Evaluación del comportamiento in vitro de genotipos de soya durante la transformación genética mediada por Agrobacterium tumefaciens.

ilustraciones, diagramas

Autores:
Rodriguez Abril, Edna Yadira
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80567
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80567
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Soybean
Soya
In vitro culture
Ciltivo in vitro
Regeneración in vitro
Genotipos
Regeneración
Transformación
Glifosato
Genotype
Regeneration
Transformation
Glyphosate
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_314845574b250a06cd9e6a21babf1046
oai_identifier_str oai:repositorio.unal.edu.co:unal/80567
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del comportamiento in vitro de genotipos de soya durante la transformación genética mediada por Agrobacterium tumefaciens.
dc.title.translated.eng.fl_str_mv Evaluation of the in vitro behavior of soybean genotypes during genetic transformation mediated by Agrobacterium tumefaciens.
title Evaluación del comportamiento in vitro de genotipos de soya durante la transformación genética mediada por Agrobacterium tumefaciens.
spellingShingle Evaluación del comportamiento in vitro de genotipos de soya durante la transformación genética mediada por Agrobacterium tumefaciens.
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Soybean
Soya
In vitro culture
Ciltivo in vitro
Regeneración in vitro
Genotipos
Regeneración
Transformación
Glifosato
Genotype
Regeneration
Transformation
Glyphosate
title_short Evaluación del comportamiento in vitro de genotipos de soya durante la transformación genética mediada por Agrobacterium tumefaciens.
title_full Evaluación del comportamiento in vitro de genotipos de soya durante la transformación genética mediada por Agrobacterium tumefaciens.
title_fullStr Evaluación del comportamiento in vitro de genotipos de soya durante la transformación genética mediada por Agrobacterium tumefaciens.
title_full_unstemmed Evaluación del comportamiento in vitro de genotipos de soya durante la transformación genética mediada por Agrobacterium tumefaciens.
title_sort Evaluación del comportamiento in vitro de genotipos de soya durante la transformación genética mediada por Agrobacterium tumefaciens.
dc.creator.fl_str_mv Rodriguez Abril, Edna Yadira
dc.contributor.advisor.none.fl_str_mv Soto Sedano, Johana Carolina
Chaparro Giraldo, Alejandro
dc.contributor.author.none.fl_str_mv Rodriguez Abril, Edna Yadira
dc.contributor.researchgroup.spa.fl_str_mv Ingeniería Genética de Plantas
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Soybean
Soya
In vitro culture
Ciltivo in vitro
Regeneración in vitro
Genotipos
Regeneración
Transformación
Glifosato
Genotype
Regeneration
Transformation
Glyphosate
dc.subject.lemb.none.fl_str_mv Soybean
Soya
In vitro culture
Ciltivo in vitro
Regeneración in vitro
dc.subject.proposal.spa.fl_str_mv Genotipos
Regeneración
Transformación
Glifosato
dc.subject.proposal.eng.fl_str_mv Genotype
Regeneration
Transformation
Glyphosate
description ilustraciones, diagramas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-16T15:24:25Z
dc.date.available.none.fl_str_mv 2021-10-16T15:24:25Z
dc.date.issued.none.fl_str_mv 2021-11-09
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80567
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80567
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Anami, S., Njuguna, E., Coussens, G., Aesaert, S., & Van Lijsebettens, M. (2013). Higher plant transformation: Principles and molecular tools. International Journal of Developmental Biology, 57(6–8), 483–494. https://doi.org/10.1387/ijdb.130232mv
Barfoot, P., & Brookes, G. (2014). Key global environmental impacts of genetically modified (GM) crop use 1996-2012. GM Crops & Food, 5(2), 149–160. https://doi.org/10.4161/gmcr.28449
Barry, G., Kishore, G., Padgette, S., & Talling, W. (1997). Patente no US 6248876 B1. USA.
Caicedo Guerrero, S., Tibocha Ardila, Y., Campuzano Duque, L. F., Flórez Gómez, D. L., & Arguelles Cardenas, J. (2020). Productive performance of seven soybeans genotypes in acid soils of the Colombian Orinoquía. Agronomy Mesoamerican, 31(1), 59–68. https://doi.org/10.15517/AM.V31I1.34440
Christianson, M. L., Warnick, D. A., & Carlson, P. S. (1983). A Morphogenetically Competent Soybean Suspension Culture Abstract. SCIENCE, 222(7), 632–634.
Clemente, T. E., Lavallee, B. J., Howe, A. R., Conner-ward, D., Rozman, R. J., Hunter, P. E., … Hinchee, M. A. (2000). Progeny Analysis of Glyphosate Selected Transgenic Soybeans Derived from Agrobacterium-Mediated Transformation. CROP SCIENCE, 40, 797–803
Donaldson, P. A., & Simmonds, D. H. (2000). Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Reports, 19(5), 478–484. https://doi.org/10.1007/s002990050759
Droste, A., Pasquali, G., & Bodanese-Zanettini, M. H. (2002). Transgenic fertile plants of soybean [Glycine max (L.) Merrill] obtained from bombarded embryogenic tissue. Euphytica, 127(3), 367–376. https://doi.org/10.1023/A:1020370913140
Galindo, L. (2019). Establecimiento de una curva de selección in vitro con glifosato en un sistema de regeneración de tres variedades colombianas de soya (Glycine Max (L).Merrill). Universidad INCCA de Colombia.
Gelvin, S. B. (2003). Agrobacterium-Mediated Plant Transformation: the Biology behind the " Gene-Jockeying " Tool. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 67(1), 16–37. https://doi.org/10.1128/MMBR.67.1.16–37.2003
Gelvin, S. B. (2012). Traversing the cell : Agrobacterium T-DNA ’ s journey to the host genome, 3(March), 1–11. https://doi.org/10.3389/fpls.2012.00052
Heringer, A. S., Santa-Catarina, C., & Silveira, V. (2018). Insights from Proteomic Studies into Plant Somatic Embryogenesis. Proteomics, 18(5–6), 1–25. https://doi.org/10.1002/pmic.201700265
Hinchee, M. A. W., Connor-Ward, D. V., Newell, C. A., McDonnell, R. E., Sato, S. J., Gasser, C. S., … Horsch, R. B. (1988). Production of transgenic soybean plants using agrobacterium-mediated DNA transfer. Bio/Technology, 6(8), 915–922. https://doi.org/10.1038/nbt0888-915
ISAAA. (2019). ISAAA Brief 55-2019: Executive Summary Biotech Crops Drive Socio-Economic Development and Sustainable Environment in the New Frontier. International Service for the Acquisition of Agri-Biotech Applications (ISAAA). Retrieved from https://www.isaaa.org/resources/publications/briefs/55/executivesummary/default.asp
Jefferson, D. J., Graff, G. D., Chi-Ham, C. L., & Bennett, A. B. (2015). The emergence of agbiogenerics. Nature biotechnology, 33(8), 819.
Jimenez, J. (2014). Diseño de genes semi-sintéticos que confieran tolerancia a herbicidas en soya. Universidad Nacional de Colombia.
Lee, T., Tran, A., & Hansen, A. (2016). Major factors affecting global soybean and products trade projections.
Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., … Li, Y. (2017). Optimization of agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8(February), 1–15. https://doi.org/10.3389/fpls.2017.00246
Li, W., Ning, H., Lv, W., & Li, W. (2008). Optimization of the agrobacterium_mediated transformation systems of soybean cotyledonary node. Science Agriculture, 41, 971–977.
Li, Y. H., Li, W., Zhang, C., Yang, L., Chang, R. Z., Gaut, B. S., & Qiu, L. J. (2010). Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytologist, 188(1), 242–253. https://doi.org/10.1111/j.1469-8137.2010.03344.x
Ma, X. H., & Wu, T. L. (2008). Rapid and efficient regeneration in soybean [Glycine max (L.) Merrill] from whole cotyledonary node explants. Acta Physiologiae Plantarum, 30(2), 209–216. https://doi.org/10.1007/s11738-007-0109-3
Miki, B., & McHugh, S. (2004). Selectable marker genes in transgenic plants: Applications, alternatives and biosafety. Journal of Biotechnology, 107(3), 193–232. https://doi.org/10.1016/j.jbiotec.2003.10.011
Ministerio de Agricultura y Desarrollo Rural. (2019). Soya. Direccion de cadenas agricolas y forestales. Nutrition & Food Science. https://doi.org/10.1108/nfs.2012.01742eaa.013
Olhoft, P. M., & Somers, D. A. (2001). L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Reports, 20(8), 706–711. https://doi.org/10.1007/s002990100379
Paes de Melo, B., Lourenço-Tessutti, I. T., Morgante, C. V., Santos, N. C., Pinheiro, L. B., de Jesus Lins, C. B., … Grossi-de-Sa, M. F. (2020). Soybean Embryonic Axis Transformation: Combining Biolistic and Agrobacterium-Mediated Protocols to Overcome Typical Complications of In Vitro Plant Regeneration. Frontiers in Plant Science, 11(August), 1–14. https://doi.org/10.3389/fpls.2020.01228
Pareddy, D., Chennareddy, S., Anthony, G., Sardesai, N., Mall, T., Minnicks, T., … Sarria, R. (2020). Improved soybean transformation for efficient and high throughput transgenic production. Transgenic Research, 29(3), 267–281. https://doi.org/10.1007/s11248-020-00198-8
Parrott, W. A., Hoffman, L. M., Hildebrand, D. F., Williams, E. G., & Collins, G. B. (1989). Recovery of primary transformants of soybean. Plant Cell Reports, 7, 615–617.
Paz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 25(3), 206–213.
Paz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., & Wang, K. (2004). Assessment of conditions affecting. Transformation, 167–179.
Qiu, L. J., Xing, L. L., Guo, Y., Wang, J., Jackson, S. A., & Chang, R. Z. (2013). A platform for soybean molecular breeding: The utilization of core collections for food security. Plant Molecular Biology, 83(1–2), 41–50. https://doi.org/10.1007/s11103-013-0076-6
Raza, G., Singh, M. B., & Bhalla, P. L. (2017). In Vitro Plant Regeneration from Commercial Cultivars of Soybean. BioMed Research International, 2017. https://doi.org/10.1155/2017/7379693
Raza, G., Singh, M. B., & Bhalla, P. L. (2020). Somatic embryogenesis and plant regeneration from commercial soybean cultivars. Plants, 9(1). https://doi.org/10.3390/plants9010038
Reddy, M. S. S., Dinkins, R. D., & Collins, G. B. (2003). Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Reports, 21(7), 676–683. https://doi.org/10.1007/s00299-002-0567-4
Reichert, N. A., Young, M. M., & Woods, A. (2003). Adventitious organogenic regeneration from soybean genotypes representing nine maturity groups. Plant Cell, Tissue and Organ Culture, 75, 273–277.
Ribichich Karina F. Mariana Chiozza, Selva Ávalos-Britez, Julieta V. Cabello, Augustin L. Arce, Geronimo Watson, Claudia Arias , Margarita Portapila , Federico Trucco , Maria E. Otegui and Raquel L. Chan. Successful field performance in warm and dry environments of soybean expressing the sunflower transcription factor HB4. Journal of Experimental Botany, Vol. 71, No. 10 pp. 3142–3156, 2020 doi:10.1093/jxb/eraa064.
Ridner, E. (2006). Soja, propiedades nutricionales y su impacto en la salud. Chemistry & ….
Rojas, A., Lopez Pazos, S., & Chaparro Giraldo, A. (2018). Screening of colombian soybean genotypes for agrobacterium mediated genetic transformation conferring tolerance to glyphosate. Agronomia Colombiana, 36(1), 24–34. https://doi.org/10.15446/agron.colomb.v36n1.67440
Rose, R. J. (2019). Somatic embryogenesis in the Medicago truncatula model: Cellular and molecular mechanisms. Frontiers in Plant Science, 10(March). https://doi.org/10.3389/fpls.2019.00267
Rüdelsheim, P., Dumont, P., Freyssinet, G., Pertry, I., & Heijde, M. (2018). Off-Patent Transgenic Events: Challenges and Opportunities for New Actors and Markets in Agriculture. Frontiers in bioengineering and biotechnology, 6, 71. https://doi.org/10.3389/fbioe.2018.00071
Salammal, T., Ramesh, V., Jiang, S.-Y., Ganapathi, A., & Ramachandr, S. (2013). In vitro Regeneration and Genetic Transformation of Soybean: Current Status and Future Prospects. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. https://doi.org/10.5772/54268
Siehl Daniel L, Yumin Tao , Henrik Albert , Yuxia Dong , Matthew Heckert , Alfredo Madrigal , Brishette Lincoln-Cabatu , Jian Lu , Tamara Fenwick , Ericka Bermudez , Marian Sandoval , Caroline Horn , Jerry M Green , Theresa Hale , Peggy Pagano , Jenna Clark , Ingrid A Udranszky , Nancy Rizzo , Timothy Bourett , Richard J Howard , David H Johnson , Mark Vogt , Goke Akinsola , Linda Castle. Broad 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicide tolerance in soybean with an optimized enzyme and expression cassette. Plant Physiol. 2014 Nov;166(3):1162-76. doi: 10.1104/pp.114.247205
Shou, H., Frame, B. R., Whitham, S. A., & Wang, K. (2004). Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Molecular Breeding, 13(2), 201–208. https://doi.org/10.1023/B:MOLB.0000018767.64586.53
Somers, D. A., Samac, D. A., & Olhoft, P. M. (2003). Recent advances in legume transformation. Plant Physiology, 131(3), 892–899. https://doi.org/10.1104/pp.102.017681
Song, Z. yue, Tian, J. luan, Fu, W. zhe, Li, L., Lu, L. hong, Zhou, L., … Shou, H. xia. (2013). Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Journal of Zhejiang University. Science. B, 14(4), 289–298. https://doi.org/10.1631/jzus.B1200278
Soto, N., Delgado, C., Hernández, Y., Rosabal, Y., Ferreira, A., Pujol, M., … Enríquez, G. A. (2017). Efficient particle bombardment-mediated transformation of Cuban soybean (INCASoy-36) using glyphosate as a selective agent. Plant Cell, Tissue and Organ Culture, 128(1), 187–196. https://doi.org/10.1007/s11240-016-1099-x
Soto, N., Ferreira, A., Delgado, C., & Enríquez, G. a. (2016). In vitro regeneration of soybean plants of the Cuban Incasoy-36 variety. Biotecnologia Aplicada, 30(1), 34–38.
Steward, F. C., Mapes, M. O., & Mears, K. (1958). GROWTH AND ORGANIZED DEVELOPMENT OF CULTURED CELLS. II. Organization in Cultures Grown from Freely Suspended Cell. American Journal of Botany, 45(10), 705–708. https://doi.org/10.1002/j.1537-2197.1958.tb10599.x
Sundar, I. K., & Sakthivel, N. (2008). Advances in selectable marker genes for plant transformation. Journal of Plant Physiology, 165(16), 1698–1716. https://doi.org/10.1016/j.jplph.2008.08.002
Travella, S., Ross, S. M., Harden, J., Everett, C., Snape, J. W., & Harwood, W. A. (2005). A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Reports, 23(12), 780–789. https://doi.org/10.1007/s00299-004-0892-x
Valencia R., R., Carmen C, H., Vargas, H., & Arrieta, G. (2006). Variedades mejoradas de soya para zonas productoras actuales y potenciales de Colombia. Corpoica Ciencia y Tecnología Agropecuaria, 4(2–3), 7–15.
Valencia R., R., & Ligarreto M., G. (2010). Soybean breeding (Glycine max [L.] Merril) for the Colombian Altillanura: a prospective and conceptual view. Agronomía Colombiana, 28(2), 155–163.
Von Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., & Filonova, L. (2002). Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69(3), 233–249. https://doi.org/10.1023/A:1015673200621
Yang, S., Hu, Y., Cheng, Z., Rice, J. H., Miao, L., Ma, J., … Gai, J. (2019). An efficient Agrobacterium-mediated soybean transformation method using green fluorescent protein as a selectable marker. Plant Signaling and Behavior, 14(7), 1–7. https://doi.org/10.1080/15592324.2019.1612682
Zeng, P., Vadnais, D. A., Zhang, Z., & Polacco, J. C. (2004). Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Reports. https://doi.org/10.1007/s00299-003-0712-8
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 55 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.department.spa.fl_str_mv Departamento de Agronómicas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80567/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80567/2/1030532866.pdf
https://repositorio.unal.edu.co/bitstream/unal/80567/3/1030532866.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
17fb6a8a2eeb984651206eb4acc7acb3
9c83cbcb859d7335646f6c36260416cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089587502350336
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Soto Sedano, Johana Carolinaa23116a7e4bfbd576593044f3f2c5741Chaparro Giraldo, Alejandro0352f7295e6de906d5a65eadf07006feRodriguez Abril, Edna Yadira775f170dfa00822cbd5b59a4f7e8807aIngeniería Genética de Plantas2021-10-16T15:24:25Z2021-10-16T15:24:25Z2021-11-09https://repositorio.unal.edu.co/handle/unal/80567Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn esta investigación se estudiaron cuatro genotipos de soya colombiana (Brasilera 1, Brasilera 2, FNS01 y Soy SK-7), bajo un sistema de transformación genética mediada por Agrobacterium tumefaciens cepa AGL0, induciendo organogénesis directa a partir de nodo cotiledonar y realizando selección con el herbicida glifosato. Los genotipos fueron evaluados durante las fases in vitro de inducción de brote (IB), elongación de brote (EB) y enraizamiento. Además, se evaluó la etapa de endurecimiento y se determinó la eficiencia de transformación. No se encontraron diferencias significativas entre las cuatro variedades durante la fase in vitro ni durante el endurecimiento. Se obtuvieron transformantes de las cuatro variedades y la variedad Brasilera 1 presentó la mayor eficiencia de transformación con 3.7%. (Texto tomado de la fuente)In this research, four Colombian soybean genotypes (Brasilera 1, Brasilera 2, FNS01 y Soy SK-7) were studied under a system of genetic transformation mediated by Agrobacterium tumefaciens, strain AGL0, inducing direct organogenesis from the cotyledonary node and performing selection with the herbicide glyphosate. Genotypes were evaluated during the in vitro sprout induction (IB), sprout elongation (BE) and rooting phases. In addition, the hardening stage was evaluated, and transformation efficiency was determined. No significant differences were found between the four varieties during the in vitro phases or during hardening. Transformants of the four varieties were obtained, and Brasilera 1 presented the highest transformation efficiency at 3.7%.MaestríaMagister en ciencias agrariasGenética y fitomejoramientoxviii, 55 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Ciencias AgrariasDepartamento de AgronómicasFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesSoybeanSoyaIn vitro cultureCiltivo in vitroRegeneración in vitroGenotiposRegeneraciónTransformaciónGlifosatoGenotypeRegenerationTransformationGlyphosateEvaluación del comportamiento in vitro de genotipos de soya durante la transformación genética mediada por Agrobacterium tumefaciens.Evaluation of the in vitro behavior of soybean genotypes during genetic transformation mediated by Agrobacterium tumefaciens.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAnami, S., Njuguna, E., Coussens, G., Aesaert, S., & Van Lijsebettens, M. (2013). Higher plant transformation: Principles and molecular tools. International Journal of Developmental Biology, 57(6–8), 483–494. https://doi.org/10.1387/ijdb.130232mvBarfoot, P., & Brookes, G. (2014). Key global environmental impacts of genetically modified (GM) crop use 1996-2012. GM Crops & Food, 5(2), 149–160. https://doi.org/10.4161/gmcr.28449Barry, G., Kishore, G., Padgette, S., & Talling, W. (1997). Patente no US 6248876 B1. USA.Caicedo Guerrero, S., Tibocha Ardila, Y., Campuzano Duque, L. F., Flórez Gómez, D. L., & Arguelles Cardenas, J. (2020). Productive performance of seven soybeans genotypes in acid soils of the Colombian Orinoquía. Agronomy Mesoamerican, 31(1), 59–68. https://doi.org/10.15517/AM.V31I1.34440Christianson, M. L., Warnick, D. A., & Carlson, P. S. (1983). A Morphogenetically Competent Soybean Suspension Culture Abstract. SCIENCE, 222(7), 632–634.Clemente, T. E., Lavallee, B. J., Howe, A. R., Conner-ward, D., Rozman, R. J., Hunter, P. E., … Hinchee, M. A. (2000). Progeny Analysis of Glyphosate Selected Transgenic Soybeans Derived from Agrobacterium-Mediated Transformation. CROP SCIENCE, 40, 797–803Donaldson, P. A., & Simmonds, D. H. (2000). Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Reports, 19(5), 478–484. https://doi.org/10.1007/s002990050759Droste, A., Pasquali, G., & Bodanese-Zanettini, M. H. (2002). Transgenic fertile plants of soybean [Glycine max (L.) Merrill] obtained from bombarded embryogenic tissue. Euphytica, 127(3), 367–376. https://doi.org/10.1023/A:1020370913140Galindo, L. (2019). Establecimiento de una curva de selección in vitro con glifosato en un sistema de regeneración de tres variedades colombianas de soya (Glycine Max (L).Merrill). Universidad INCCA de Colombia.Gelvin, S. B. (2003). Agrobacterium-Mediated Plant Transformation: the Biology behind the " Gene-Jockeying " Tool. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 67(1), 16–37. https://doi.org/10.1128/MMBR.67.1.16–37.2003Gelvin, S. B. (2012). Traversing the cell : Agrobacterium T-DNA ’ s journey to the host genome, 3(March), 1–11. https://doi.org/10.3389/fpls.2012.00052Heringer, A. S., Santa-Catarina, C., & Silveira, V. (2018). Insights from Proteomic Studies into Plant Somatic Embryogenesis. Proteomics, 18(5–6), 1–25. https://doi.org/10.1002/pmic.201700265Hinchee, M. A. W., Connor-Ward, D. V., Newell, C. A., McDonnell, R. E., Sato, S. J., Gasser, C. S., … Horsch, R. B. (1988). Production of transgenic soybean plants using agrobacterium-mediated DNA transfer. Bio/Technology, 6(8), 915–922. https://doi.org/10.1038/nbt0888-915ISAAA. (2019). ISAAA Brief 55-2019: Executive Summary Biotech Crops Drive Socio-Economic Development and Sustainable Environment in the New Frontier. International Service for the Acquisition of Agri-Biotech Applications (ISAAA). Retrieved from https://www.isaaa.org/resources/publications/briefs/55/executivesummary/default.aspJefferson, D. J., Graff, G. D., Chi-Ham, C. L., & Bennett, A. B. (2015). The emergence of agbiogenerics. Nature biotechnology, 33(8), 819.Jimenez, J. (2014). Diseño de genes semi-sintéticos que confieran tolerancia a herbicidas en soya. Universidad Nacional de Colombia.Lee, T., Tran, A., & Hansen, A. (2016). Major factors affecting global soybean and products trade projections.Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., … Li, Y. (2017). Optimization of agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8(February), 1–15. https://doi.org/10.3389/fpls.2017.00246Li, W., Ning, H., Lv, W., & Li, W. (2008). Optimization of the agrobacterium_mediated transformation systems of soybean cotyledonary node. Science Agriculture, 41, 971–977.Li, Y. H., Li, W., Zhang, C., Yang, L., Chang, R. Z., Gaut, B. S., & Qiu, L. J. (2010). Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytologist, 188(1), 242–253. https://doi.org/10.1111/j.1469-8137.2010.03344.xMa, X. H., & Wu, T. L. (2008). Rapid and efficient regeneration in soybean [Glycine max (L.) Merrill] from whole cotyledonary node explants. Acta Physiologiae Plantarum, 30(2), 209–216. https://doi.org/10.1007/s11738-007-0109-3Miki, B., & McHugh, S. (2004). Selectable marker genes in transgenic plants: Applications, alternatives and biosafety. Journal of Biotechnology, 107(3), 193–232. https://doi.org/10.1016/j.jbiotec.2003.10.011Ministerio de Agricultura y Desarrollo Rural. (2019). Soya. Direccion de cadenas agricolas y forestales. Nutrition & Food Science. https://doi.org/10.1108/nfs.2012.01742eaa.013Olhoft, P. M., & Somers, D. A. (2001). L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Reports, 20(8), 706–711. https://doi.org/10.1007/s002990100379Paes de Melo, B., Lourenço-Tessutti, I. T., Morgante, C. V., Santos, N. C., Pinheiro, L. B., de Jesus Lins, C. B., … Grossi-de-Sa, M. F. (2020). Soybean Embryonic Axis Transformation: Combining Biolistic and Agrobacterium-Mediated Protocols to Overcome Typical Complications of In Vitro Plant Regeneration. Frontiers in Plant Science, 11(August), 1–14. https://doi.org/10.3389/fpls.2020.01228Pareddy, D., Chennareddy, S., Anthony, G., Sardesai, N., Mall, T., Minnicks, T., … Sarria, R. (2020). Improved soybean transformation for efficient and high throughput transgenic production. Transgenic Research, 29(3), 267–281. https://doi.org/10.1007/s11248-020-00198-8Parrott, W. A., Hoffman, L. M., Hildebrand, D. F., Williams, E. G., & Collins, G. B. (1989). Recovery of primary transformants of soybean. Plant Cell Reports, 7, 615–617.Paz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 25(3), 206–213.Paz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., & Wang, K. (2004). Assessment of conditions affecting. Transformation, 167–179.Qiu, L. J., Xing, L. L., Guo, Y., Wang, J., Jackson, S. A., & Chang, R. Z. (2013). A platform for soybean molecular breeding: The utilization of core collections for food security. Plant Molecular Biology, 83(1–2), 41–50. https://doi.org/10.1007/s11103-013-0076-6Raza, G., Singh, M. B., & Bhalla, P. L. (2017). In Vitro Plant Regeneration from Commercial Cultivars of Soybean. BioMed Research International, 2017. https://doi.org/10.1155/2017/7379693Raza, G., Singh, M. B., & Bhalla, P. L. (2020). Somatic embryogenesis and plant regeneration from commercial soybean cultivars. Plants, 9(1). https://doi.org/10.3390/plants9010038Reddy, M. S. S., Dinkins, R. D., & Collins, G. B. (2003). Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Reports, 21(7), 676–683. https://doi.org/10.1007/s00299-002-0567-4Reichert, N. A., Young, M. M., & Woods, A. (2003). Adventitious organogenic regeneration from soybean genotypes representing nine maturity groups. Plant Cell, Tissue and Organ Culture, 75, 273–277.Ribichich Karina F. Mariana Chiozza, Selva Ávalos-Britez, Julieta V. Cabello, Augustin L. Arce, Geronimo Watson, Claudia Arias , Margarita Portapila , Federico Trucco , Maria E. Otegui and Raquel L. Chan. Successful field performance in warm and dry environments of soybean expressing the sunflower transcription factor HB4. Journal of Experimental Botany, Vol. 71, No. 10 pp. 3142–3156, 2020 doi:10.1093/jxb/eraa064.Ridner, E. (2006). Soja, propiedades nutricionales y su impacto en la salud. Chemistry & ….Rojas, A., Lopez Pazos, S., & Chaparro Giraldo, A. (2018). Screening of colombian soybean genotypes for agrobacterium mediated genetic transformation conferring tolerance to glyphosate. Agronomia Colombiana, 36(1), 24–34. https://doi.org/10.15446/agron.colomb.v36n1.67440Rose, R. J. (2019). Somatic embryogenesis in the Medicago truncatula model: Cellular and molecular mechanisms. Frontiers in Plant Science, 10(March). https://doi.org/10.3389/fpls.2019.00267Rüdelsheim, P., Dumont, P., Freyssinet, G., Pertry, I., & Heijde, M. (2018). Off-Patent Transgenic Events: Challenges and Opportunities for New Actors and Markets in Agriculture. Frontiers in bioengineering and biotechnology, 6, 71. https://doi.org/10.3389/fbioe.2018.00071Salammal, T., Ramesh, V., Jiang, S.-Y., Ganapathi, A., & Ramachandr, S. (2013). In vitro Regeneration and Genetic Transformation of Soybean: Current Status and Future Prospects. A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships. https://doi.org/10.5772/54268Siehl Daniel L, Yumin Tao , Henrik Albert , Yuxia Dong , Matthew Heckert , Alfredo Madrigal , Brishette Lincoln-Cabatu , Jian Lu , Tamara Fenwick , Ericka Bermudez , Marian Sandoval , Caroline Horn , Jerry M Green , Theresa Hale , Peggy Pagano , Jenna Clark , Ingrid A Udranszky , Nancy Rizzo , Timothy Bourett , Richard J Howard , David H Johnson , Mark Vogt , Goke Akinsola , Linda Castle. Broad 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicide tolerance in soybean with an optimized enzyme and expression cassette. Plant Physiol. 2014 Nov;166(3):1162-76. doi: 10.1104/pp.114.247205Shou, H., Frame, B. R., Whitham, S. A., & Wang, K. (2004). Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Molecular Breeding, 13(2), 201–208. https://doi.org/10.1023/B:MOLB.0000018767.64586.53Somers, D. A., Samac, D. A., & Olhoft, P. M. (2003). Recent advances in legume transformation. Plant Physiology, 131(3), 892–899. https://doi.org/10.1104/pp.102.017681Song, Z. yue, Tian, J. luan, Fu, W. zhe, Li, L., Lu, L. hong, Zhou, L., … Shou, H. xia. (2013). Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Journal of Zhejiang University. Science. B, 14(4), 289–298. https://doi.org/10.1631/jzus.B1200278Soto, N., Delgado, C., Hernández, Y., Rosabal, Y., Ferreira, A., Pujol, M., … Enríquez, G. A. (2017). Efficient particle bombardment-mediated transformation of Cuban soybean (INCASoy-36) using glyphosate as a selective agent. Plant Cell, Tissue and Organ Culture, 128(1), 187–196. https://doi.org/10.1007/s11240-016-1099-xSoto, N., Ferreira, A., Delgado, C., & Enríquez, G. a. (2016). In vitro regeneration of soybean plants of the Cuban Incasoy-36 variety. Biotecnologia Aplicada, 30(1), 34–38.Steward, F. C., Mapes, M. O., & Mears, K. (1958). GROWTH AND ORGANIZED DEVELOPMENT OF CULTURED CELLS. II. Organization in Cultures Grown from Freely Suspended Cell. American Journal of Botany, 45(10), 705–708. https://doi.org/10.1002/j.1537-2197.1958.tb10599.xSundar, I. K., & Sakthivel, N. (2008). Advances in selectable marker genes for plant transformation. Journal of Plant Physiology, 165(16), 1698–1716. https://doi.org/10.1016/j.jplph.2008.08.002Travella, S., Ross, S. M., Harden, J., Everett, C., Snape, J. W., & Harwood, W. A. (2005). A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Reports, 23(12), 780–789. https://doi.org/10.1007/s00299-004-0892-xValencia R., R., Carmen C, H., Vargas, H., & Arrieta, G. (2006). Variedades mejoradas de soya para zonas productoras actuales y potenciales de Colombia. Corpoica Ciencia y Tecnología Agropecuaria, 4(2–3), 7–15.Valencia R., R., & Ligarreto M., G. (2010). Soybean breeding (Glycine max [L.] Merril) for the Colombian Altillanura: a prospective and conceptual view. Agronomía Colombiana, 28(2), 155–163.Von Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., & Filonova, L. (2002). Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69(3), 233–249. https://doi.org/10.1023/A:1015673200621Yang, S., Hu, Y., Cheng, Z., Rice, J. H., Miao, L., Ma, J., … Gai, J. (2019). An efficient Agrobacterium-mediated soybean transformation method using green fluorescent protein as a selectable marker. Plant Signaling and Behavior, 14(7), 1–7. https://doi.org/10.1080/15592324.2019.1612682Zeng, P., Vadnais, D. A., Zhang, Z., & Polacco, J. C. (2004). Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Reports. https://doi.org/10.1007/s00299-003-0712-8FENALCELICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80567/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1030532866.pdf1030532866.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf849300https://repositorio.unal.edu.co/bitstream/unal/80567/2/1030532866.pdf17fb6a8a2eeb984651206eb4acc7acb3MD52THUMBNAIL1030532866.pdf.jpg1030532866.pdf.jpgGenerated Thumbnailimage/jpeg5207https://repositorio.unal.edu.co/bitstream/unal/80567/3/1030532866.pdf.jpg9c83cbcb859d7335646f6c36260416cdMD53unal/80567oai:repositorio.unal.edu.co:unal/805672024-07-31 23:13:57.063Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==