ́alez, Fabio A.: LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection. En: arXiv pre-print arXiv:2211.08525 (2022)Gallego-Mejia, Joseph A. ; Bustos-Brinez, Oscar A. ; Gonz ́alez, Fabio A.: InQMAD: Incremental Quantum Measurement Anomaly Detection. En: 2022 IEEE International Conference on Data Mining Workshops (ICDMW) IEEE, 2022, p. 787–796Goix, Nicolas ; Sabourin, Anne ; Cl ́emenc ̧on, St ́ephan: On anomaly ranking and excess-mass curves. En: Artificial Intelligence and Statistics PMLR, 2015, p. 287–295Gonz ́alez, Fabio A. ; Gallego, Alejandro ; Toledo-Cort ́es, Santiago ; Vargas- Calder ́on, Vladimir: Learning with density matrices and random features. En: Quan- tum Machine Intelligence 4 (2022), Nr. 2Gonz ́alez, Fabio A. ; Vargas-Calder ́on, Vladimir ; Vinck-Posada, Herbert: Classification with quantum measurements. En: Journal of the Physical Society of Japan 90 (2021), Nr. 4, p. 044002G ̈uhne, Otfried ; T ́oth, G ́eza: Entanglement detection. En: Physics Reports 474 (2009), Nr. 1-6, p. 1–75Hagemann, Tanja ; Katsarou, Katerina: A systematic review on anomaly detection for cloud computing environments. En: 2020 3rd Artificial Intelligence and Cloud Computing Conference, 2020, p. 83–96Hall, Brian C.: Systems and subsystems, multiple particles. En: Quantum theory for mathematicians. Springer, 2013, p. 419–440Harrou, Fouzi ; Kadri, Farid ; Chaabane, Sondes ; Tahon, Christian ; Sun, Ying: Improved principal component analysis for anomaly detection: Application to an emer- gency department. En: Computers & Industrial Engineering 88 (2015), p. 63–77Hayashi, Masahito ; Ishizaka, Satoshi ; Kawachi, Akinori ; Kimura, Gen ; Ogawa, Tomohiro: Introduction to quantum information science. Springer, 2014Hewitt, Joshua ; Gelfand, Alan E. ; Quick, Nicola J. ; Cioffi, William R. ; Southall, Brandon L. ; DeRuiter, Stacy L. ; Schick, Robert S.: Kernel density estimation of conditional distributions to detect responses in satellite tag data. En: Animal Biotelemetry 10 (2022), Nr. 1, p. 28Jaeger, Gregg: Quantum information. Springer, 2007Janssens, J.H.M. ; Huszar, F. ; Postma, E.O. ; van den Herik, H.J.: Stochastic Outlier Selection. En: Tilburg centre for Creative Computing, techreport 1 (2012), p. 2012Kalair, Kieran ; Connaughton, Colm: Anomaly detection and classification in traffic flow data from fluctuations in the flow–density relationship. En: Transportation Research Part C: Emerging Technologies 127 (2021), p. 103178Kalinichenko, Leonid ; Shanin, Ivan ; Taraban, Ilia: Methods for anomaly detection: A survey. En: CEUR workshop proceedings Vol. 1297, 2014, p. 2025Keyl, Michael: Fundamentals of quantum information theory. En: Physics reports 369 (2002), Nr. 5, p. 431–548Khan, Tariq M. ; Robles-Kelly, Antonio: Machine learning: Quantum vs classical. En: IEEE Access 8 (2020), p. 219275–219294Kim, Junbong ; Jeong, Kwanghee ; Choi, Hyomin ; Seo, Kisung: GAN-based anomaly detection in imbalance problems. En: Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16 Springer, 2020, p. 128–145Kingma, Diederik P. ; Welling, Max: Auto-encoding variational bayes. En: arXiv preprint arXiv:1312.6114 (2013)Knorr, Edwin M. ; Ng, Raymond T. ; Tucakov, Vladimir: Distance-based outliers: algorithms and applications. En: The VLDB Journal 8 (2000), Nr. 3, p. 237–253Kok, Pieter ; Munro, William J. ; Nemoto, Kae ; Ralph, Timothy C. ; Dowling, Jonathan P. ; Milburn, Gerard J.: Linear optical quantum computing with photonic qubits. En: Reviews of modern physics 79 (2007), Nr. 1, p. 135Kriegel, Hans-Peter ; Kr ̈oger, Peer ; Zimek, Arthur: Outlier detection techniques. En: Tutorial at KDD 10 (2010), p. 1–76Kulkarni, Viraj ; Kulkarni, Milind ; Pant, Aniruddha: Quantum computing methods for supervised learning. En: Quantum Machine Intelligence 3 (2021), Nr. 2, p. 1–14Landsman, Nicolaas P.: Born rule and its interpretation. En: Compendium of quantum physics. Springer, 2009, p. 64–70Leggett, Anthony J.: The quantum measurement problem. En: Science 307 (2005), Nr. 5711, p. 871–872Li, Zheng ; Zhao, Yue ; Botta, Nicola ; Ionescu, Cezar ; Hu, Xiyang: COPOD: Copula-Based Outlier Detection, 2020. – ISSN 2374–8486, p. 1118–1123Lindemann, Benjamin ; Maschler, Benjamin ; Sahlab, Nada ; Weyrich, Michael: A survey on anomaly detection for technical systems using LSTM networks. En: Computers in Industry 131 (2021), p. 103498Liu, Boyang ; Tan, Pang-Ning ; Zhou, Jiayu: Unsupervised anomaly detection by robust density estimation. En: Proceedings of the AAAI Conference on Artificial Intelligence Vol. 36, 2022, p. 4101–4108Liu, Fei T. ; Ting, Kai M. ; Zhou, Zhi-Hua: Isolation forest. En: 2008 eighth ieee international conference on data mining IEEE, 2008, p. 413–422Lv, Peng ; Yu, Yanwei ; Fan, Yangyang ; Tang, Xianfeng ; Tong, Xiangrong: Layer-constrained variational autoencoding kernel density estimation model for anomaly detection. En: Knowledge-Based Systems 196 (2020). – ISSN 09507051Ma, Xiaoxiao ; Wu, Jia ; Xue, Shan ; Yang, Jian ; Zhou, Chuan ; Sheng, Quan Z. ; Xiong, Hui ; Akoglu, Leman: A comprehensive survey on graph anomaly detection with deep learning. En: IEEE Transactions on Knowledge and Data Engineering (2021)M ̈akel ̈a, H ; Messina, Antonino: N-qubit states as points on the Bloch sphere. En: Physica Scripta 2010 (2010), Nr. T140, p. 014054Mishra, Sidharth P. ; Sarkar, Uttam ; Taraphder, Subhash ; Datta, Sanjay ; Swain, D ; Saikhom, Reshma ; Panda, Sasmita ; Laishram, Menalsh: Multivariate statistical data analysis-principal component analysis (PCA). En: International Journal of Livestock Research 7 (2017), Nr. 5, p. 60–78Moeller, John ; Srikumar, Vivek ; Swaminathan, Sarathkrishna ; Venkatasubramanian, Suresh ; Webb, Dustin: Continuous kernel learning. En: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II 16 Springer, 2016, p. 657–673Nachman, Benjamin ; Shih, David: Anomaly detection with density estimation. En: Physical Review D 101 (2020), Nr. 7, p. 075042Nassif, Ali B. ; Talib, Manar A. ; Nasir, Qassim ; Dakalbab, Fatima M.: Machine learning for anomaly detection: A systematic review. En: Ieee Access 9 (2021), p. 78658–78700Nayak, Rashmiranjan ; Pati, Umesh C. ; Das, Santos K.: A comprehensive review on deep learning-based methods for video anomaly detection. En: Image and Vision Computing 106 (2021), p. 104078Nielsen, Michael A. ; Chuang, Isaac L.: Quantum computation and Quantum information. 10th Anniversary edition. Cambridge University Press, 2010Nowak-Brzezi ́nska, Agnieszka ; Hory ́n, Czeslaw: Outliers in rules-the comparision of LOF, COF and KMEANS algorithms. En: Procedia Computer Science 176 (2020), p. 1420–1429Pang, Guansong ; Shen, Chunhua ; Cao, Longbing ; Hengel, Anton Van D.: Deep learning for anomaly detection: A review. En: ACM computing surveys (CSUR) 54 (2021), Nr. 2, p. 1–38Park, Cheong H.: A Comparative Study for Outlier Detection Methods in High Dimensional Text Data. En: Journal of Artificial Intelligence and Soft Computing Research 13 (2023), Nr. 1, p. 5–17Pedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thirion, B. ; Grisel, O. ; Blondel, M. ; Prettenhofer, P. ; Weiss, R. ; Dubourg, V. ; Vanderplas, J. ; Passos, A. ; Cournapeau, D. ; Brucher, M. ; Perrot, M. ; Duchesnay, E.: Scikit-learn: Machine Learning in Python. En: Journal of Machine Learning Research 12 (2011), p. 2825–2830Pevn ́y, Tom ́aˇs: Loda: Lightweight on-line detector of anomalies. En: Machine Learning 102 (2016), p. 275–304. – ISSN 1573–0565Pierna, JA F. ; Wahl, F ; De Noord, OE ; Massart, DL: Methods for outlier detection in prediction. En: Chemometrics and Intelligent Laboratory Systems 63 (2002), Nr. 1, p. 27–39Rahimi, Ali ; Recht, Benjamin: Random Features for Large-Scale Kernel Machines. En: Proceedings of the 20th International Conference on Neural Information Processing Systems, Curran Associates Inc., 2007 (NIPS’07). – ISBN 9781605603520, p. 1177–1184Ramaswamy, Sridhar ; Rastogi, Rajeev ; Shim, Kyuseok: Efficient Algorithms for Mining Outliers from Large Data Sets, Association for Computing Machinery, 2000. – ISBN 1581132174, p. 427438Ramchoun, Hassan ; Ghanou, Youssef ; Ettaouil, Mohamed ; Janati Idrissi, Mohammed A.: Multilayer perceptron: Architecture optimization and training. (2016Rayana, Shebuti. ODDS Library. 2016Rettig, Laura ; Khayati, Mourad ; Cudr ́e-Mauroux, Philippe ; Pi ́orkowski, Michal: Online anomaly detection over big data streams. En: Applied Data Science: Lessons Learned for the Data-Driven Business (2019), p. 289–312Reynolds, Douglas A. [u. a.]: Gaussian mixture models. En: Encyclopedia of biometrics 741 (2009), Nr. 659-663Rousseeuw, Peter J. ; Driessen, Katrien V.: A fast algorithm for the minimum covariance determinant estimator. En: Technometrics 41 (1999), Nr. 3, p. 212–223Ruff, L ; Kauffmann, J R. ; Vandermeulen, R A. ; Montavon, G ; Samek, W ; Kloft, M ; Dietterich, T G. ; Muller, K.-R.: A Unifying Review of Deep and Shallow Anomaly Detection. En: Proceedings of the IEEE 109 (2021), p. 756–795Ruff, Lukas ; Vandermeulen, Robert ; Goernitz, Nico ; Deecke, Lucas ; Siddiqui, Shoaib A. ; Binder, Alexander ; M ̈uller, Emmanuel ; Kloft, Marius: Deep One-Class Classification, PMLR, 3 2018, p. 4393–4402Sch ̈olkopf, Bernhard ; Platt, John C. ; Shawe-Taylor, John ; Smola, Alex J. ; Williamson, Robert C.: Estimating the support of a high-dimensional distribution. En: Neural computation (2001)Shaukat, Kamran ; Alam, Talha M. ; Luo, Suhuai ; Shabbir, Shakir ; Hameed, Ibrahim A. ; Li, Jiaming ; Abbas, Syed K. ; Javed, Umair: A review of time-series anomaly detection techniques: A step to future perspectives. En: Advances in Information and Communication: Proceedings of the 2021 Future of Information and Communication Conference (FICC), Volume 1 Springer, 2021, p. 865–877Silverman, Bernard W.: Density estimation for statistics and data analysis. Vol. 26. CRC press, 1986Soh, Youngsung ; Hae, Yongsuk ; Mehmood, Aamer ; Ashraf, R H. ; Kim, Intaek [u. a.]: Performance evaluation of various functions for kernel density estimation. En: Open J Appl Sci 3 (2013), Nr. 1, p. 58–64Stadelmann, Thilo ; Amirian, Mohammadreza ; Arabaci, Ismail ; Arnold, Marek ; Duivesteijn, Gilbert F. ; Elezi, Ismail ; Geiger, Melanie ; L ̈orwald, Stefan ; Meier, Benjamin B. ; Rombach, Katharina [u. a.]: Deep learning in the wild. En: Artificial Neural Networks in Pattern Recognition: 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy, September 19–21, 2018, Proceedings 8 Springer, 2018, p. 17–38Steinwart, Ingo ; Hush, Don ; Scovel, Clint: A Classification Framework for Anomaly Detection. En: Journal of Machine Learning Research 6 (2005), Nr. 2Sun, Jiayu ; Wang, Xinzhou ; Xiong, Naixue ; Shao, Jie: Learning sparse representation with variational auto-encoder for anomaly detection. En: IEEE Access 6 (2018), p. 33353–33361Tan, Pang-Ning ; Steinbach, Michael ; Kumar, Vipin: Introduction to data mining. Pearson Education India, 2016Useche, Diego H. ; Bustos-Brinez, Oscar A. ; Gallego, Joseph A. ; Gonz ́alez, Fabio A.: Computing expectation values of adaptive Fourier density matrices for quantum anomaly detection in NISQ devices. 2022Walczak, Steven: Artificial neural networks. En: Advanced methodologies and technologies in artificial intelligence, computer simulation, and human-computer interaction. IGI global, 2019, p. 40–53Warmuth, Manfred K. ; Kuzmin, Dima: Bayesian generalized probability calculus for density matrices. En: Machine learning 78 (2010), Nr. 1-2, p. 63Weglarczyk, Stanislaw: Kernel density estimation and its application. En: ITM Web of Conferences Vol. 23 EDP Sciences, 2018, p. 00037Yang, Jie ; Xu, Ruijie ; Qi, Zhiquan ; Shi, Yong: Visual anomaly detection for images: A systematic survey. En: Procedia Computer Science 199 (2022), p. 471–478Zenati, Houssam ; Romain, Manon ; Foo, Chuan-Sheng ; Lecouat, Bruno ; Chandrasekhar, Vijay: Adversarially learned anomaly detection. En: 2018 IEEE International conference on data mining (ICDM) IEEE, 2018, p. 727–736Zhai, Shuangfei ; Cheng, Yu ; Lu, Weining ; Zhang, Zhongfei: Deep structured energy based models for anomaly detection. En: International conference on machine learning PMLR, 2016, p. 1100–1109Zhao, Yue ; Nasrullah, Zain ; Li, Zheng: PyOD: A Python Toolbox for Scalable Outlier Detection. En: Journal of Machine Learning Research 20 (2019), Nr. 96, p. 1–7Zhou, Fangrong ; Wen, Gang ; Ma, Yi ; Geng, Hao ; Huang, Ran ; Pei, Ling ; Yu, Wenxian ; Chu, Lei ; Qiu, Robert: A Comprehensive Survey for Deep-Learning-Based Abnormality Detection in Smart Grids with Multimodal Image Data. En: Applied Sciences 12 (2022), Nr. 11, p. 5336BibliotecariosEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85017/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1012433384.2023.pdf1012433384.2023.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf844836https://repositorio.unal.edu.co/bitstream/unal/85017/2/1012433384.2023.pdf38b29cce6e13ee48de10b46f1edc7c53MD52THUMBNAIL1012433384.2023.pdf.jpg1012433384.2023.pdf.jpgGenerated Thumbnailimage/jpeg4506https://repositorio.unal.edu.co/bitstream/unal/85017/3/1012433384.2023.pdf.jpg1afc1ae3d6f38ff54ad3617bf1010c26MD53unal/85017oai:repositorio.unal.edu.co:unal/850172024-08-19 23:11:20.943Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |