Characterization of the wood Pinus oocarpa Schiede ex Schltdl.var.ochoterenai as structural raw material
ilustraciones, diagramas, tablas
- Autores:
-
Herrera Builes, Jhon Fredy
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81396
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas
670 - Manufactura::674 - Procesamiento de madera aserrada, productos de madera, corchos
Arboles maderables
Industria de la madera
Timber
Woodworking industry
Pinus oocarpa
Eficiencia anti contracción
Modificación de madera
Química de la madera
Anatomia de la madera
Flexión estática
Static flexion
Wood modification
Chemical wood
Anatomical wood
Anti-swelling efficiency
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_30b68c40e1e751cce53b25399ae6744a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81396 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Characterization of the wood Pinus oocarpa Schiede ex Schltdl.var.ochoterenai as structural raw material |
dc.title.translated.spa.fl_str_mv |
Caracterización de la madera pinus oocarpa Schiede ex Schltdl.var.ochoterenai como materia prima estructural |
title |
Characterization of the wood Pinus oocarpa Schiede ex Schltdl.var.ochoterenai as structural raw material |
spellingShingle |
Characterization of the wood Pinus oocarpa Schiede ex Schltdl.var.ochoterenai as structural raw material 630 - Agricultura y tecnologías relacionadas 670 - Manufactura::674 - Procesamiento de madera aserrada, productos de madera, corchos Arboles maderables Industria de la madera Timber Woodworking industry Pinus oocarpa Eficiencia anti contracción Modificación de madera Química de la madera Anatomia de la madera Flexión estática Static flexion Wood modification Chemical wood Anatomical wood Anti-swelling efficiency |
title_short |
Characterization of the wood Pinus oocarpa Schiede ex Schltdl.var.ochoterenai as structural raw material |
title_full |
Characterization of the wood Pinus oocarpa Schiede ex Schltdl.var.ochoterenai as structural raw material |
title_fullStr |
Characterization of the wood Pinus oocarpa Schiede ex Schltdl.var.ochoterenai as structural raw material |
title_full_unstemmed |
Characterization of the wood Pinus oocarpa Schiede ex Schltdl.var.ochoterenai as structural raw material |
title_sort |
Characterization of the wood Pinus oocarpa Schiede ex Schltdl.var.ochoterenai as structural raw material |
dc.creator.fl_str_mv |
Herrera Builes, Jhon Fredy |
dc.contributor.advisor.none.fl_str_mv |
Osorio Saraz, Jairo Alexander |
dc.contributor.author.none.fl_str_mv |
Herrera Builes, Jhon Fredy |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Ciencias Forestales |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas 670 - Manufactura::674 - Procesamiento de madera aserrada, productos de madera, corchos |
topic |
630 - Agricultura y tecnologías relacionadas 670 - Manufactura::674 - Procesamiento de madera aserrada, productos de madera, corchos Arboles maderables Industria de la madera Timber Woodworking industry Pinus oocarpa Eficiencia anti contracción Modificación de madera Química de la madera Anatomia de la madera Flexión estática Static flexion Wood modification Chemical wood Anatomical wood Anti-swelling efficiency |
dc.subject.lemb.spa.fl_str_mv |
Arboles maderables Industria de la madera |
dc.subject.lemb.eng.fl_str_mv |
Timber Woodworking industry |
dc.subject.proposal.spa.fl_str_mv |
Pinus oocarpa Eficiencia anti contracción Modificación de madera Química de la madera Anatomia de la madera Flexión estática |
dc.subject.proposal.eng.fl_str_mv |
Static flexion Wood modification Chemical wood Anatomical wood Anti-swelling efficiency |
description |
ilustraciones, diagramas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-03 |
dc.date.accessioned.none.fl_str_mv |
2022-03-28T15:05:54Z |
dc.date.available.none.fl_str_mv |
2022-03-28T15:05:54Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81396 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81396 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Adamopoulos, S., Hosseinpourpia, R., Mai, C. 2015. Tensile strength of handsheets prepared with macerated fibres from solid wood modified with cross-linking agents. Holzforschun 69(8): 959–966. Aguilar, J. 1980. Guía para la identificación de las coníferas de Guatemala, sector Público Agrícola. Instituto Nacional Forestal, Unidad Manejo Forestal, Departamento de Reforestación. Guatemala C.A. (S.D.E.). 105 p. Akgül M, Gümüşkaya E, and Korkut S. 2006. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludağ fir Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Science and Technology 41(3): 281–289. doi:10.1007/s00226-006-0110-9 Alén, R., Kotilainen, R., Zaman, A. 2002. Thermochemical behavior of Norway spruce (Picea abies) at 180-225 ºC. Wood Science and Technology 36(2): 163-171. Alma, M., Hafi, Z., Maldas, D. 1996. Dimensional stability of several wood species treated with vinyl monomers and polyethylene glycol-1000. International Journal of Polymeric Materials 32 (1): 93–99. Ates S, Hakan M, and Ozdemir H. 2009. Effects of heat treatment on Calabrian pine (Pinus brutia Ten.) wood. BioResources 4(3): 1032-1043. Awoyemi, L., and Jones, I. P. 2011. Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Science and Technology 45(2): 261-267. Bader, T., De Borst, K., Fackler, K., Ters, T., Braovac, S. 2013. A nano to macroscale study on structure– mechanics relationships of archaeological oak. Journal of Cultural Heritage 14(5): 377–388. Bastani, A., Adamopoulos, S., Militz, H. 2016. Shear strength of furfurylated, N-methylol melamine and thermally modified wood bonded with three conventional adhesives. Wood Material Science and Engineering 12(4): 236–241. Bardet. M.; Gerbaud, G.; Tran, Q.; Hediger, S. 2006. Study of interactions between polyethylene glycol and archaeological wood components by C-13 high-resolution solid-state CPMAS NMR. Journal of Archaeological Science 34(10): 1670–1676. https://dx.doi.org/10.1016 /j.jas.2006. 12.005. Batista, D.C., Bolzón de Muñiz, G. I., da Silva Oliveira, J.T., Paes, J B., Nisgoski, S. 2016. Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood: Part 1: Cell wall polymers and extractives contents. Maderas. Ciencia y Tecnología, (ahead), 0–0. doi:10.4067/s0718-221x2016005000025. Batista, D., Muñiz, G., Da Silva, J., Paes, J., Nisgoski, S. 2016. Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood: Part 1: Cell wall polymers and extractives contents. Maderas-Ciencia y Tecnología 18(2): 273-284. Behr, G., Bollmus, S., Gellerich, A., Militz, H. 2017. Improvement of mechanical properties of thermally modified hardwood through melamine treatment. Wood Material Science and Engineering 13(5): 262-270. Bekhta P, Niemz P (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforshung 57 (5): 539-546. Bernabé, R., Ávila, C., Rutiaga, Q. 2013. Componentes químicos de la madera de cinco especies de pino del municipio de Morelia, Michoacán. Madera y Bosques 19(2): 21-35. Bernabei, M., and Salvatici, M. C. 2016. In situ ESEM observations of spruce wood (Picea abies Karst.) during heat treatment. Wood Science and Technology 50(4): 715-726. Bernardis, A. and Popoff, O. 2009. Durability of Pinus elliottii wood impregnated with Quebracho Colorado (Schinopsis balansae) Bio-Protectives Extracts and CCA. Maderas. Ciencia and Tecnología (2): 107. doi: 10.4067/S0718-221X2009000200002. Berube, M.; Schorr, D.; Ball, R.; Landry, V.; Blanchet, P. 2017. Determination of in situ esterification parameters of citric acid-glycerol based polymers for wood impregnation. Journal of Polymers and the Environment 26(3): 970–979. https://dx.doi.org/10.1007/s10924-017-1011-8. Bhuiyan MTR, Hirai N, and Sobue N. 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science 46(6): 431–436. doi:10.1007/bf00765800 Biziks, V., Andersons, B., Beļkova, Ļ., Kapača, E., and Militz, H. 2013. Changes in the microstructure of birch wood after hydrothermal treatment. Wood Science and Technology 47: 717-735. Bjurhager, I., Halonen, H., Lindfors, E., Iversen, T., Almkvist, G., Gamstedt, E., Berglund, L. 2012. State of degradation in archeological oak from the 17th century Vasa ship: substantial strength loss correlates with reduction in (holo) cellulose molecular weight. Biomacromolecules 13(8): 2521–2527. Bjurhager, I., Ljungdahl, J., Wallstrom, L., Gamstedt, E., Berglund, L. 2010. Towards improved understanding of PEG impregnated waterlogged archaeological wood: A model study on recent oak. Holzforschung 64(2): 243–250. Boonstra, M., Acker, R., Tjerrdsma, B., Kegel, E. 2007. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science 64: 679–690. Boonstra MJ and Tjeerdsma, B. 2006. Chemical analysis of heat-treated softwoods. Holz Als Roh- Und Werkstoff, 64(3): 204–211. doi:10.1007/s00107-005-0078-4 Boonstra, M. J., Rijsdijk, J. F., Sander, C., Kegel, E., Tjeerdsma, B., Militz, H., van Acker, J., and Stevens, M. 2006. Microstructural and physical aspects of heat-treated wood. Part 1. Softwoods. Maderas. Ciencia y Tecnología 8(3): 193-208. Brito, J., Silva, F., Leao, M., Almeida, G. 2008. Chemical composition changes in Eucalyptus and Pinus woods submitted to heat treatment. Bioresource Technology 99: 8545-8548. Cabane, E., Keplinger, T., Merk, V., Hass, P., Burgert, I. 2014. Renewable and functional wood materials by grafting polymerization within cell walls. Chemsuschem 7:1020–1025. Cabezas-Romero JL, Salvo-Sepúlveda L, Contreras-Moraga H, Pérez-Peña N, Sepúlveda-Villarroel V, Wentzel M, and Ananias RA. 2021. Microstructure of thermally modified radiata pine wood. Bioresources 16(1): 1523-1533. Cai, X.; Riedl, B.; Zhang, S.Y.; Wan, H. 2007. Formation and properties of nanocomposites made up from solida spen wood, melamine-urea-formaldehyde, and clay. Holzforschung 61(2): 148–154. https://dx.doi. org/10.1515/HF.2007.027. Carvalho A.G., De Andrade, B.G., Donato, D.B., Da Silva, C.M.S., Carneiro, A.D.O., De Castro, V.R. and Zanuncio, A.J.V. 2020. Bonding performance of structural adhesives on heat-treated Mimosa scabrella and Pinus oocarpa wood. Cellulose Chemistry and Technology 54(7-8):663-668. Chiozza, F.; Santoni, I.; Pizzo, B. 2018. Discoloration of poly(vinyl acetate) (PVAc) gluelines in wood assemblies. Polymer Degradation and Stability 157: 90–99. Ref 37 https://dx.doi.org/ 10.1016/j.polymdegradstab.2018.10.003. Cipreses de Colombia S.A. 2017. Resumen público plan de manejo forestal. Medellín, Colombia. http:// nucleosdemadera.com/wp-content/uploads/2017/10/RESUMEN-P%C3%9ABLICO-PLAN-DE-MANE- JO-2017.pdf. Cooper, P.; Ung, Y.; Holzscherer, A. 1991. Diffusion into and bulking of the wood cell wall with polyethylene glycols (PEG). In Proceedings IRG Annual Meeting, IRG/WP/3660. The International Research Group on Wood Protection: Stockholm, Sweden. Cordero, J., Boshier, D. 2003. Arboles de Centroamérica: un manual para extensionistas. Oxford Forestry Institute (OFI), Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Oxford, UK, Costa Rica. 1079 p. Devi, R.; Ali, I.; Maji, T. 2003. Chemical modification of rubber wood with styrene in combination with a crosslinker: effect on dimensional stability and strength property. Bioresour Technology 88(3): 185–188. https:// dx.doi.org/10.1016/S0960-8524(03)00003-8. Ding T, Gu L, and Liu X. 2011. Influence of steam pressure on chemical changes of heat-treated Mongolian pine wood. Bioresources 6(2): 1880-1889. Dong, X.; Zhuo, X.; Liu, C. 2016. Improvement of decay resistance of wood by in-situ hybridization of reactive monomers and nano-SiO2 within wood. Applied Environmental Biotechnology 1(2): 56–62. http:// dx.doi.org/10.18063/AEB.2016.02.008. Dufau, B., Henrique, P., Esteves, W., Lazzarotto, M. and Gatto, D. 2015. Thermal tools in the evaluation of decayed and weathered wood polymer composites prepared by in situ polymerization. Journal of Thermal Analysis and Calorimetry 121: 1263–1271. doi: 10.1007/s10973-015-4647-4. Durmaz E, Ucuncu T, Karamanoglu M, and Kaymakci A. 2019. Effects of heat treatment on some characteristics of scots pine (Pinus sylvestris L.) wood. Bioresources 14(4): 9531-9543. Elaieb, M., Candelier, K., Pétrissans, A., Dumarçay, S., Gérardin, P., Pétrissans, M. 2015. Heat treatment of tunisian soft wood species effect on the durability, chemical modifications and mechanical properties. Maderas-Ciencia y Tecnología 17(4): 699 – 710. Engelund, E., Thygesen, L., Svensson, S., Hill, C. 2013. A critical discussion of the physics of wood–water interactions. Wood Science and Technology 47, 141–161. Ermeydan, M. 2018. Modification of spruce wood by UV-crosslinked PEG hydrogels inside wood cell walls. Reactive and Functional Polymers 131: 100–106. https://dx.doi.org/ 10.1016/ j.reactfunctpolym.2018.07.013. Emmerich, L., Bollmus, S., Militz, H. 2017. Wood modification with DMDHEU (1.3-dimethylol-4.5-dihydroxyethyleneurea) – state of the art, recent research activities and future perspectives. Wood Material Science and Engineering. 14: 1–16. Escoto, T., Beas, N., Contreras, H., Rodríguez, A., Diaz, S., Anzaldo, J., Vega, R. 2017. Caracterización dasométrica y químico-micrográfica de tres pinos y su viabilidad de aprovechamiento integral. Revista Mexicana de Ciencias Forestales 8(41):1-30. Doi: http://dx.doi.org/10.29298/rmcf.v8i41.28 Esteves, B., Domingos, I., Pereira, H. 2007. Improvement of technological quality of eucalypt wood by heat treatment in air at 170-200ºC. Forest Products Journal 57 (1-2): 47-52. Esteves, B., Domingos, I., Pereira, H. M. 2008. Pine wood modification by heat treatment in air. Bioresources 3(1): 142-154. Esteves, B., Graça, J., Pereira, H. 2008. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 62(3). doi:10.1515/hf.2008.057. Esteves, B., Nunes, L., Domingos, I., Pereira, H. 2014. Comparison between heat treated sapwood and heartwood from Pinus pinaster. European Journal of Wood and Wood Products 72(1): 53-60. Esteves, B., Pereira, H. 2008. Wood modification by heat treatment: a review. Bioresources 4: 370-404. Evans, P. 2009. Review of the weathering and photostability of modified wood. Wood Material Science & Engineering 4(1-2): 2–13. Ferrarini, S., Santos, H., Miranda, L., Azevedo, C., Pires, M., Maia, S. 2012. Classification of waste wood treated with chromated copper arsenate and boron/fluorine preservatives. Química Nova 35(9): 1767-1771. Frühwald, E. 2007. Effect of high-temperature drying on properties of Norway spruce and larch. Holz Roh Werkstoff 65: 411-418. Gadhave, R.; Mahanwar, P.; Gadekar, P. 2019. Cross-linking of polyninyl alcohol/starch blends by epoxy silane for improvement in thermal and mechanical properties. BioResources 14(2): 3833–3843. Gardner, D.; Bozo, A. 2018. Ten-year field study of wood plastic composites in Santiago, Chile: biological, mechanical and physical property performance. Maderas-Ciencia y Tecnología 20(2): 257–266. http://dx.doi. org/10.4067/S0718-221X2018005002901. Gérardin P, Petrič M, Petrissans M, Lambert J, and Ehrhrardt JJ. 2007. Evolution of wood surface free energy after heat treatment. Polymer Degradation and Stability 92(4): 653–657. doi: 10.1016/j.polymdegradstab.2007.01.016 Giridhar, B.; Pandey, K.; Prasad, B.; Bisht, S.; Vagdevi, H. 2017. Dimensional stabilization of wood by chemical modification using isopropenyl acetate. Maderas-Ciencia y Tecnología 19(1): 15–20. http://dx.doi. org/10.4067/S0718-221X2017005000002. Gómez, H. 1989. Estadística experimental con aplicaciones a las ciencias agrícolas. Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias. Medellín, Colombia. González, M. 2005. Determinación de la composición química de la madera del pino ocote (Pinus oocarpa Schiede ex Schltdl) procedente de plantación en Cuncanjá, Tucurú, alta Verapaz. Tesis (Ingeniería Química). Universidad de San Carlos de Guatemala. 111 p. González-Peña MM, and Hale MDC. 2009. Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: Colour evolution and colour changes. Holzforschung 63(4): 385-393.doi:10.1515/hf.2009.078 González, M.; Honorato, J. 2005. Resistencia a la pudrición y estabilidad dimensional de la madera acetilada con y sin catalizador. Madera y Bosques 11(1): 49–61. https://dx.doi.org/ 10.21829/myb.2005.1111261. González, R., Rosales, M., Rocha, N., Gallegos, J., Moreno, M. and Karches, J. 2015. Wood preservation using natural products. Maderas and Bosques 21: 63-76. Habu, N., Nagasawa, Y., Samejima, M., Nakanishi, T. 2006. The effect of substituent distribution on the decay resistance of chemically modified wood. International Biodeterioration & Biodegradation 57(1): 57-62. Hakkou, M, Petrissans, M., Gerardin, P., Zoulalian, A. 2006. Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability 91: 393-397. Hermoso, E., Fernández, J., Conde, M., Troya, M., Cabrero, J., Conde, M. 2015. Characterization of thermally modified Pinus radiata Timber. Maderas-Ciencia y Tecnología 17(3): 493–504. Hermoso E, Fernández-Golfín J, Conde M, Troya MT, Mateo R, Cabrero J, and Conde M. 2015. Caracterización de la madera aserrada de Pinus radiata modificada térmicamente. Maderas. Ciencia y tecnología 17(3): 493 – 504. Doi: 10.4067/S0718-221X201500500004 Herrera-Builes JF, Sepúlveda-Villarroel V, Osorio JA, Salvo-Sepúlveda L, and Ananías RA. 2021. Effect of thermal modification treatment on some physical and mechanical properties of Pinus oocarpa Wood. Forests 12(2): 249. Doi: 10.3390/f12020249 Herrera-Díaz R, Sepúlveda-Villarroel V, Torres-Mella, J, Salvo-Sepúlveda L, Llano-Ponte R, Salinas-Lira C, and Ananías, R. A. 2019. Influence of the wood quality and treatment temperature on the physical and mechanical properties of thermally modified radiata pine. European Journal of Wood and Wood Products 77(4): 661–671. doi:10.1007/s00107-019-01424-9 Herrera, R., Sepúlveda, V., Torres, J., Salvo, L., Llano, R., Salinas, C., Peredo, M., Ananías, R. 2019. Influence of the wood quality and treatment temperature on the physical and mechanical properties of thermally modified radiata pine. European Journal of Wood and Wood products 7(4): 661–671. Hill, C. 2008. The reduction in the fibre saturation point of wood due to chemical modification using anhydride reagents: a reappraisal. Holzforschung 62: 423–428. Hill, C. 2006. Wood Modification: chemical, thermal and other processes. John Wiley and Sons. Chichester West Sussex, UK. Hill, C., Forser, S., Farahani, M., Hale, M., Ormondroyd, G., Williams, G. 2005. An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood. International Biodeterioration & Biodegradation 55(1): 69-76. Himmel, S., Mai, C. 2015. Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood. Holzforschung 69(5): 633–643. Holloway, J., Lowman, A., Palmese, G. 2010. Mechanical evaluation of poly (vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 6: 4716–4724. Hughes, C. 1985. Informe sobre una consultoría del banco de semillas forestales de IRENA. Oxford Forestry Institute, University of Oxford. Instituto Nicaragüense de Recursos Naturales y del Ambiente IRENA. 1992. Fichas técnicas de maderas nicaragüenses. Ficha No. 41. Managua, Nicaragua. Instituto Nicaragüense de Recursos Naturales y del Ambiente IRENA. 1993. Secado al aire de 37 maderas nicaragüenses, Laboratorio de Tecnología de la Madera. Instituto Nicaragüense de Recursos Naturales y del Ambiente, Managua, Nicaragua. Islam, M., Hamdan, S., Jusoh, I., Rahman, M., Ahmed, S. 2012. The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites. Materials & Design 33(1): 419–424 Janin, G., Goncalez, J., Ananias, R., Charrier, B., Fernandes, G., Dilem, A. 2001. Aesthetics appreciation of wood color and patterns by colorimetry. Part 1. Colorimetry theory for the CIELab Sistem. Maderas-Ciencia y Tecnología 3: 3-13. Jang ES, and Kang CW. 2019. Changes in gas permeability and pore structure of wood under heat treating temperature conditions. Journal of Wood Science 65: 37. doi:10.1186/s10086-019-1815-3 Jeremic, D., Cooper, P., Brodersen, P. 2007. Penetration of poly (ethylene glycol) into wood cell walls of red pine. Holzforschung 61(3): 272–278. Jeremic, D., Quijano, C., Cooper, P. 2008. Diffusion rate of polyethylene glycol into cell walls of red pine following vacuum impregnation. Cellulose 16: 339-348. Johansson, D., Morén, T. 2006. The potential of color measurement for strength prediction of thermally treated wood. Holz als Roh und Werkstoff 64: 104-110. Jun, L., Kocaefe, D., Zhang, J. 2007. Mechanical behavior of Québec wood species heat-treated using thermo wood process. Holz als Roh und Werkstoff 65: 255-259. Jusoh, I., Nzokou, P., Kamdem, P. 2005. The effect of silicone on some properties of flakeboard. Holz Roh- Werkst 63: 266–271. Kamdem, D., Pizzi, A., Jermannaud, A. 2002. Durability of heat-treated wood. Holz Als Roh-Werkst 60(1): 1-6. Kang, H.; Lee, W.; Jang, S.; Kang, C. 2017. Polyethylene Glycol Treatment of Han-Ok Round Wood Components to Prevent Surface Checking. BioResources 12(2): 4229–4238. Kartal, S., Yoshimura, T., Imamura, Y. 2004. Decay and termite resistance of boron-treated and chemically modified wood by in situ co-polymerization of allyl glycidyl ether (AGE) with methyl methacrylate (MMA). International Biodeterioration & Biodegradation 53(2): 111-117. Kekkonen, P. M., Telkki, V. V., and Jokisaari, J. 2010. Effect of thermal modification on wood cell structures observed by pulsed-field-gradient stimulated-echo NMR. Journal of Physical Chemistry C 114(43): 18693-18697. doi: 10.1021/jp1060304 Keplinger, T., Cabane, E., Chanana, M., Hass, P., Merk, V., Gierlinger, N., Burgert, I. 2015. A versatile strategy for grafting polymers to wood cell walls, Acta Biomater 11: 256–263. Kielmann, B., Adamopoulos, S., Militz., Mai, C. 2014. Decay resistance of ash, beech and maple wood modified with N-methylol melamine and a metal complex dye. International Biodeterioration and Biodegradation 89: 110-114. Kielmann, B., Adamopoulos, S., Militz. H., Mai, C. 2013. Strength changes in ash, beech and maple wood modified with a n-methylol melamine compound and a metal complex dye. Wood Res Slov 58(3): 343–350. Kocabaş, U. 2014. The Yenikapı Byzantine-Era Shipwrecks, Istanbul, Turkey: a preliminary report and inventory of the 27 wrecks studied by Istanbul University. International Journal of Nautical Archaeology 44(1): 5–38. https://dx.doi. org/10.1111/1095-9270.12084. Kocaefe, D., Huang, X. and Kocaefe, Y. 2015. Dimensional stabilization of wood. Wood Structure and Function 1: 151–161. doi: 10.1007/s40725-015-0017-5. Kortelainen, S., Antikairem, T., Vitamieni, P. 2006. The water absorption of sapwood and heartwood of Scots pine and and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C, 230 °C. Holz als Roh und Werkstoff 64 (2): 192-197. Korkut, S., Aytin, A. 2015. Evaluation of physical and mechanical properties of wild cherry wood heat-treated using the thermowood process. Maderas-Ciencia y Tecnología 17(1): 171-178. Krause, A.; Jones, D.; Van derZee, M.; Militz, H. 2003. Interlace treatment—wood modification with N-methylol compounds. In Proceedings of the first European conference on wood modification. Ghent, Belgium. Kubovský I, Kačíková D, and Kačík F. 2020. Structural Changes of oak wood main components caused by thermal modification. Polymers, 12(2): 485. doi:10.3390/polym12020485 Kučerová V, Lagaňa R, Výbohová E, and Hýrošová T. 2016. The effect of chemical during heat treatment on the color and mechanical properties of Fir wood. Bioresources 11(4): 9079-9094. Kwak, H.; Woo, H.; Kim, E.; H., Lee, K. 2018. Water-resistant Lignin/Poly(vinyl alcohol) Blend Fibers for Removal of Hexavalent Chromium. Fibers and Polymers 19(6): 1175–1183. https://dx.doi.org/10.1007/s12221- 018-8052-z. Kymäläinen, M., Mlouka, S. B., Belt, T., Merk, V., Liljeström, V., Hänninen, T., Uimonen, T., Kostiainen, M., and Rautkari, L. 2018. Chemical, water vapour sorption and ultrastructural analysis of Scots pine wood thermally modified in high- pressure reactor under saturated steam. Journal of Materials Science 53(4): 3027- 3037. Lamprecht, H. 1990. Silvicultura en los trópicos: los ecosistemas forestales en los bosques tropicales y sus especies arbóreas; posibilidades y métodos para un aprovechamiento sostenido. GTZ. GmbH. Rossdorf: TZ-Verl.- Ges. Hesse, Alemania. 335 p Li, X., Cai, Z., Mou, Q., Wu, Y., Liu, Y. 2011. Effects of heat treatment on some physical properties of Douglas-fir (Pseudotsuga menziesii) wood. Advanced Materials Research 197-198: 90-95. Li, G., Chen, J., Li, Q., Yang, T. 2011c. Biodegradable composites from pine wood sawdust and polyvinyl alcohol adhesives. Advanced Materials Research 281: 59–63. Li, Y., Liu, Z., Dong, X., Fu, Y., Liu, Y. 2013. Comparison of decay resistance of wood and wood-polymer composite prepared by in-situ polymerization of monomers. International Biodeterioration & Biodegradation 84: 401–406. Li, Y., Li, J., Liu, Y., Liu, Z., Wang, X., Wang, B. 2011a. Thermoforming of polymer from monomers in wood porous structure and characterization for wood–polymer composite. Materials Research Innovations 15(1): 446–449. Li, Y., Wang, B., Fu, Q., Liu, Y., Dong, X. 2010. Performance of wood-polymer composite prepared by in situ synthesis of terpolymer within wood. Applied Mechanics and Materials 34–35:1165–1169. Li, W.; Wang, H.; Ren, D.; Yu, Y.; Yu, Y. 2015. Wood modification with furfuryl alcohol catalysed by a new composite acidic catalyst. Wood Sciences and Technology 49(4): 845–856. https://dx.doi.org/10.1007/s00226-015- 0721-0. Li, Y., Liu, Y., Wang, X., Wu, Q., Yu, H., Li, J. 2011b. Wood-polymer composites prepared by the in-situ polymerization of monomers within wood. Journal of Applied Polymer Science 119 (6): 3207e3216 Locs, J., Berzina-Cimdina, L., Zhurinsh, A., Loca, D. 2009. Optimized vacuum/pressure sol impregnation processing of wood for the synthesis of porous, biomorphic SiC ceramics. Journal of the European Ceramic Society 29(8): 1513–1519. Luo, S., Cao, J., Wang, X. 2013. Investigation of the interfacial compatibility of PEG and thermally modified wood flour/polypropylene composites using the stress relaxation approach. BioResources 8(2): 2064-2073. Lutz, J.; Hoth, A. 2006. Preparation of ideal PEG analogues with a tunable thermosensitivity by con- trolled radical copolymerization of 2-(2-methoxyethoxy) ethyl methacrylate and oligo (ethylene glycol) methacrylate. Macromolecules 39: 893-896. https://dx.doi.org/10.1021/ma 0517042. Ma, H.; Yang, F.; Tang, L.; Feng Y. 2018. Effect of polyvinyl alcohol treatment on mechanical properties of bamboo/polylactic acid composites. BioResources 13(2): 2578–2591. Machado, G., da Silva, M., De Araujo, V., Fiorelli, J., Christoforo, A. and Rocco, F. 2015. Density evaluation of Pinus oocarpa submitted to heat treatment. International Journal of Materials Engineering 5(3): 39-45. doi: 10.5923/j.ijme.20150503.01. Marin, G. and Osorno, V. 1997. Propiedades físico-mecánicas, secado and trabajabildad del Pinus oocarpa var. ochoterenai para dos edades. Tesis (Ingeniería Forestal). Universidad Nacional de Colombia, Sede Medellín. 121 p. Mattos, B.; Henrique, P.; Esteves, W.; Lazzarotto, M.; Gatto, D. 2015. Thermal tools in the evaluation of decayed and weathered wood polymer composites prepared by in situ polymerization. Journal of Thermal Analysis and Calorimetry 121(3): 1263–1271. https://dx.doi.org/ 10.1007/s10973-015-4647-4. Meints, T.; Hansmann, C.; Gindl-Altmutter, W. 2018. Suitability of Different Variants of Polyethylene Glycol Impregnation for the Dimensional Stabilization of Oak Wood. Polymers 10(1): 81–93. https://dx.doi. org/10.3390/polym10010081. Missio A, Mattos B, Cademartori P, Vergara T, Labidi J, Gatto D. 2015. The effect of oleoresin tapping on physical and chemical properties of Pinus elliottii wood. Scientia Forestalis Sci. For., Piracicaba 43(107): 721-732. Mitsui K, Takada H, Sugiyama M, Hasegawa R 2001. Changes in the properties of light-irradiated wood with heat treatment: Part 1 Effect of treatment conditions on the change in colour. Holzforschung 55:601–605 Mohareb, A., Sirmah, P., Pétrissans, M., Gérardin, F. 2012. Effect of heat treatment intensity on wood chemical composition and decay durability of Pinus patula. European Journal of Wood and Wood Products 70: 519-524. Möttönen, K., Alvila, L., Pakkanen, T. 2002. CIELab Measurements to determine the role of felling season, log storage and kiln drying on coloration of silver Birch wood. Scandinavian Journal Forest Research 17: 179-191. Norma Técnica Colombiana NTC 1149. 2002. Preservación de maderas. Terminología. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). Bogotá D.C. Norma Técnica Colombiana. NTC. 2006. NTC 290: Maderas. Determinación de densidad. Instituto Colombiano de Normas Técnicas (ICONTEC), Bogotá D.C., Colombia. https://tienda.icontec.org /wp-content/ uploads/pdfs/NTC290.pdf. Norma Técnica Colombiana. NTC. 2006. NTC 663: Maderas. Determinación de la resistencia a la flexión. Instituto Colombiano de Normas Técnicas (ICONTEC), Bogotá D.C., Colombia. https://tienda.icontec. org/wp-content/uploads/pdfs/NTC663.pdf. Norma Técnica Colombiana. NTC. 2006. NTC 784: Maderas. Determinación de la resistencia a la compression axial o paralela al grano. Instituto Colombiano de Normas Técnicas (ICONTEC), Bogotá D.C., Colombia. https://tienda.icontec.org/wp-content/uploads/pdfs/NTC784.pdf. Nuopponen M, Vuorinen, T, Jämsä S, and Viitaniemi P. 2003. The effects of a heat treatment on the behavior of extractives in softwood studied by FTIR spectroscopic methods. Wood Science and Technology 37(2): 109–115. doi:10.1007/s00226-003-0178-4 Ohmae, K.; Minato, K.; Norimoro, M. 2002. The analysis of dimensional changes due to chemical treatments and water soaking for hinoki (Chamaecyparis obtusa) wood. Holzforschung 56(1): 98–102. https:// dx.doi.org/10.1515/HF.2002.016. Olaniran, S.; Michen, B.; Mora, D.; Wittel, F.; Bachtiar, E.; Burgert, I.; Rüggeberg, M. 2019. Mechanical behavior of chemically modified Norway spruce (Picea abies L. Karst.): Experimental mechanical studies on spruce wood after methacrylation and in situ polymerization of styrene. Wood Science and Technology 53(2): 425–445. https://dx.doi.org/10.1007/s00226-019-01080-5. Palermo, G., Latorraca, J., Moura, L., Nolasco, A., Carvalho, A., García, R. 2015. Surface roughness of heat-treated Eucalyptus grandis wood. Maderas-Ciencia y Tecnología16(1): 03-12. Panov, D., Terziev, N. 2009. Study on some alkoxysilanes used for hydrophobation and protection of wood against decay. International Biodeterioration and Biodegradation 63: 456–461. Papadopoulos, A. 2011. Durability of pine wood modified with a series of linear chain carboxylic acid anhydrides. Wood Research 56(2): 147-156. Paz, J.; Sanabria, E. 2000. Dimensional Stabilization of Aspidosperma quebracho-blanco with polyethylene glycol. In XXI IUFRO World Congress. Vol. 3, Malaysia. pp 236–237. Percin, O., Peker, H., Atilgan, A. 2016. The effect of heat treatment on some physical and mechanical properties of beech (Fagus orientalis Lipsky) wood. Wood Research 61(3): 443-456. Perçin, O., Yasar, S., Altunok, M. and Uzun, O. 2017. Determination of screw withdrawal resistance of some heat-treated wood species. Drvna Industrija 68(1): 61-68. doi: 10.5552/drind.2017.1630. Perry, J. 1991. Los pinos de México y América Central. Portland, Oregon. Timber. Press: 6–231. Poletto, M. 2017. Assessment of the thermal behavior of lignins from softwood and hardwood species. Maderas-Ciencia y Tecnología 19(1): 63-74. Popescu, M.-C., Froidevaux, J., Navi, P., Popescu, C.-M. 2013. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. Journal of Molecular Structure 1033 176–186. doi:10.1016/j.molstruc.2012.08.0. Robinson, T., Via, B., Fasina, O., Adhikari, S., Carter, E. 2011. Impregnation of bio–oil from small diameter pine into wood for moisture resistance. BioResources 6(4): 4747– 4761 Romagnoli, M., Cavalli, D., Pernarella, R., Zanuttini, R., Togni, M. 2015. Physical and mechanical characteristics of poor-quality wood after heat treatment. iForest – Biogeosciences and Forestry 8: 884-891. Rousset, P., Perré, P., Girard, P. 2004. Modification of mass transfer properties in poplar wood (P. robusta) by thermal treatment at high temperature. Holz als Roh- und Werkstoff 62(2): 113-119. Rowell, R. 2014. Acetylation of wood. A review. International Journal of Lignocellulosic Products 1 (1): 1- 28. Rowell, R. 2012. Handbook of wood chemistry and wood composites, 2nd ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA. Rowell, R. 2006. Chemical modification of wood: a short review. Wood Material Science and Engineering 1(1): 29–33. https://dx.doi.org/10.1080/17480270600670923. Rowell, R.M., Ibach, R.E., McSweeny, J. and Nilsson, T. 2009. Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Material Science and Engineering 4(1-2):14–22. doi:10.1080/17480270903261339 Rowell, R.; Youngs, R. 1981. Dimensional stabilization of wood in use. United States Department of Agriculture, USDA. Forest Products Laboratory, USA. Research note FPL-0243: 1–8. https://www.fpl.fs.fed. us/documnts/fplrn/fplrn243.pdf. Salazar, R., Soihet, R., Méndez, J. 2000. Manejo de semillas de 100 especies forestales de América Latina.: CATIE: Proyecto de semillas Forestales: Danida Forest Seed Centre. Turrialba: Costa Rica. v. 1, 204 p. Salcedo Mendoza J, Hernández RuyDiaz, J, and Fernández Quintero A. 2016. Effect of the acetylation process on native starches of yam (Dioscorea spp.). Revista Facultad Nacional de Agronomía Medellín 69(2): doi:10.15446/rfna.v69n2.59144 Sandberg D, Haller P, and Navi P. 2013. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Science and Engineering 8(1): 64–88. doi:10.1080/17480272.2012.75193 Saravia, J., Cano, T., Cano, E., Herra, M., Rodríguez, L. 2010. Estudio tecnológico integral de la madera y corteza del primer raleo de 4 especies de pino cultivadas con fines industriales. Proyecto Fondo Nacional de Ciencia y Tecnología (FODEDYT). Guatemala C.A. (S.D.E.). 223 p. Schneider, M., Phillips, J. 1991. Elasticity of wood and wood polymer composites in tension, compression and bending. Wood Science and Technology 25: 361–364. Schultz, T., Nicholas, D., Preston, A. 2007. A brief review of the past, present and future of wood preservation. Pest Management Science 63(8): 784–788. Shukla, R. 2019. Evaluation of dimensional stability, surface roughness, colour, flexural properties and decay resistance of thermally modified Acacia auriculiformis. Maderas-Ciencia y Tecnología 21(4): 433 – 446. Sivonen, H., Maunu, S., Sundholm, F., Jämsa, S., Viitaniemi, P. 2002. Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654. Soulounganga, P., Loubinoux, B., Wozniak, E., Lemor, A., Gérardin, P. 2004. Improvement of wood properties by impregnation with polyglycerol methacrylate. European Journal of Wood and Wood Products 62(4): 281-285. Solikhin, A.; Hadi, Y.; Massijaya, M.; Nikmatin, S.; Suzuki, S.; Kojima, Y., Kobori, H. 2018. Properties of Poly (Vinyl Alcohol)/Chitosan Nanocomposite Films Reinforced with Oil Palm Empty Fruit Bunch Amorphous Lignocellulose Nanofibers. Journal of Environmental Polymer Degradation 26(8): 3316–3333. https://dx.doi.org/10.1007/ s10924-018-1215-6. Sun, W., Shen, H., Cao, J. 2016. Modification of wood by glutaraldehyde and poly (vinyl alcohol). Modification of wood by glutaraldehyde and poly (vinyl alcohol). Materials and Design 69:392-400. Tan, B.; Ching, Y.; Gan, S.; Ramesh, S.; Shaifulazuar, R. 2015. Biodegradable mulches based on poly (vinyl alcohol), kenaf fiber, and urea. BioResources 10(3): 5532–5543. TAPPI - Technical Association of the Pulp and Paper Industry. 2002. Standard T 222 om-02. Acid-insoluble lignin in wood and pulp. Press, Atlanta, GA, USA. TAPPI - Technical Association of the Pulp and Paper Industry. 1997. Standard T 204 cm-97. Solvent extractives of wood and pulp. Press, Atlanta, GA, USA. Tumen I, Aydemir D, Gunduz G, Uner B, and Cetin H. 2010. Changes in the chemical structure of thermally treated wood. Bioresources 5(3): 1936-1944. Unsal, O.; Candan, Z.; Korkut, S. 2011. Wettability and roughness characteristics of modified wood boards using a hot-press. Industrial Crops and Products 34(3): 1455–1457. https://dx.doi.org /10.1016/j.indcrop.2011.04.024 Vorobyev, A., Arnould, O., Laux, D., Longo, R., Van Dijk, N., Gamstedt, E. 2016. Characterization of cubic oak specimens from the Vasa ship and recent wood by means of quasi-static loading and resonance ultrasound spectroscopy (RUS). Holzforschung 70(5): 457–465. Vozzo, J. 2002. Tropical Tree Seed Manual. U.S. Department of Agriculture, Forest Service, Washington DC United States. 899 p. Wagner, L., Bader, T., Ters, T., Fackler, K., De Borst, K. 2015. A combined view on composition, micromechanics and molecular structure of fungal degraded softwood. Holzforschung 69(4): 471–48 Wang, J., Cooper, P. 2005. Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz Roh-Werkst 63(6): 417-422. Wang X, Chen X, Xie X, Wu Y, Zhao L, Li, Y, and Wang, S. 2018. Effects of thermal modification on the physical, chemical and micromechanical properties of Masson pine wood (Pinus massoniana Lamb.). Holzforschung 72(12): 1063-1070. doi:10.1515/hf-2017-0205. Wang, Y., Iida, I., and Minato, K. 2007. Mechanical properties of wood in an unstable state due to temperature changes, and analysis of the relevant mechanism IV: effect of chemical components on destabilization of wood. Journal of Wood Science 53(5): 381–387. doi: 10.1007/s10086-006-0871-7. Weiland, J., Guyonnet, R. 2003. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh-Werkstoff 61(2): 216-220. Welzbacher, C., Brischke, C., Rapp, A. 2007. Influence of heat treatment temperature and duration on selected biological, mechanical, physical and optical properties od thermally modified timber. Wood Material Science Engineering 2(2): 66-76. Widmann, R., Fernández, J., Steiger, R. 2012. Mechanical properties of thermally modified beech timber for structural purposes. Journal of Wood Products 70: 775-784. Wikberg, H., Maunu, S. 2004. Characterization of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydrate Polymers 58: 461–466. Wise LE, Murphy M, and D’Addieco AA. 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122 (3): 35-43. Wu, Z., Deng, X., Li, L., Xi, X., Tian, M., Yu, L., Zhang, B. 2021. Effects of heat treatment on interfacial properties of Pinus Massoniana wood. Coatings 11(5): 543. doi:10.3390/coatings11050543. Xiao, Z.; Chen, H.; Mai, C.; Militz, H.; Xie, Y. 2018. Coating performance on glutaraldehyde-modified wood. Journal of Forestry Research 30(1): 353–361. https://dx.doi.org/10.1007/s11676-018-0620-y. Xiao, Z.; Chen, H.; Mai, C.; Militz, H.; Xie, Y. 2018. Coating performance on glutaraldehyde-modified wood. Journal of Forestry Research 30(1): 353–361. https://dx.doi.org/10.1007/s11676-018-0620-y. Xie, Y., Fu, Q., Wang, Q., Xiao, Z., Militz, H. 2013. Effects of chemical modification on the mechanical properties of wood. European Journal of Wood and Wood Products 71: 401–416. Xie, Y., Krause, A., Mai, C., Militz, H., Richter, K., Urban, K., Evans, P. 2005. Weathering of wood modified with the N-methylol compound 1,3-dimethylol-4,5-dihydroxyethyleneurea. Polymer Degradation and Stability 89: 189–199. Yang, M.; Chen, X.; Lin, H.; Han, C.; Zhang, S. 2018. A simple fabrication of superhydrophobic wood surface by natural rosin-based compound via impregnation at room temperature. European Journal of Wood and Wood Products 76(5): 1417–1425. https://dx.doi.org/10.1007/s00107-018-1319-7. Yildiz, S., Gezer, E., Yildiz, U., 2006. Mechanical and chemical behavior of spruce wood modified by heat. Build Environment 41(12): 1762-1766. 49. Yildiz, Ü., Yildiz, S., Gezer, E. 2005. Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey. Bioresource Technology 96(9): 1003-1011. Yu, L.; Zhang, Y.; Zhu, L.; Ma, X. 2018. Effects of nano-SiO2/Polyethylene glicol on the dimensional stability modified ACQ treated southern pine. Wood Research 63(5): 763–770. http://www.woodresearch.sk/ wr/201805/03.pdf. Zanuncio, A., Hein, P., Carvalho, A., Rocha, M. and Carneiro, A. 2018. Determination of heat-treated Eucalyptus and Pinus wood properties using NRI spectroscopy. Journal of Tropical Forest Science 30(1): 117-125. 117–25. doi: 10.26525/jtfs2018.30.1.117125 Zhang, Y., Zhang, S., Yang, D., Wan, H. 2006. Dimensional stability of wood-polymer composites. Journal of Applied Polymer Science 102(6): 5085-5094. Zheng, Q., Cai, Z., Gong, S. 2014. Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbent. Journal of Materials Chemistry A 2, 3110–3118 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 84 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias Agrarias - Doctorado en Ciencias Agrarias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ciencias Forestales |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81396/5/98.585.713.pdf https://repositorio.unal.edu.co/bitstream/unal/81396/6/license.txt https://repositorio.unal.edu.co/bitstream/unal/81396/7/Jhon%20Fredy%20Herrera%20Builes_Licencia_Cap_V.pdf https://repositorio.unal.edu.co/bitstream/unal/81396/8/98.585.713.pdf.jpg |
bitstream.checksum.fl_str_mv |
2b0f4df42db85e23a13405e0147533a0 8153f7789df02f0a4c9e079953658ab2 e0f4cafa556ce83ec72fc71a53085956 18c0c295a563ef59c10d1f5fd3a96a09 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089903387967488 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Saraz, Jairo Alexander93075c8ef7e485f88a2db8981e3b16a0600Herrera Builes, Jhon Fredy4401ea745cc1eb2569ba84db1d7a2dfa600Grupo de Investigación Ciencias Forestales2022-03-28T15:05:54Z2022-03-28T15:05:54Z2021-03https://repositorio.unal.edu.co/handle/unal/81396Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasThe wood obtained from fast-growing plantations is an effective substitute for wood from natural forests, thus helping in reducing the pressure on these ecosystems. However, this wood presents problems of low dimensional stability and low physical and mechanical properties which limits its use as structural raw material. This doctoral thesis presents the changes in the properties of modified wood as a result of using polymer impregnation and the effect of heat treatment on Pinus oocarpa wood from forest plantation origin. The wood samples were impregnated in hot bath at 95 °C, and then impregnated at room temperature; the effects were evaluated related to the results of density, dimensional stability, bending strength and compression parallel to the grain, the assessment of the wood was carried out under the Colombian Technical Standards NTC 290, 663, 784. The effects of heat treatments at 170 °C and 190 °C for 2.5 hours in saturated vapor were evaluated based on their color, dimensional stability, air-dry and basic densities, modulus of elasticity (MOE), and modulus of rupture (MOR) in static bending. The evaluations were carried out following the Colombian Technical Standards NTC 290 and 663, and the color changes resulting from heat treatments were monitored using the CIE-Lab. In addition, changes caused by the thermal modification on the chemical composition and microstructure of wood were evaluated. The evaluation of chemical changes was performed following the Tappi standards and Fourier Transform Infrared Spectroscopy (FTIR), and the wood microstructure was characterized by optical microscopy. With the modification of polymer impregnation, the density increased, the anti-swelling efficiency was 60%; the modulus of rupture in static flexion increased 20%, modulus of elasticity 39% and compression parallel to the grain increased 8%. For the effect of thermal modification treatment there was a low mass loss. The air-dry and basic densities were higher in 170 °C treatment and increased the dimensional stability of the treated wood; after treatment, the general color change (∆E*) increased gradually with the increase in the treatment temperature, resulting in a high color change to a very different color; the bending strength of thermally modified wood was improved and significantly increased to values higher than those of unmodified wood. In the evaluation of chemical changes, the results showed a decrease in holocellulose content and the lignin content and extractives increased. C-O groups were degraded and -CH3 groups (lignin) were increased during thermal modification. Thickness of the tracheid walls decreased in earlywood and in latewood; lumen diameters increased in earlywood and in latewood. Impregnation with polymers evidenced wood with greater dimensional stability and better physical and mechanical properties. The high densities, improved dimensional stability and resistance to bending, and attractive appearance of the treated wood indicate that the modifications applied are a promising alternative for the transformation of Pinus oocarpa wood into a raw material with a high added value.La madera que se obtiene de bosques plantados de rápido crecimiento son una de las alternativas para sustituir la madera proveniente de bosque natural, disminuyendo de esta forma la presión que se tiene sobre estos ecosistemas. Sin embargo, la madera de rápido crecimiento presenta problemas de poca estabilidad dimensional y bajas propiedades físicas y mecánicas lo cual limita su uso como materia prima estructural. En la presente tesis doctoral se desarrolla la evaluación de los efectos causados de las modificaciones por medio de impregnación de polimeros y por tratamiento térmicos sobre las propiedades de la madera Pinus oocarpa de origen de plantación forestal. Se desarrolló la impregnación de polimeros en baño caliente a 95 ° C, y luego impregnados a temperatura ambiente, se evaluaron los cambios sobre la densidad, estabilidad dimensional, flexión estática y compresión paralela al grano, las evaluaciones se llevaron a cabo bajo las Normas Técnicas Colombianas NTC 290, 663, 784; los efectos de los tratamientos térmicos a 170 y 190 ° C durante 2.5 h en vapor saturado se evaluaron con base en el color, la estabilidad dimensional, las densidades básica y seca al aire, el módulo de elasticidad (MOE) y el módulo de ruptura (MOR) en flexión estática. Las evaluaciones se realizaron siguiendo las Normas Técnicas Colombianas NTC 290 y 663, y los cambios de color resultantes de los tratamientos térmicos se monitorearon mediante el CIE-Lab. Además, se evaluaron los cambios provocados por la modificación térmica en la composición química y microestructura de la madera. La evaluación de los cambios químicos se realizó siguiendo los estándares de Tappi y Espectroscopía Infrarroja por Transformada de Fourier (FTIR), y la microestructura de la madera se caracterizó por microscopía óptica. Con la modificación de impregnación de polimeros la densidad aumentó, la eficacia anti-hinchamiento fue del 60%; el módulo de ruptura en flexión estática aumentó un 20%, el módulo de elasticidad un 39% y la compresión paralela a la fibra aumentó un 8%. Para la modificación de tratamiento térmico hubo una baja pérdida de masa. Las densidades básica y seca al aire fueron mayores en el tratamiento a 170 ° C, y aumentaron la estabilidad dimensional de la madera tratada; después del tratamiento el cambio de color general (∆E *) aumentó gradualmente con el aumento de la temperatura de tratamiento, lo que resultó en un cambio de color alto a un color muy diferente; la resistencia a la flexión de la madera modificada térmicamente se mejoró y aumentó significativamente a valores superiores a los de la madera sin modificar. Se presento una disminución del contenido de holocelulosa y los contenidos de lignina y los extractos aumentaron; Los grupos C-O se degradaron y los grupos -CH3 (lignina) aumentaron durante la modificación térmica. El espesor de las paredes de las traqueidas disminuyó tanto en la madera temprana y tardía; los diámetros de los lumenes aumentaron en la madera temprana y tardía. La impregnación con polímeros evidenció madera con mayor estabilidad dimensional y mejores propiedades físicas y mecánicas. Las altas densidades, la estabilidad dimensional mejorada y el aumento de la resistencia de la madera, y el atractivo aspecto de la madera tratada indican que las modificaciones aplicadas son una alternativa prometedora para la transformación de la madera de Pinus oocarpa en una materia prima de alto valor agregado. (Texto tomado de la fuente)DoctoradoDoctor en Ciencias AgrariasProductos ForestalesÁrea Curricular en Producción Agraria Sosteniblexv, 84 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Doctorado en Ciencias AgrariasDepartamento de Ciencias ForestalesFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín630 - Agricultura y tecnologías relacionadas670 - Manufactura::674 - Procesamiento de madera aserrada, productos de madera, corchosArboles maderablesIndustria de la maderaTimberWoodworking industryPinus oocarpaEficiencia anti contracciónModificación de maderaQuímica de la maderaAnatomia de la maderaFlexión estáticaStatic flexionWood modificationChemical woodAnatomical woodAnti-swelling efficiencyCharacterization of the wood Pinus oocarpa Schiede ex Schltdl.var.ochoterenai as structural raw materialCaracterización de la madera pinus oocarpa Schiede ex Schltdl.var.ochoterenai como materia prima estructuralTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAdamopoulos, S., Hosseinpourpia, R., Mai, C. 2015. Tensile strength of handsheets prepared with macerated fibres from solid wood modified with cross-linking agents. Holzforschun 69(8): 959–966.Aguilar, J. 1980. Guía para la identificación de las coníferas de Guatemala, sector Público Agrícola. Instituto Nacional Forestal, Unidad Manejo Forestal, Departamento de Reforestación. Guatemala C.A. (S.D.E.). 105 p.Akgül M, Gümüşkaya E, and Korkut S. 2006. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludağ fir Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Science and Technology 41(3): 281–289. doi:10.1007/s00226-006-0110-9Alén, R., Kotilainen, R., Zaman, A. 2002. Thermochemical behavior of Norway spruce (Picea abies) at 180-225 ºC. Wood Science and Technology 36(2): 163-171.Alma, M., Hafi, Z., Maldas, D. 1996. Dimensional stability of several wood species treated with vinyl monomers and polyethylene glycol-1000. International Journal of Polymeric Materials 32 (1): 93–99.Ates S, Hakan M, and Ozdemir H. 2009. Effects of heat treatment on Calabrian pine (Pinus brutia Ten.) wood. BioResources 4(3): 1032-1043.Awoyemi, L., and Jones, I. P. 2011. Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Science and Technology 45(2): 261-267.Bader, T., De Borst, K., Fackler, K., Ters, T., Braovac, S. 2013. A nano to macroscale study on structure– mechanics relationships of archaeological oak. Journal of Cultural Heritage 14(5): 377–388.Bastani, A., Adamopoulos, S., Militz, H. 2016. Shear strength of furfurylated, N-methylol melamine and thermally modified wood bonded with three conventional adhesives. Wood Material Science and Engineering 12(4): 236–241.Bardet. M.; Gerbaud, G.; Tran, Q.; Hediger, S. 2006. Study of interactions between polyethylene glycol and archaeological wood components by C-13 high-resolution solid-state CPMAS NMR. Journal of Archaeological Science 34(10): 1670–1676. https://dx.doi.org/10.1016 /j.jas.2006. 12.005.Batista, D.C., Bolzón de Muñiz, G. I., da Silva Oliveira, J.T., Paes, J B., Nisgoski, S. 2016. Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood: Part 1: Cell wall polymers and extractives contents. Maderas. Ciencia y Tecnología, (ahead), 0–0. doi:10.4067/s0718-221x2016005000025.Batista, D., Muñiz, G., Da Silva, J., Paes, J., Nisgoski, S. 2016. Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood: Part 1: Cell wall polymers and extractives contents. Maderas-Ciencia y Tecnología 18(2): 273-284.Behr, G., Bollmus, S., Gellerich, A., Militz, H. 2017. Improvement of mechanical properties of thermally modified hardwood through melamine treatment. Wood Material Science and Engineering 13(5): 262-270.Bekhta P, Niemz P (2003). Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforshung 57 (5): 539-546.Bernabé, R., Ávila, C., Rutiaga, Q. 2013. Componentes químicos de la madera de cinco especies de pino del municipio de Morelia, Michoacán. Madera y Bosques 19(2): 21-35.Bernabei, M., and Salvatici, M. C. 2016. In situ ESEM observations of spruce wood (Picea abies Karst.) during heat treatment. Wood Science and Technology 50(4): 715-726.Bernardis, A. and Popoff, O. 2009. Durability of Pinus elliottii wood impregnated with Quebracho Colorado (Schinopsis balansae) Bio-Protectives Extracts and CCA. Maderas. Ciencia and Tecnología (2): 107. doi: 10.4067/S0718-221X2009000200002.Berube, M.; Schorr, D.; Ball, R.; Landry, V.; Blanchet, P. 2017. Determination of in situ esterification parameters of citric acid-glycerol based polymers for wood impregnation. Journal of Polymers and the Environment 26(3): 970–979. https://dx.doi.org/10.1007/s10924-017-1011-8.Bhuiyan MTR, Hirai N, and Sobue N. 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science 46(6): 431–436. doi:10.1007/bf00765800Biziks, V., Andersons, B., Beļkova, Ļ., Kapača, E., and Militz, H. 2013. Changes in the microstructure of birch wood after hydrothermal treatment. Wood Science and Technology 47: 717-735.Bjurhager, I., Halonen, H., Lindfors, E., Iversen, T., Almkvist, G., Gamstedt, E., Berglund, L. 2012. State of degradation in archeological oak from the 17th century Vasa ship: substantial strength loss correlates with reduction in (holo) cellulose molecular weight. Biomacromolecules 13(8): 2521–2527.Bjurhager, I., Ljungdahl, J., Wallstrom, L., Gamstedt, E., Berglund, L. 2010. Towards improved understanding of PEG impregnated waterlogged archaeological wood: A model study on recent oak. Holzforschung 64(2): 243–250.Boonstra, M., Acker, R., Tjerrdsma, B., Kegel, E. 2007. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science 64: 679–690.Boonstra MJ and Tjeerdsma, B. 2006. Chemical analysis of heat-treated softwoods. Holz Als Roh- Und Werkstoff, 64(3): 204–211. doi:10.1007/s00107-005-0078-4Boonstra, M. J., Rijsdijk, J. F., Sander, C., Kegel, E., Tjeerdsma, B., Militz, H., van Acker, J., and Stevens, M. 2006. Microstructural and physical aspects of heat-treated wood. Part 1. Softwoods. Maderas. Ciencia y Tecnología 8(3): 193-208.Brito, J., Silva, F., Leao, M., Almeida, G. 2008. Chemical composition changes in Eucalyptus and Pinus woods submitted to heat treatment. Bioresource Technology 99: 8545-8548.Cabane, E., Keplinger, T., Merk, V., Hass, P., Burgert, I. 2014. Renewable and functional wood materials by grafting polymerization within cell walls. Chemsuschem 7:1020–1025.Cabezas-Romero JL, Salvo-Sepúlveda L, Contreras-Moraga H, Pérez-Peña N, Sepúlveda-Villarroel V, Wentzel M, and Ananias RA. 2021. Microstructure of thermally modified radiata pine wood. Bioresources 16(1): 1523-1533.Cai, X.; Riedl, B.; Zhang, S.Y.; Wan, H. 2007. Formation and properties of nanocomposites made up from solida spen wood, melamine-urea-formaldehyde, and clay. Holzforschung 61(2): 148–154. https://dx.doi. org/10.1515/HF.2007.027.Carvalho A.G., De Andrade, B.G., Donato, D.B., Da Silva, C.M.S., Carneiro, A.D.O., De Castro, V.R. and Zanuncio, A.J.V. 2020. Bonding performance of structural adhesives on heat-treated Mimosa scabrella and Pinus oocarpa wood. Cellulose Chemistry and Technology 54(7-8):663-668.Chiozza, F.; Santoni, I.; Pizzo, B. 2018. Discoloration of poly(vinyl acetate) (PVAc) gluelines in wood assemblies. Polymer Degradation and Stability 157: 90–99. Ref 37 https://dx.doi.org/ 10.1016/j.polymdegradstab.2018.10.003.Cipreses de Colombia S.A. 2017. Resumen público plan de manejo forestal. Medellín, Colombia. http:// nucleosdemadera.com/wp-content/uploads/2017/10/RESUMEN-P%C3%9ABLICO-PLAN-DE-MANE- JO-2017.pdf.Cooper, P.; Ung, Y.; Holzscherer, A. 1991. Diffusion into and bulking of the wood cell wall with polyethylene glycols (PEG). In Proceedings IRG Annual Meeting, IRG/WP/3660. The International Research Group on Wood Protection: Stockholm, Sweden.Cordero, J., Boshier, D. 2003. Arboles de Centroamérica: un manual para extensionistas. Oxford Forestry Institute (OFI), Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Oxford, UK, Costa Rica. 1079 p.Devi, R.; Ali, I.; Maji, T. 2003. Chemical modification of rubber wood with styrene in combination with a crosslinker: effect on dimensional stability and strength property. Bioresour Technology 88(3): 185–188. https:// dx.doi.org/10.1016/S0960-8524(03)00003-8.Ding T, Gu L, and Liu X. 2011. Influence of steam pressure on chemical changes of heat-treated Mongolian pine wood. Bioresources 6(2): 1880-1889.Dong, X.; Zhuo, X.; Liu, C. 2016. Improvement of decay resistance of wood by in-situ hybridization of reactive monomers and nano-SiO2 within wood. Applied Environmental Biotechnology 1(2): 56–62. http:// dx.doi.org/10.18063/AEB.2016.02.008.Dufau, B., Henrique, P., Esteves, W., Lazzarotto, M. and Gatto, D. 2015. Thermal tools in the evaluation of decayed and weathered wood polymer composites prepared by in situ polymerization. Journal of Thermal Analysis and Calorimetry 121: 1263–1271. doi: 10.1007/s10973-015-4647-4.Durmaz E, Ucuncu T, Karamanoglu M, and Kaymakci A. 2019. Effects of heat treatment on some characteristics of scots pine (Pinus sylvestris L.) wood. Bioresources 14(4): 9531-9543.Elaieb, M., Candelier, K., Pétrissans, A., Dumarçay, S., Gérardin, P., Pétrissans, M. 2015. Heat treatment of tunisian soft wood species effect on the durability, chemical modifications and mechanical properties. Maderas-Ciencia y Tecnología 17(4): 699 – 710.Engelund, E., Thygesen, L., Svensson, S., Hill, C. 2013. A critical discussion of the physics of wood–water interactions. Wood Science and Technology 47, 141–161.Ermeydan, M. 2018. Modification of spruce wood by UV-crosslinked PEG hydrogels inside wood cell walls. Reactive and Functional Polymers 131: 100–106. https://dx.doi.org/ 10.1016/ j.reactfunctpolym.2018.07.013.Emmerich, L., Bollmus, S., Militz, H. 2017. Wood modification with DMDHEU (1.3-dimethylol-4.5-dihydroxyethyleneurea) – state of the art, recent research activities and future perspectives. Wood Material Science and Engineering. 14: 1–16.Escoto, T., Beas, N., Contreras, H., Rodríguez, A., Diaz, S., Anzaldo, J., Vega, R. 2017. Caracterización dasométrica y químico-micrográfica de tres pinos y su viabilidad de aprovechamiento integral. Revista Mexicana de Ciencias Forestales 8(41):1-30. Doi: http://dx.doi.org/10.29298/rmcf.v8i41.28Esteves, B., Domingos, I., Pereira, H. 2007. Improvement of technological quality of eucalypt wood by heat treatment in air at 170-200ºC. Forest Products Journal 57 (1-2): 47-52.Esteves, B., Domingos, I., Pereira, H. M. 2008. Pine wood modification by heat treatment in air. Bioresources 3(1): 142-154.Esteves, B., Graça, J., Pereira, H. 2008. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 62(3). doi:10.1515/hf.2008.057.Esteves, B., Nunes, L., Domingos, I., Pereira, H. 2014. Comparison between heat treated sapwood and heartwood from Pinus pinaster. European Journal of Wood and Wood Products 72(1): 53-60.Esteves, B., Pereira, H. 2008. Wood modification by heat treatment: a review. Bioresources 4: 370-404.Evans, P. 2009. Review of the weathering and photostability of modified wood. Wood Material Science & Engineering 4(1-2): 2–13.Ferrarini, S., Santos, H., Miranda, L., Azevedo, C., Pires, M., Maia, S. 2012. Classification of waste wood treated with chromated copper arsenate and boron/fluorine preservatives. Química Nova 35(9): 1767-1771.Frühwald, E. 2007. Effect of high-temperature drying on properties of Norway spruce and larch. Holz Roh Werkstoff 65: 411-418.Gadhave, R.; Mahanwar, P.; Gadekar, P. 2019. Cross-linking of polyninyl alcohol/starch blends by epoxy silane for improvement in thermal and mechanical properties. BioResources 14(2): 3833–3843.Gardner, D.; Bozo, A. 2018. Ten-year field study of wood plastic composites in Santiago, Chile: biological, mechanical and physical property performance. Maderas-Ciencia y Tecnología 20(2): 257–266. http://dx.doi. org/10.4067/S0718-221X2018005002901.Gérardin P, Petrič M, Petrissans M, Lambert J, and Ehrhrardt JJ. 2007. Evolution of wood surface free energy after heat treatment. Polymer Degradation and Stability 92(4): 653–657. doi: 10.1016/j.polymdegradstab.2007.01.016Giridhar, B.; Pandey, K.; Prasad, B.; Bisht, S.; Vagdevi, H. 2017. Dimensional stabilization of wood by chemical modification using isopropenyl acetate. Maderas-Ciencia y Tecnología 19(1): 15–20. http://dx.doi. org/10.4067/S0718-221X2017005000002.Gómez, H. 1989. Estadística experimental con aplicaciones a las ciencias agrícolas. Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias. Medellín, Colombia.González, M. 2005. Determinación de la composición química de la madera del pino ocote (Pinus oocarpa Schiede ex Schltdl) procedente de plantación en Cuncanjá, Tucurú, alta Verapaz. Tesis (Ingeniería Química). Universidad de San Carlos de Guatemala. 111 p.González-Peña MM, and Hale MDC. 2009. Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: Colour evolution and colour changes. Holzforschung 63(4): 385-393.doi:10.1515/hf.2009.078González, M.; Honorato, J. 2005. Resistencia a la pudrición y estabilidad dimensional de la madera acetilada con y sin catalizador. Madera y Bosques 11(1): 49–61. https://dx.doi.org/ 10.21829/myb.2005.1111261.González, R., Rosales, M., Rocha, N., Gallegos, J., Moreno, M. and Karches, J. 2015. Wood preservation using natural products. Maderas and Bosques 21: 63-76.Habu, N., Nagasawa, Y., Samejima, M., Nakanishi, T. 2006. The effect of substituent distribution on the decay resistance of chemically modified wood. International Biodeterioration & Biodegradation 57(1): 57-62.Hakkou, M, Petrissans, M., Gerardin, P., Zoulalian, A. 2006. Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability 91: 393-397.Hermoso, E., Fernández, J., Conde, M., Troya, M., Cabrero, J., Conde, M. 2015. Characterization of thermally modified Pinus radiata Timber. Maderas-Ciencia y Tecnología 17(3): 493–504.Hermoso E, Fernández-Golfín J, Conde M, Troya MT, Mateo R, Cabrero J, and Conde M. 2015. Caracterización de la madera aserrada de Pinus radiata modificada térmicamente. Maderas. Ciencia y tecnología 17(3): 493 – 504. Doi: 10.4067/S0718-221X201500500004Herrera-Builes JF, Sepúlveda-Villarroel V, Osorio JA, Salvo-Sepúlveda L, and Ananías RA. 2021. Effect of thermal modification treatment on some physical and mechanical properties of Pinus oocarpa Wood. Forests 12(2): 249. Doi: 10.3390/f12020249Herrera-Díaz R, Sepúlveda-Villarroel V, Torres-Mella, J, Salvo-Sepúlveda L, Llano-Ponte R, Salinas-Lira C, and Ananías, R. A. 2019. Influence of the wood quality and treatment temperature on the physical and mechanical properties of thermally modified radiata pine. European Journal of Wood and Wood Products 77(4): 661–671. doi:10.1007/s00107-019-01424-9Herrera, R., Sepúlveda, V., Torres, J., Salvo, L., Llano, R., Salinas, C., Peredo, M., Ananías, R. 2019. Influence of the wood quality and treatment temperature on the physical and mechanical properties of thermally modified radiata pine. European Journal of Wood and Wood products 7(4): 661–671.Hill, C. 2008. The reduction in the fibre saturation point of wood due to chemical modification using anhydride reagents: a reappraisal. Holzforschung 62: 423–428.Hill, C. 2006. Wood Modification: chemical, thermal and other processes. John Wiley and Sons. Chichester West Sussex, UK.Hill, C., Forser, S., Farahani, M., Hale, M., Ormondroyd, G., Williams, G. 2005. An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood. International Biodeterioration & Biodegradation 55(1): 69-76.Himmel, S., Mai, C. 2015. Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood. Holzforschung 69(5): 633–643.Holloway, J., Lowman, A., Palmese, G. 2010. Mechanical evaluation of poly (vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater 6: 4716–4724.Hughes, C. 1985. Informe sobre una consultoría del banco de semillas forestales de IRENA. Oxford Forestry Institute, University of Oxford.Instituto Nicaragüense de Recursos Naturales y del Ambiente IRENA. 1992. Fichas técnicas de maderas nicaragüenses. Ficha No. 41. Managua, Nicaragua.Instituto Nicaragüense de Recursos Naturales y del Ambiente IRENA. 1993. Secado al aire de 37 maderas nicaragüenses, Laboratorio de Tecnología de la Madera. Instituto Nicaragüense de Recursos Naturales y del Ambiente, Managua, Nicaragua.Islam, M., Hamdan, S., Jusoh, I., Rahman, M., Ahmed, S. 2012. The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites. Materials & Design 33(1): 419–424Janin, G., Goncalez, J., Ananias, R., Charrier, B., Fernandes, G., Dilem, A. 2001. Aesthetics appreciation of wood color and patterns by colorimetry. Part 1. Colorimetry theory for the CIELab Sistem. Maderas-Ciencia y Tecnología 3: 3-13.Jang ES, and Kang CW. 2019. Changes in gas permeability and pore structure of wood under heat treating temperature conditions. Journal of Wood Science 65: 37. doi:10.1186/s10086-019-1815-3Jeremic, D., Cooper, P., Brodersen, P. 2007. Penetration of poly (ethylene glycol) into wood cell walls of red pine. Holzforschung 61(3): 272–278.Jeremic, D., Quijano, C., Cooper, P. 2008. Diffusion rate of polyethylene glycol into cell walls of red pine following vacuum impregnation. Cellulose 16: 339-348.Johansson, D., Morén, T. 2006. The potential of color measurement for strength prediction of thermally treated wood. Holz als Roh und Werkstoff 64: 104-110.Jun, L., Kocaefe, D., Zhang, J. 2007. Mechanical behavior of Québec wood species heat-treated using thermo wood process. Holz als Roh und Werkstoff 65: 255-259.Jusoh, I., Nzokou, P., Kamdem, P. 2005. The effect of silicone on some properties of flakeboard. Holz Roh- Werkst 63: 266–271.Kamdem, D., Pizzi, A., Jermannaud, A. 2002. Durability of heat-treated wood. Holz Als Roh-Werkst 60(1): 1-6.Kang, H.; Lee, W.; Jang, S.; Kang, C. 2017. Polyethylene Glycol Treatment of Han-Ok Round Wood Components to Prevent Surface Checking. BioResources 12(2): 4229–4238.Kartal, S., Yoshimura, T., Imamura, Y. 2004. Decay and termite resistance of boron-treated and chemically modified wood by in situ co-polymerization of allyl glycidyl ether (AGE) with methyl methacrylate (MMA). International Biodeterioration & Biodegradation 53(2): 111-117.Kekkonen, P. M., Telkki, V. V., and Jokisaari, J. 2010. Effect of thermal modification on wood cell structures observed by pulsed-field-gradient stimulated-echo NMR. Journal of Physical Chemistry C 114(43): 18693-18697. doi: 10.1021/jp1060304Keplinger, T., Cabane, E., Chanana, M., Hass, P., Merk, V., Gierlinger, N., Burgert, I. 2015. A versatile strategy for grafting polymers to wood cell walls, Acta Biomater 11: 256–263.Kielmann, B., Adamopoulos, S., Militz., Mai, C. 2014. Decay resistance of ash, beech and maple wood modified with N-methylol melamine and a metal complex dye. International Biodeterioration and Biodegradation 89: 110-114.Kielmann, B., Adamopoulos, S., Militz. H., Mai, C. 2013. Strength changes in ash, beech and maple wood modified with a n-methylol melamine compound and a metal complex dye. Wood Res Slov 58(3): 343–350.Kocabaş, U. 2014. The Yenikapı Byzantine-Era Shipwrecks, Istanbul, Turkey: a preliminary report and inventory of the 27 wrecks studied by Istanbul University. International Journal of Nautical Archaeology 44(1): 5–38. https://dx.doi. org/10.1111/1095-9270.12084.Kocaefe, D., Huang, X. and Kocaefe, Y. 2015. Dimensional stabilization of wood. Wood Structure and Function 1: 151–161. doi: 10.1007/s40725-015-0017-5.Kortelainen, S., Antikairem, T., Vitamieni, P. 2006. The water absorption of sapwood and heartwood of Scots pine and and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C, 230 °C. Holz als Roh und Werkstoff 64 (2): 192-197.Korkut, S., Aytin, A. 2015. Evaluation of physical and mechanical properties of wild cherry wood heat-treated using the thermowood process. Maderas-Ciencia y Tecnología 17(1): 171-178.Krause, A.; Jones, D.; Van derZee, M.; Militz, H. 2003. Interlace treatment—wood modification with N-methylol compounds. In Proceedings of the first European conference on wood modification. Ghent, Belgium.Kubovský I, Kačíková D, and Kačík F. 2020. Structural Changes of oak wood main components caused by thermal modification. Polymers, 12(2): 485. doi:10.3390/polym12020485Kučerová V, Lagaňa R, Výbohová E, and Hýrošová T. 2016. The effect of chemical during heat treatment on the color and mechanical properties of Fir wood. Bioresources 11(4): 9079-9094.Kwak, H.; Woo, H.; Kim, E.; H., Lee, K. 2018. Water-resistant Lignin/Poly(vinyl alcohol) Blend Fibers for Removal of Hexavalent Chromium. Fibers and Polymers 19(6): 1175–1183. https://dx.doi.org/10.1007/s12221- 018-8052-z.Kymäläinen, M., Mlouka, S. B., Belt, T., Merk, V., Liljeström, V., Hänninen, T., Uimonen, T., Kostiainen, M., and Rautkari, L. 2018. Chemical, water vapour sorption and ultrastructural analysis of Scots pine wood thermally modified in high- pressure reactor under saturated steam. Journal of Materials Science 53(4): 3027- 3037.Lamprecht, H. 1990. Silvicultura en los trópicos: los ecosistemas forestales en los bosques tropicales y sus especies arbóreas; posibilidades y métodos para un aprovechamiento sostenido. GTZ. GmbH. Rossdorf: TZ-Verl.- Ges. Hesse, Alemania. 335 pLi, X., Cai, Z., Mou, Q., Wu, Y., Liu, Y. 2011. Effects of heat treatment on some physical properties of Douglas-fir (Pseudotsuga menziesii) wood. Advanced Materials Research 197-198: 90-95.Li, G., Chen, J., Li, Q., Yang, T. 2011c. Biodegradable composites from pine wood sawdust and polyvinyl alcohol adhesives. Advanced Materials Research 281: 59–63.Li, Y., Liu, Z., Dong, X., Fu, Y., Liu, Y. 2013. Comparison of decay resistance of wood and wood-polymer composite prepared by in-situ polymerization of monomers. International Biodeterioration & Biodegradation 84: 401–406.Li, Y., Li, J., Liu, Y., Liu, Z., Wang, X., Wang, B. 2011a. Thermoforming of polymer from monomers in wood porous structure and characterization for wood–polymer composite. Materials Research Innovations 15(1): 446–449.Li, Y., Wang, B., Fu, Q., Liu, Y., Dong, X. 2010. Performance of wood-polymer composite prepared by in situ synthesis of terpolymer within wood. Applied Mechanics and Materials 34–35:1165–1169.Li, W.; Wang, H.; Ren, D.; Yu, Y.; Yu, Y. 2015. Wood modification with furfuryl alcohol catalysed by a new composite acidic catalyst. Wood Sciences and Technology 49(4): 845–856. https://dx.doi.org/10.1007/s00226-015- 0721-0.Li, Y., Liu, Y., Wang, X., Wu, Q., Yu, H., Li, J. 2011b. Wood-polymer composites prepared by the in-situ polymerization of monomers within wood. Journal of Applied Polymer Science 119 (6): 3207e3216Locs, J., Berzina-Cimdina, L., Zhurinsh, A., Loca, D. 2009. Optimized vacuum/pressure sol impregnation processing of wood for the synthesis of porous, biomorphic SiC ceramics. Journal of the European Ceramic Society 29(8): 1513–1519.Luo, S., Cao, J., Wang, X. 2013. Investigation of the interfacial compatibility of PEG and thermally modified wood flour/polypropylene composites using the stress relaxation approach. BioResources 8(2): 2064-2073.Lutz, J.; Hoth, A. 2006. Preparation of ideal PEG analogues with a tunable thermosensitivity by con- trolled radical copolymerization of 2-(2-methoxyethoxy) ethyl methacrylate and oligo (ethylene glycol) methacrylate. Macromolecules 39: 893-896. https://dx.doi.org/10.1021/ma 0517042.Ma, H.; Yang, F.; Tang, L.; Feng Y. 2018. Effect of polyvinyl alcohol treatment on mechanical properties of bamboo/polylactic acid composites. BioResources 13(2): 2578–2591.Machado, G., da Silva, M., De Araujo, V., Fiorelli, J., Christoforo, A. and Rocco, F. 2015. Density evaluation of Pinus oocarpa submitted to heat treatment. International Journal of Materials Engineering 5(3): 39-45. doi: 10.5923/j.ijme.20150503.01.Marin, G. and Osorno, V. 1997. Propiedades físico-mecánicas, secado and trabajabildad del Pinus oocarpa var. ochoterenai para dos edades. Tesis (Ingeniería Forestal). Universidad Nacional de Colombia, Sede Medellín. 121 p.Mattos, B.; Henrique, P.; Esteves, W.; Lazzarotto, M.; Gatto, D. 2015. Thermal tools in the evaluation of decayed and weathered wood polymer composites prepared by in situ polymerization. Journal of Thermal Analysis and Calorimetry 121(3): 1263–1271. https://dx.doi.org/ 10.1007/s10973-015-4647-4.Meints, T.; Hansmann, C.; Gindl-Altmutter, W. 2018. Suitability of Different Variants of Polyethylene Glycol Impregnation for the Dimensional Stabilization of Oak Wood. Polymers 10(1): 81–93. https://dx.doi. org/10.3390/polym10010081.Missio A, Mattos B, Cademartori P, Vergara T, Labidi J, Gatto D. 2015. The effect of oleoresin tapping on physical and chemical properties of Pinus elliottii wood. Scientia Forestalis Sci. For., Piracicaba 43(107): 721-732.Mitsui K, Takada H, Sugiyama M, Hasegawa R 2001. Changes in the properties of light-irradiated wood with heat treatment: Part 1 Effect of treatment conditions on the change in colour. Holzforschung 55:601–605Mohareb, A., Sirmah, P., Pétrissans, M., Gérardin, F. 2012. Effect of heat treatment intensity on wood chemical composition and decay durability of Pinus patula. European Journal of Wood and Wood Products 70: 519-524.Möttönen, K., Alvila, L., Pakkanen, T. 2002. CIELab Measurements to determine the role of felling season, log storage and kiln drying on coloration of silver Birch wood. Scandinavian Journal Forest Research 17: 179-191.Norma Técnica Colombiana NTC 1149. 2002. Preservación de maderas. Terminología. Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). Bogotá D.C.Norma Técnica Colombiana. NTC. 2006. NTC 290: Maderas. Determinación de densidad. Instituto Colombiano de Normas Técnicas (ICONTEC), Bogotá D.C., Colombia. https://tienda.icontec.org /wp-content/ uploads/pdfs/NTC290.pdf.Norma Técnica Colombiana. NTC. 2006. NTC 663: Maderas. Determinación de la resistencia a la flexión. Instituto Colombiano de Normas Técnicas (ICONTEC), Bogotá D.C., Colombia. https://tienda.icontec. org/wp-content/uploads/pdfs/NTC663.pdf.Norma Técnica Colombiana. NTC. 2006. NTC 784: Maderas. Determinación de la resistencia a la compression axial o paralela al grano. Instituto Colombiano de Normas Técnicas (ICONTEC), Bogotá D.C., Colombia. https://tienda.icontec.org/wp-content/uploads/pdfs/NTC784.pdf.Nuopponen M, Vuorinen, T, Jämsä S, and Viitaniemi P. 2003. The effects of a heat treatment on the behavior of extractives in softwood studied by FTIR spectroscopic methods. Wood Science and Technology 37(2): 109–115. doi:10.1007/s00226-003-0178-4Ohmae, K.; Minato, K.; Norimoro, M. 2002. The analysis of dimensional changes due to chemical treatments and water soaking for hinoki (Chamaecyparis obtusa) wood. Holzforschung 56(1): 98–102. https:// dx.doi.org/10.1515/HF.2002.016.Olaniran, S.; Michen, B.; Mora, D.; Wittel, F.; Bachtiar, E.; Burgert, I.; Rüggeberg, M. 2019. Mechanical behavior of chemically modified Norway spruce (Picea abies L. Karst.): Experimental mechanical studies on spruce wood after methacrylation and in situ polymerization of styrene. Wood Science and Technology 53(2): 425–445. https://dx.doi.org/10.1007/s00226-019-01080-5.Palermo, G., Latorraca, J., Moura, L., Nolasco, A., Carvalho, A., García, R. 2015. Surface roughness of heat-treated Eucalyptus grandis wood. Maderas-Ciencia y Tecnología16(1): 03-12.Panov, D., Terziev, N. 2009. Study on some alkoxysilanes used for hydrophobation and protection of wood against decay. International Biodeterioration and Biodegradation 63: 456–461.Papadopoulos, A. 2011. Durability of pine wood modified with a series of linear chain carboxylic acid anhydrides. Wood Research 56(2): 147-156.Paz, J.; Sanabria, E. 2000. Dimensional Stabilization of Aspidosperma quebracho-blanco with polyethylene glycol. In XXI IUFRO World Congress. Vol. 3, Malaysia. pp 236–237.Percin, O., Peker, H., Atilgan, A. 2016. The effect of heat treatment on some physical and mechanical properties of beech (Fagus orientalis Lipsky) wood. Wood Research 61(3): 443-456.Perçin, O., Yasar, S., Altunok, M. and Uzun, O. 2017. Determination of screw withdrawal resistance of some heat-treated wood species. Drvna Industrija 68(1): 61-68. doi: 10.5552/drind.2017.1630.Perry, J. 1991. Los pinos de México y América Central. Portland, Oregon. Timber. Press: 6–231.Poletto, M. 2017. Assessment of the thermal behavior of lignins from softwood and hardwood species. Maderas-Ciencia y Tecnología 19(1): 63-74.Popescu, M.-C., Froidevaux, J., Navi, P., Popescu, C.-M. 2013. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. Journal of Molecular Structure 1033 176–186. doi:10.1016/j.molstruc.2012.08.0.Robinson, T., Via, B., Fasina, O., Adhikari, S., Carter, E. 2011. Impregnation of bio–oil from small diameter pine into wood for moisture resistance. BioResources 6(4): 4747– 4761Romagnoli, M., Cavalli, D., Pernarella, R., Zanuttini, R., Togni, M. 2015. Physical and mechanical characteristics of poor-quality wood after heat treatment. iForest – Biogeosciences and Forestry 8: 884-891.Rousset, P., Perré, P., Girard, P. 2004. Modification of mass transfer properties in poplar wood (P. robusta) by thermal treatment at high temperature. Holz als Roh- und Werkstoff 62(2): 113-119.Rowell, R. 2014. Acetylation of wood. A review. International Journal of Lignocellulosic Products 1 (1): 1- 28.Rowell, R. 2012. Handbook of wood chemistry and wood composites, 2nd ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA.Rowell, R. 2006. Chemical modification of wood: a short review. Wood Material Science and Engineering 1(1): 29–33. https://dx.doi.org/10.1080/17480270600670923.Rowell, R.M., Ibach, R.E., McSweeny, J. and Nilsson, T. 2009. Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Material Science and Engineering 4(1-2):14–22. doi:10.1080/17480270903261339Rowell, R.; Youngs, R. 1981. Dimensional stabilization of wood in use. United States Department of Agriculture, USDA. Forest Products Laboratory, USA. Research note FPL-0243: 1–8. https://www.fpl.fs.fed. us/documnts/fplrn/fplrn243.pdf.Salazar, R., Soihet, R., Méndez, J. 2000. Manejo de semillas de 100 especies forestales de América Latina.: CATIE: Proyecto de semillas Forestales: Danida Forest Seed Centre. Turrialba: Costa Rica. v. 1, 204 p.Salcedo Mendoza J, Hernández RuyDiaz, J, and Fernández Quintero A. 2016. Effect of the acetylation process on native starches of yam (Dioscorea spp.). Revista Facultad Nacional de Agronomía Medellín 69(2): doi:10.15446/rfna.v69n2.59144Sandberg D, Haller P, and Navi P. 2013. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Science and Engineering 8(1): 64–88. doi:10.1080/17480272.2012.75193Saravia, J., Cano, T., Cano, E., Herra, M., Rodríguez, L. 2010. Estudio tecnológico integral de la madera y corteza del primer raleo de 4 especies de pino cultivadas con fines industriales. Proyecto Fondo Nacional de Ciencia y Tecnología (FODEDYT). Guatemala C.A. (S.D.E.). 223 p.Schneider, M., Phillips, J. 1991. Elasticity of wood and wood polymer composites in tension, compression and bending. Wood Science and Technology 25: 361–364.Schultz, T., Nicholas, D., Preston, A. 2007. A brief review of the past, present and future of wood preservation. Pest Management Science 63(8): 784–788.Shukla, R. 2019. Evaluation of dimensional stability, surface roughness, colour, flexural properties and decay resistance of thermally modified Acacia auriculiformis. Maderas-Ciencia y Tecnología 21(4): 433 – 446.Sivonen, H., Maunu, S., Sundholm, F., Jämsa, S., Viitaniemi, P. 2002. Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654.Soulounganga, P., Loubinoux, B., Wozniak, E., Lemor, A., Gérardin, P. 2004. Improvement of wood properties by impregnation with polyglycerol methacrylate. European Journal of Wood and Wood Products 62(4): 281-285.Solikhin, A.; Hadi, Y.; Massijaya, M.; Nikmatin, S.; Suzuki, S.; Kojima, Y., Kobori, H. 2018. Properties of Poly (Vinyl Alcohol)/Chitosan Nanocomposite Films Reinforced with Oil Palm Empty Fruit Bunch Amorphous Lignocellulose Nanofibers. Journal of Environmental Polymer Degradation 26(8): 3316–3333. https://dx.doi.org/10.1007/ s10924-018-1215-6.Sun, W., Shen, H., Cao, J. 2016. Modification of wood by glutaraldehyde and poly (vinyl alcohol). Modification of wood by glutaraldehyde and poly (vinyl alcohol). Materials and Design 69:392-400.Tan, B.; Ching, Y.; Gan, S.; Ramesh, S.; Shaifulazuar, R. 2015. Biodegradable mulches based on poly (vinyl alcohol), kenaf fiber, and urea. BioResources 10(3): 5532–5543.TAPPI - Technical Association of the Pulp and Paper Industry. 2002. Standard T 222 om-02. Acid-insoluble lignin in wood and pulp. Press, Atlanta, GA, USA.TAPPI - Technical Association of the Pulp and Paper Industry. 1997. Standard T 204 cm-97. Solvent extractives of wood and pulp. Press, Atlanta, GA, USA.Tumen I, Aydemir D, Gunduz G, Uner B, and Cetin H. 2010. Changes in the chemical structure of thermally treated wood. Bioresources 5(3): 1936-1944.Unsal, O.; Candan, Z.; Korkut, S. 2011. Wettability and roughness characteristics of modified wood boards using a hot-press. Industrial Crops and Products 34(3): 1455–1457. https://dx.doi.org /10.1016/j.indcrop.2011.04.024Vorobyev, A., Arnould, O., Laux, D., Longo, R., Van Dijk, N., Gamstedt, E. 2016. Characterization of cubic oak specimens from the Vasa ship and recent wood by means of quasi-static loading and resonance ultrasound spectroscopy (RUS). Holzforschung 70(5): 457–465.Vozzo, J. 2002. Tropical Tree Seed Manual. U.S. Department of Agriculture, Forest Service, Washington DC United States. 899 p.Wagner, L., Bader, T., Ters, T., Fackler, K., De Borst, K. 2015. A combined view on composition, micromechanics and molecular structure of fungal degraded softwood. Holzforschung 69(4): 471–48Wang, J., Cooper, P. 2005. Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz Roh-Werkst 63(6): 417-422.Wang X, Chen X, Xie X, Wu Y, Zhao L, Li, Y, and Wang, S. 2018. Effects of thermal modification on the physical, chemical and micromechanical properties of Masson pine wood (Pinus massoniana Lamb.). Holzforschung 72(12): 1063-1070. doi:10.1515/hf-2017-0205.Wang, Y., Iida, I., and Minato, K. 2007. Mechanical properties of wood in an unstable state due to temperature changes, and analysis of the relevant mechanism IV: effect of chemical components on destabilization of wood. Journal of Wood Science 53(5): 381–387. doi: 10.1007/s10086-006-0871-7.Weiland, J., Guyonnet, R. 2003. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh-Werkstoff 61(2): 216-220.Welzbacher, C., Brischke, C., Rapp, A. 2007. Influence of heat treatment temperature and duration on selected biological, mechanical, physical and optical properties od thermally modified timber. Wood Material Science Engineering 2(2): 66-76.Widmann, R., Fernández, J., Steiger, R. 2012. Mechanical properties of thermally modified beech timber for structural purposes. Journal of Wood Products 70: 775-784.Wikberg, H., Maunu, S. 2004. Characterization of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydrate Polymers 58: 461–466.Wise LE, Murphy M, and D’Addieco AA. 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122 (3): 35-43.Wu, Z., Deng, X., Li, L., Xi, X., Tian, M., Yu, L., Zhang, B. 2021. Effects of heat treatment on interfacial properties of Pinus Massoniana wood. Coatings 11(5): 543. doi:10.3390/coatings11050543.Xiao, Z.; Chen, H.; Mai, C.; Militz, H.; Xie, Y. 2018. Coating performance on glutaraldehyde-modified wood. Journal of Forestry Research 30(1): 353–361. https://dx.doi.org/10.1007/s11676-018-0620-y.Xiao, Z.; Chen, H.; Mai, C.; Militz, H.; Xie, Y. 2018. Coating performance on glutaraldehyde-modified wood. Journal of Forestry Research 30(1): 353–361. https://dx.doi.org/10.1007/s11676-018-0620-y.Xie, Y., Fu, Q., Wang, Q., Xiao, Z., Militz, H. 2013. Effects of chemical modification on the mechanical properties of wood. European Journal of Wood and Wood Products 71: 401–416.Xie, Y., Krause, A., Mai, C., Militz, H., Richter, K., Urban, K., Evans, P. 2005. Weathering of wood modified with the N-methylol compound 1,3-dimethylol-4,5-dihydroxyethyleneurea. Polymer Degradation and Stability 89: 189–199.Yang, M.; Chen, X.; Lin, H.; Han, C.; Zhang, S. 2018. A simple fabrication of superhydrophobic wood surface by natural rosin-based compound via impregnation at room temperature. European Journal of Wood and Wood Products 76(5): 1417–1425. https://dx.doi.org/10.1007/s00107-018-1319-7.Yildiz, S., Gezer, E., Yildiz, U., 2006. Mechanical and chemical behavior of spruce wood modified by heat. Build Environment 41(12): 1762-1766. 49.Yildiz, Ü., Yildiz, S., Gezer, E. 2005. Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey. Bioresource Technology 96(9): 1003-1011.Yu, L.; Zhang, Y.; Zhu, L.; Ma, X. 2018. Effects of nano-SiO2/Polyethylene glicol on the dimensional stability modified ACQ treated southern pine. Wood Research 63(5): 763–770. http://www.woodresearch.sk/ wr/201805/03.pdf.Zanuncio, A., Hein, P., Carvalho, A., Rocha, M. and Carneiro, A. 2018. Determination of heat-treated Eucalyptus and Pinus wood properties using NRI spectroscopy. Journal of Tropical Forest Science 30(1): 117-125. 117–25. doi: 10.26525/jtfs2018.30.1.117125Zhang, Y., Zhang, S., Yang, D., Wan, H. 2006. Dimensional stability of wood-polymer composites. Journal of Applied Polymer Science 102(6): 5085-5094.Zheng, Q., Cai, Z., Gong, S. 2014. Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbent. Journal of Materials Chemistry A 2, 3110–3118InvestigadoresORIGINAL98.585.713.pdf98.585.713.pdfTesis de Doctorado en Ciencias Agrariasapplication/pdf1751672https://repositorio.unal.edu.co/bitstream/unal/81396/5/98.585.713.pdf2b0f4df42db85e23a13405e0147533a0MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81396/6/license.txt8153f7789df02f0a4c9e079953658ab2MD56CC-LICENSEJhon Fredy Herrera Builes_Licencia_Cap_V.pdfJhon Fredy Herrera Builes_Licencia_Cap_V.pdfLicencia capitulo 5application/pdf262415https://repositorio.unal.edu.co/bitstream/unal/81396/7/Jhon%20Fredy%20Herrera%20Builes_Licencia_Cap_V.pdfe0f4cafa556ce83ec72fc71a53085956MD57THUMBNAIL98.585.713.pdf.jpg98.585.713.pdf.jpgGenerated Thumbnailimage/jpeg4606https://repositorio.unal.edu.co/bitstream/unal/81396/8/98.585.713.pdf.jpg18c0c295a563ef59c10d1f5fd3a96a09MD58unal/81396oai:repositorio.unal.edu.co:unal/813962023-11-28 07:59:48.135Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |