Estudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensis

ilustraciones

Autores:
Rojas Ramos, Bryan Steven
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84167
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84167
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
Parasitos
Parasites
Leishmaniasis
Leishmania braziliensis
NAD
LbNMNAT
Oligomerización
Regulación post-transcripcional
UTR
RBP
Oligomerization
Post-transcriptional regulation
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_3089119a8434fe90e8e0307b2a7c3e66
oai_identifier_str oai:repositorio.unal.edu.co:unal/84167
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensis
dc.title.translated.eng.fl_str_mv Study of oligomerization and gene regulation mechanisms of the enzyme nicotinamide/nicotinate mononucleotide adenylyltransferase from Leishmania braziliensis
dc.title.translated.deu.fl_str_mv Untersuchung der Oligomerisierungs- und Genregulationsmechanismen des Enzyms Nicotinamid/Nicotinat-Mononukleotid-Adenylyltransferase aus Leishmania braziliensis
title Estudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensis
spellingShingle Estudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensis
570 - Biología::572 - Bioquímica
Parasitos
Parasites
Leishmaniasis
Leishmania braziliensis
NAD
LbNMNAT
Oligomerización
Regulación post-transcripcional
UTR
RBP
Oligomerization
Post-transcriptional regulation
title_short Estudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensis
title_full Estudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensis
title_fullStr Estudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensis
title_full_unstemmed Estudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensis
title_sort Estudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensis
dc.creator.fl_str_mv Rojas Ramos, Bryan Steven
dc.contributor.advisor.none.fl_str_mv contreras, luis
dc.contributor.author.none.fl_str_mv Rojas Ramos, Bryan Steven
dc.contributor.researchgroup.spa.fl_str_mv Libbiq Un
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-7196-2288
dc.contributor.cvlac.spa.fl_str_mv Rojas Ramos, Bryan Steven
dc.contributor.researchgate.spa.fl_str_mv Rojas Ramos, Bryan Steven
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
topic 570 - Biología::572 - Bioquímica
Parasitos
Parasites
Leishmaniasis
Leishmania braziliensis
NAD
LbNMNAT
Oligomerización
Regulación post-transcripcional
UTR
RBP
Oligomerization
Post-transcriptional regulation
dc.subject.lemb.spa.fl_str_mv Parasitos
dc.subject.lemb.eng.fl_str_mv Parasites
dc.subject.proposal.spa.fl_str_mv Leishmaniasis
Leishmania braziliensis
NAD
LbNMNAT
Oligomerización
Regulación post-transcripcional
dc.subject.proposal.eng.fl_str_mv UTR
RBP
Oligomerization
Post-transcriptional regulation
description ilustraciones
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-07T19:57:09Z
dc.date.available.none.fl_str_mv 2023-07-07T19:57:09Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84167
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84167
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv World Health Organization, “leishmanisis,” Leishmanisis. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed Oct. 10, 2022).
Manual de procedimientos para la vigilancia y control de las leishmaniasis. Washington, D.C: Organización Panamericana de la Salud, 2019.
R. Tandon et al., “Parasitology International Identification of protein biomarkers of attenuation and immunogenicity of centrin or p27 gene deleted live vaccine candidates of Leishmania against visceral leishmaniasis,” Parasitol. Int., vol. 92, no. December 2021, p. 102661, 2023, doi: 10.1016/j.parint.2022.102661.
A. Ponte-Sucre and M. Padrón-Nieves, Drug resistance in Leishmania parasites: Consequences, molecular mechanisms and possible treatments. 2018.
J. Medina, L. C. Saavedra, L. H. Patiño, M. Muñoz, and J. D. Ramírez, “Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony,” Parasit. Vectors, 2021, doi: 10.1186/s13071-021-04915-y.
Directrices para el tratamiento de las leishmaniasis en la Región de las Américas., Segunda ed. Organización Panamericana de la Salud, 2022.
D. Álvarez, P. Zambrano, M. Ayala, E. Parra, J. Padilla, and J. Escobar, “guía para la atención clínica integral del paciente con leishmaniasis,” Inst. Nac. salud. Bogotá, 2010.
J. S. de Toledo, E. J. R. Vasconcelos, T. R. Ferreira, and A. K. Cruz, “Using genomic information to understand Leishmania biology,” Open Parasitol. J., vol. 4, no. SPEC. ISS.1, pp. 156–166, 2010, doi: 10.2174/1874421401004010156.
R. Lin and J. Yu, “The role of NAD + metabolism in macrophages in age-related macular degeneration,” Mech. Ageing Dev., vol. 209, no. November 2022, p. 111755, 2023, doi: 10.1016/j.mad.2022.111755.
E. Katsyuba, M. Romani, D. Hofer, and J. Auwerx, “NAD+ homeostasis in health and disease,” Nat. Metab., vol. 2, no. 1, pp. 9–31, 2020, doi: 10.1038/s42255-019-0161-5.
C. Fortunato, “The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions,” no. October 2021, pp. 562–572, 2022, doi: 10.1002/iub.2584.
L. Sorci et al., “Targeting NAD Biosynthesis in Bacterial Pathogens: Structure-Based Development of Inhibitors of Nicotinate Mononucleotide Adenylyltransferase NadD,” Chem. Biol., vol. 16, no. 8, pp. 849–861, 2009, doi: 10.1016/j.chembiol.2009.07.006.
H. Zhang, T. Zhou, O. Kurnasov, S. Cheek, N. V. Grishin, and A. Osterman, “Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD,” Structure, vol. 10, no. 1, pp. 69–79, 2002, doi: 10.1016/S0969-2126(01)00693-1.
X. Zhang, O. V. Kurnasov, S. Karthikeyan, N. V. Grishin, A. L. Osterman, and H. Zhang, “Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis,” J. Biol. Chem., vol. 278, no. 15, pp. 13503–13511, 2003, doi: 10.1074/jbc.M300073200.
WHO, “Leishmanisis: status of endemicity of cutaneus leishmaniasis,” 2021. https://apps.who.int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.html (accessed Jan. 05, 2023).
Organización Panamericana de la Salud, “Informe epidemiológico de las Américas. Núm. 11,” 2022.
Instituto Nacional de Salud, “Boletín epidemilógico semana 51,” 2022. [Online]. Available: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2022_Boletín_epidemiologico_semana_51.pdf.
Ministerio de Salud y Protección social Colombia, “Ejecución presupuestal,” Ejecución mensual, 2022.
J. M. Bezemer, B. P. Freire-Paspuel, H. D. F. H. Schallig, H. J. C. de Vries, and M. Calvopiña, “Leishmania species and clinical characteristics of Pacific and Amazon cutaneous leishmaniasis in Ecuador and determinants of health-seeking delay: a cross-sectional study,” BMC Infect. Dis., vol. 23, no. 1, p. 395, 2023, doi: 10.1186/s12879-023-08377-8.
L. A. Delgado-Noguera et al., “Diversity and geographical distribution of Leishmania species and the emergence of Leishmania (Leishmania) infantum and L. (Viannia) panamensis in Central-Western Venezuela,” Acta Trop., vol. 242, p. 106901, 2023, doi: https://doi.org/10.1016/j.actatropica.2023.106901.
A. Sandoval-Juárez, G. Minaya-Gómez, N. Rojas-Palomino, and O. Cáceres, “Identificación de especies de Leishmania en pacientes derivados al Instituto Nacional de Salud del Perú,” Rev. Peru. Med. Exp. Salud Publica, vol. 37, no. 1, pp. 87–92, 2020, doi: 10.17843/rpmesp.2020.371.4514.
R. Oddone et al., “Development of a multilocus microsatellite typing approach for discriminating strains of Leishmania (Viannia) species,” J. Clin. Microbiol., vol. 47, no. 9, pp. 2818–2825, 2009, doi: 10.1128/JCM.00645-09.
S. Jagadesh et al., “Spatial variations in Leishmaniasis: A biogeographic approach to mapping the distribution of Leishmania species,” One Heal., vol. 13, 2021, doi: 10.1016/j.onehlt.2021.100307.
J. D. Marco et al., “Multilocus sequence typing approach for a broader range of species of Leishmania genus: Describing parasite diversity in Argentina,” Infect. Genet. Evol., vol. 30, pp. 308–317, 2015, doi: 10.1016/j.meegid.2014.12.031.
J. Salgado-Almario, C. A. Hernández, and C. Ovalle-Bracho, “Geographical distribution of Leishmania species in Colombia, 1985-2017,” Biomedica, vol. 39, no. 2, pp. 278–290, 2019, doi: 10.7705/biomedica.v39i3.4312.
C. A. Correa-Cárdenas et al., “Distribution, treatment outcome and genetic diversity of Leishmania species in military personnel from Colombia with cutaneous leishmaniasis,” BMC Infect. Dis., vol. 20, no. 1, pp. 1–11, 2020, doi: 10.1186/s12879-020-05529-y.
H. J. Venial et al., “Investigation of Leishmania (Viannia) braziliensis Infection in Wild Mammals in Brazil,” Acta Parasitol., vol. 67, no. 2, pp. 648–657, 2022, doi: 10.1007/s11686-021-00498-x.
J. F. Marinho-Júnior et al., “High levels of infectiousness of asymptomatic Leishmania (Viannia) braziliensis infections in wild rodents highlights their importance in the epidemiology of American Tegumentary Leishmaniasis in Brazil,” PLoS Negl. Trop. Dis., vol. 17, no. 1, pp. 1–23, 2023, doi: 10.1371/journal.pntd.0010996.
J. Lago et al., “Efficacy of intralesional meglumine antimoniate in the treatment of canine tegumentary leishmaniasis: A Randomized controlled trial,” PLoS Negl.Trop. Dis., vol. 17, no. 2, pp. 1–10, 2023, doi: 10.1371/journal.pntd.0011064.
M. J. McConville and T. Naderer, “Metabolic pathways required for the intracellular survival of Leishmania,” Annu. Rev. Microbiol., vol. 65, pp. 543–561, 2011, doi: 10.1146/annurev-micro-090110-102913.
J. M. Andrade and S. M. F. Murta, “Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum lines,” Parasites and Vectors, vol. 7, no. 1, pp. 1–9, 2014, doi: 10.1186/1756-3305-7-406.
L. Rivas and C. Gil, Eds., Drug Discovery for Leishmaniasis. The Royal Society of Chemistry, 2018.
M. F. Laranjeira-Silva, I. Hamza, and J. M. Pérez-Victoria, “Iron and Heme Metabolism at the Leishmania–Host Interface,” Trends Parasitol., vol. 36, no. 3, pp. 279–289, 2020, doi: 10.1016/j.pt.2019.12.010.
“DNDi,” Visceral leishmaniasis DNDI-0690, 2021. https://dndi.org/research-development/portfolio/dndi-0690/ (accessed Dec. 27, 2021).
L. Sellés Vidal, C. L. Kelly, P. M. Mordaka, and J. T. Heap, “Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application,” Biochim. Biophys. Acta - Proteins Proteomics, vol. 1866, no. 2, pp. 327–347, 2018, doi: 10.1016/j.bbapap.2017.11.005.
F. J. Martínez-Morcillo et al., “Non-canonical roles of NAMPT and PARP in inflammation,” Dev. Comp. Immunol., vol. 115, no. October 2020, 2021, doi: 10.1016/j.dci.2020.103881.
C. Nelson, Lehninger’s principles of biochemistry, vol. 53, no. 9. 2013.
S. Amjad et al., “Role of NAD+ in regulating cellular and metabolic signaling pathways,” Mol. Metab., vol. 49, no. February, p. 101195, 2021, doi: 10.1016/j.molmet.2021.101195.
L. E. Contreras, “Obtención y caracterización bioquímica y funcional de la enzima recombinante nicotinamida/nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis (LbNMNAT),” Bogotá, Colombia: Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Química, 2016.
R. Petrelli, K. Felczak, and L. Cappellacci, “NMN / NaMN Adenylyltransferase ( NMNAT ) and NAD Kinase ( NADK ) Inhibitors : Chemistry and Potential Therapeutic Applications,” Curr. Med. Chem., vol. 18, no. 13, pp. 1973–1992,2011.
C. Dölle, R. Skoge, M. VanLinden, and M. Ziegler, “NAD Biosynthesis in Humans - Enzymes, Metabolites and Therapeutic Aspects,” Curr. Top. Med. Chem., vol. 13, no. 23, pp. 2907–2917, 2015, doi: 10.2174/15680266113136660206.
C. Lau, M. Niere, and M. Ziegler, “The NMN/NaMN adenylyltransferase (NMNAT) protein family,” Front. Biosci., vol. 14, no. 2, pp. 410–431, 2009, doi: 10.2741/3252.
I. D’Angelo, N. Raffaelli, V. Dabusti, T. Lorenzi, G. Magni, and M. Rizzi, “Structure of nicotinamide mononucleotide adenylyltransferase: a key enzyme in NAD(+) biosynthesis.,” Structure, vol. 8, no. 9, pp. 993–1004, Sep. 2000, doi: 10.1016/s0969-2126(00)00190-8.
M. Di Stefano, L. Galassi, and G. Magni, “Unique expression pattern of human nicotinamide mononucleotide adenylyltransferase isozymes in red blood cells,” Blood Cells, Mol. Dis., vol. 45, no. 1, pp. 33–39, 2010, doi: 10.1016/j.bcmd.2010.04.003.
L. E. Contreras, M. Ziegler, and M. H. Ramírez Hernández, “Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase,” Heliyon, vol. 6, no. 4, 2020, doi: 10.1016/j.heliyon.2020.e03733.
L. Sorci et al., “Initial-rate kinetics of human NMN-adenylyltransferases: Substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD+ biosynthesis,” Biochemistry, vol. 46, no. 16, pp. 4912–4922, 2007, doi: 10.1021/bi6023379.
L. E. Contreras, R. Neme, and M. H. Ramírez, “Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase,” Protein Expr. Purif., vol. 115, pp. 26–33, 2015, doi: 10.1016/j.pep.2015.08.022.
W. Dahmen, B. Webb, and J. Preiss, “The deamido-diphosphopyridine nucleotide and diphosphopyridine nucleotide pyrophosphorylases of Escherichia coli and yeast,” Arch. Biochem. Biophys., vol. 120, no. 2, pp. 440–450, 1967, doi: 10.1016/0003-9861(67)90262-7.
G. Magni, N. Raffaelli, M. Emanuelli, A. Amici, P. Natalini, and S. Ruggieri, “Nicotinamide-mononucleotide adenylyltransferases from yeast and other microorganisms,” Methods Enzymol., vol. 280, no. 1995, pp. 248–255, 1997, doi:10.1016/S0076-6879(97)80116-4.
L. J. Ortiz Joya, “Caracterización de la nicotinamida/nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis (LbNMNAT) mediante análisis estructural y de interacción proteína-proteína,” Repos. Inst. Bibl. Digit., vol. 1, pp. 1–101, 2018, [Online]. Available: https://repositorio.unal.edu.co/handle/unal/64043.
R. G. Zhai, M. Rizzi, and S. Garavaglia, “Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme,” Cell. Mol. Life Sci., vol. 66, no. 17, pp. 2805–2818, 2009, doi: 10.1007/s00018-009-0047-x.
F. Berger, C. Lau, M. Dahlmann, and M. Ziegler, “Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms,” J. Biol. Chem., vol. 280, no. 43, pp. 36334–36341, 2005, doi: 10.1074/jbc.M508660200.
F. J. Olivas-aguirre, A. Wall-medrano, G. A. González-aguilar, J. A. López-díaz, E. Álvarez-parrilla, and L. A. De, “Taninos hidrolizables ; bioquímica , aspectos nutricionales y analíticos y efectos en la salud,” vol. 31, no. 1, pp. 55–66, 2015, doi: 10.3305/nh.2015.31.1.7699.
E. Werner, M. Ziegler, F. Lerner, M. Schweiger, and U. Heinemann, “Crystal structure of human nicotinamide mononucleotide adenylyltransferase in complex with NMN,” FEBS Letters, vol. 516, no. 1–3. pp. 239–244, 2002, doi: 10.1016/S0014-5793(02)02556-5.
D. S. Goodsell and A. J. Olson, “Structural symmetry and protein function,” vol. 29, no. 1, pp. 105–153, 2000.
R. H. Garrett and C. M. Grisham, Biochemistry, 4th ed. Belmont: Cengage Learning, 2010.
B. Zarzycka, M. A. Kuenemann, M. A. Miteva, G. A. F. Nicolaes, G. Vriend, and O. Sperandio, “Stabilization of protein-protein interaction complexes through small molecules,” Drug Discov. Today, vol. 21, no. 1, pp. 48–57, 2016, doi: 10.1016/j.drudis.2015.09.011.
A. D. Cirilo, C. M. Llombart, and J. J. Tamargo, Introducción a la química terapéutica, Segunda ed. Ediciones Díaz de Santos, 2003.
V. C. Sershon, B. D. Santarsiero, and A. D. Mesecar, “Kinetic and X-Ray Structural Evidence for Negative Cooperativity in Substrate Binding to Nicotinate Mononucleotide Adenylyltransferase (NMAT) from Bacillus anthracis,” J. Mol. Biol., vol. 385, no. 3, pp. 867–888, 2009, doi: 10.1016/j.jmb.2008.10.037.
B. Alberts et al., Molecular biology of the cell, Sixth Edit. New York: Garland Science, 2015.
S. Martínez-Calvillo, J. C. Vizuet-De-Rueda, L. E. Florencio-Martínez, R. G. Manning-Cela, and E. E. Figueroa-Angulo, “Gene expression in trypanosomatid parasites,” J. Biomed. Biotechnol., vol. 2010, 2010, doi: 10.1155/2010/525241.
E. R. Marvez, C. A. Ramírez, J. C. Casas, M. I. Ospina, J. M. Requena, and C. J. Puerta, “Characterization of the mRNA untranslated regions [UTR] of the Trypanosoma cruzi LYT1 isoforms derived by alternative trans-splicing,” Univ. Sci., vol. 23, no. 2, pp. 267–290, 2018, doi: 10.11144/Javeriana.SC23-2.cotm.
K. Benabdellah, E. González-Rey, and A. González, “Alternative trans-splicing of the Trypanosoma cruzi LYT1 gene transcript results in compartmental and functional switch for the encoded protein,” Mol. Microbiol., vol. 65, no. 6, pp. 1559–1567, 2007, doi: 10.1111/j.1365-2958.2007.05892.x.
J. N. Agudelo Chivatá, “Leishmaniasis Cutánea, Mucosa Y Visceral, Colombia 2019,” Colombia, 2019. [Online]. Available: https://www.ins.gov.co/buscador-eventos/Informesdeevento/LEISHMANIASIS_2019.pdf.
N. Bodhale et al., “Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection,” Cytokine, no. August, p. 155267, 2020, doi: 10.1016/j.cyto.2020.155267.
C. Villalobos-González, “El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte.,” 2021.
Y. Tomioka et al., “Ladder observation of bovine serum albumin by high resolution agarose native gel electrophoresis,” Int. J. Biol. Macromol., vol. 215, no. March, pp. 512–520, 2022, doi: 10.1016/j.ijbiomac.2022.06.118.
M. Aslett et al., “TriTrypDB : a functional genomic resource for the Trypanosomatidae,” vol. 38, no. October 2009, pp. 457–462, 2010, doi: 10.1093/nar/gkp851.
J. Zuallaert, F. Godin, M. Kim, A. Soete, Y. Saeys, and W. De Neve, “SpliceRover: interpretable convolutional neural networks for improved splice site prediction,” Bioinformatics, vol. 34, no. 24, pp. 4180–4188, 2018.
M. G. Reese, F. H. Eeckman, D. Kulp, and D. Haussler, “Improved splice site detection in Genie,” J. Comput. Biol., vol. 4, no. 3, pp. 311–323, 1997.
S. Brunak, J. Engelbrecht, and S. Knudsen, “Prediction of human mRNA donor and acceptor sites from the DNA sequence,” J. Mol. Biol., vol. 220, no. 1, pp. 49–65, 1991.
I. Paz, I. Kosti, M. Ares, M. Cline, and Y. Mandel-Gutfreund, “RBPmap: A web server for mapping binding sites of RNA-binding proteins,” Nucleic Acids Res., vol. 42, no. W1, pp. 361–367, 2014, doi: 10.1093/nar/gku406.
B. Amos et al., “VEuPathDB : the eukaryotic pathogen , vector and host bioinformatics resource center,” vol. 50, no. October 2021, pp. 898–911, 2022.
Thermo Scientific, “DyNAmo cDNA Synthesis Kit #F-470L,” DyNAmo cDNA Synthesis Kit #F-470L, 2014. https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FMAN0013405_DyNAmo_cDNA_Syn_UG.pdf&title=VXNlciBHdWlkZTogRHlOQW1vIGNETkEgU3ludGhlc2lzIEtpdA==.
Promega, “RQ1 RNase-Free DNase (Cat.# M6101),” pp. 9–10, 2018, [Online]. Available: https://worldwide.promega.com/products/cloning-and-dna-markers/molecular-biology-enzymes-and-reagents/rq1-rnase_free-dnase/?catNum=M6101.
E. Gasteiger, C. Hoogland, A. Gattiker, M. R. Wilkins, R. D. Appel, and A. Bairoch, “Protein identification and analysis tools on the ExPASy server,” proteomics Protoc. Handb., pp. 571–607, 2005.
amersham pharmacia biotech, Gel filtration principle and methods, 8th ed. .
P. D. C. Ruy et al., “Comparative transcriptomics in Leishmania braziliensis : disclosing differential gene expression of coding and putative noncoding RNAs across developmental stages,” RNA Biol., vol. 16, no. 5, pp. 639–660, 2019, doi: 10.1080/15476286.2019.1574161.
B. Alberts et al., Molecular biology of the cell, 8th editio. New York: Garland Science, 2015
C. Clayton, “Regulation of gene expression in trypanosomatids : living with polycistronic transcription,” 2019.
Q. Liu et al., “DeepGenGrep: a general deep learning-based predictor for multiple genomic signals and regions,” Bioinformatics, vol. 38, no. July, pp. 4053–4061,2022, doi: 10.1093/bioinformatics/btac454.
A. Waithaka, O. Maiakovska, D. Grimm, L. Melo, and C. C. Id, Sequences and proteins that influence mRNA processing in Trypanosoma brucei : Evolutionary conservation of SR-domain and PTB protein functions. 2022.
G. Elena, G. Claudia, G. Ceballos-p, S. M. Fern, and A. M. Est, “The RNA-binding protein RBP33 dampens non-productive transcription in trypanosomes,” vol. 50, no. 21, pp. 12251–12265, 2022.
M. H. Licon, F. Goodstein, D. Ortiz, S. M. Landfear, and P. A. Yates, “Distinct cis -acting elements govern purine-responsive regulation of the Leishmania donovani nucleoside transporters , LdNT1 and LdNT2,” 2020.
A. Rastrojo, L. Corvo, R. Lombraña, J. C. Solana, B. Aguado, and J. M. Requena, “Analysis by RNA-seq of transcriptomic changes elicited by heat shock in Leishmania major,” no. July 2018, pp. 1–18, 2019, doi: 10.1038/s41598-019-43354-9.
T. U. Consortium, “UniProt: the Universal Protein Knowledgebase in 2023,” Nucleic Acids Res., vol. 51, no. D1, pp. D523–D531, 2023, doi: 10.1093/nar/gkac1052.
D. Of, N. Acids, and U. Absorption, “Quantitation of DNA and RNA with Absorption and Fluorescence Spectroscopy,” no. 1994, pp. 1–8, 2000.
J. M. Kelly, “Isolation of DNA and RNA from Leishmania BT - Protocols in Molecular Parasitology,” J. E. Hyde, Ed. Totowa, NJ: Humana Press, 1993, pp. 123–131.
C. A. Ramírez, J. M. Requena, and C. J. Puerta, “Alpha tubulin genes from Leishmania braziliensis:genomic organization, gene structure and insights on their expression,” BMC Genomics, vol. 14, no. 1, p. 454, 2013, doi: 10.1186/1471-2164-14-454.
M. Mohebali et al., “Gene expression analysis of antimony resistance in Leishmania tropica using quantitative real-time PCR focused on genes involved in trypanothione metabolism and drug transport,” Arch. Dermatol. Res., vol. 311, no. 1, pp. 9–17, 2019, doi: 10.1007/s00403-018-1872-2.
L. Pérez-díaz, T. Caroline, and S. M. R. Teixeira, “Molecular & Biochemical Parasitology Involvement of an RNA binding protein containing Alba domain in the stage-specific regulation of beta-amastin expression in Trypanosoma cruzi,” Mol. Biochem. Parasitol., vol. 211, pp. 1–8, 2017, doi:10.1016/j.molbiopara.2016.12.005.
Y. Wei, H. Xiang, and W. Zhang, “Review of various NAMPT inhibitors for the treatment of cancer,” Front. Pharmacol., vol. 13, no. September, pp. 1–23, 2022, doi: 10.3389/fphar.2022.970553.
A. Poniewierska-Baran, P. Warias, and K. Zgutka, “Sirtuins (SIRTs) As a Novel Target in Gastric Cancer,” Int. J. Mol. Sci., vol. 23, no. 23, 2022, doi: 10.3390/ijms232315119.
S. Chubanava and J. T. Treebak, “Regular exercise effectively protects against the aging-associated decline in skeletal muscle NAD content,” Exp. Gerontol., p. 112109, 2023, doi: https://doi.org/10.1016/j.exger.2023.112109.
M. Abdellatif et al., “Nicotinamide for the treatment of heart failure with preserved ejection fraction,” Sci. Transl. Med., vol. 13, no. 580, p. eabd7064, Feb. 2021, doi: 10.1126/scitranslmed.abd7064.
T. Helman and N. Braidy, “Importance of NAD+ Anabolism in Metabolic, Cardiovascular and Neurodegenerative Disorders,” Drugs and Aging, vol. 40, no. 1, pp. 33–48, 2022, doi: 10.1007/s40266-022-00989-0.
T. G. A. Mack et al., “Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene,” Nat. Neurosci., vol. 4, no. 12, pp. 1199–1206, 2001, doi: 10.1038/nn770.
H. N. Jayaram, P. Kusumanchi, and J. A. Yalowitz, “Nmnat expression and its relation to nad metabolism,” Curr. Med. Chem., vol. 18, no. 13, pp. 1962–1972, May 2011, doi: 10.2174/092986711795590138.
C. Fortunato, F. Mazzola, and N. Raffaelli, “The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions,” IUBMB Life, vol. 74, no. 7, pp. 562–572, 2022, doi: 10.1002/iub.2584.
D. A. Korasick, T. A. White, S. Chakravarthy, and J. J. Tanner, “NAD+ promotes assembly of the active tetramer of aldehyde dehydrogenase 7A1,” FEBS Lett., vol. 592, no. 19, pp. 3229–3238, 2018, doi: 10.1002/1873-3468.13238.
S. Fekete, A. Beck, J. L. Veuthey, and D. Guillarme, “Theory and practice of size exclusion chromatography for the analysis of protein aggregates,” J. Pharm. Biomed. Anal., vol. 101, pp. 161–173, 2014, doi: 10.1016/j.jpba.2014.04.011.
A. Goyon, S. Fekete, A. Beck, J. L. Veuthey, and D. Guillarme, “Unraveling the mysteries of modern size exclusion chromatography - the way to achieve confident characterization of therapeutic proteins,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 1092, no. June, pp. 368–378, 2018, doi: 10.1016/j.jchromb.2018.06.029.
H. J. Yoon, L. K. Hye, B. Mikami, and W. S. Se, “Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Pseudomonas aeruginosa in its apo and substrate-complexed forms reveals a fully open conformation,” J. Mol. Biol., vol. 351, no. 2, pp. 258–265, 2005, doi: 10.1016/j.jmb.2005.06.001.
A. Waterhouse et al., “SWISS-MODEL: homology modelling of protein structures and complexes,” Nucleic Acids Res., vol. 46, no. W1, pp. W296–W303, Jul. 2018, doi: 10.1093/NAR/GKY427.
P. Natalini, I. Biochimica, F. Medicinae, B. Mca, U. Ancona, and C. Mc, “NAD Biosynthesis in Human Placenta : Purification and Characterization of Homogeneous NMN Adenylyltransferase ’,” vol. 298, no. 1, pp. 29–34, 1992.
M. Haley Licon and P. A. Yates, “Purine-responsive expression of the leishmania donovani nt3 purine nucleobase transporter is mediated by a conserved RNA stem-loop,” J. Biol. Chem., vol. 295, no. 25, pp. 8449–8459, 2020, doi: 10.1074/jbc.ra120.012696.
H. H. Wippel et al., “Unveiling the partners of the DRBD2-mRNP complex , an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2,” pp. 1–12, 2019.
S. M. Ferna and A. M. Este, “Alterations in DRBD3 Ribonucleoprotein Complexes in Response to Stress in Trypanosoma brucei,” vol. 7, no. 11, pp. 1–10, 2012, doi: 10.1371/journal.pone.0048870.
S. Go, T. T. Kramer, A. J. Verhoeven, R. P. J. O. Elferink, and J. C. Chang, “The extracellular lactate ‑ to ‑ pyruvate ratio modulates the sensitivity to oxidative stress ‑ induced apoptosis via the cytosolic NADH / NAD + redox state,” Apoptosis, vol. 26, no. 1, pp. 38–51, 2021, doi: 10.1007/s10495-020-01648-8.
C. J. Jeffery, “An introduction to protein moonlighting.,” Biochem. Soc. Trans., vol. 42, no. 6, pp. 1679–1683, Dec. 2014, doi: 10.1042/BST20140226.
B. Sharmistha, N. A. Kumar, R. Podili, A. Niyaz, and H. S. E., “Iron-Dependent RNA-Binding Activity of Mycobacterium tuberculosis Aconitase,” J. Bacteriol., vol. 189, no. 11, pp. 4046–4052, Jun. 2007, doi: 10.1128/JB.00026-07.
J. Ziveri et al., “The metabolic enzyme fructose-1,6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella,” Nat. Commun., vol. 8, no. 1, p. 853, 2017, doi: 10.1038/s41467-017-00889-7.
P. Das, A. Mukherjee, and S. Adak, “Glyceraldehyde-3-phosphate dehydrogenase present in extracellular vesicles from Leishmania major suppresses host TNF-alpha expression,” J. Biol. Chem., vol. 297, no. 4, p. 101198, 2021, doi: 10.1016/j.jbc.2021.101198.
C. Griffoni et al., “The Rossmann fold of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a nuclear docking site for antisense oligonucleotides containing a TAAAT motif,” Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, vol. 1530, no. 1, pp. 32–46, 2001, doi: https://doi.org/10.1016/S1388-1981(00)00166-9.
E. Sei and N. K. Conrad, “Chapter Four - UV Cross-Linking of Interacting RNA and Protein in Cultured Cells,” in Laboratory Methods in Enzymology: Protein Part B, vol. 539, J. B. T.-M. in E. Lorsch, Ed. Academic Press, 2014, pp. 53–66.
C. A. Ramírez, J. M. Requena, and C. J. Puerta, “Identification of the HSP70-II gene in Leishmania braziliensis HSP70 locus : genomic organization and UTRs characterization,” pp. 1–11, 2011.
D. Clark, N. Pazdernik, and M. McGehee, Molecular biology, 3th ed. Elsevier, 2019.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 116 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84167/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84167/2/1069752050_2023.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
be2422892962829493234f992f814cc2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886405963513856
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2contreras, luis62876ec184e5db1ab336ead057619899600Rojas Ramos, Bryan Steven17d357341df3152ab7e826c8804df268600Libbiq Unhttps://orcid.org/0000-0002-7196-2288Rojas Ramos, Bryan StevenRojas Ramos, Bryan Steven2023-07-07T19:57:09Z2023-07-07T19:57:09Z2023https://repositorio.unal.edu.co/handle/unal/84167Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLa Leishmaniasis es una enfermedad que puede manifestarse en tres formas clínicas: cutánea, mucocutánea y visceral, siendo causada por parásitos protozoarios del género Leishmania, del cual se conocen 22 especies patogénicas para el hombre. Según la Organización Mundial de la Salud, anualmente se registran 1,3 millones de casos, siendo Colombia uno de los países afectados, donde circulan varias especies, incluyendo Leishmania braziliensis. Actualmente, no se dispone de vacunas aprobadas para la prevención de la Leishmaniasis y el tratamiento de primera línea, como son los antimoniatos pentavalentes, generan diversos y graves efectos adversos destacándose nefrotoxicidad, hepatotoxicidad y mialgias. Adicionalmente, se ha reportado la aparición de cepas farmacorresistentes. Por lo tanto, se requiere la exploración de nuevas dianas terapéuticas, como, por ejemplo, la síntesis del dinucleótido de nicotinamida y adenina (NAD), que se destaca como una ruta metabólica promisoria, dada la importancia de este transportador electrónico. En los últimos años, nuestro grupo de investigación se ha enfocado en la obtención y caracterización de las proteínas del metabolismo del NAD de protozoarios como Giardia lamblia, Plasmodium falciparum, Trypanosoma cruzi y L. braziliensis. Específicamente en Leishmania, se han realizado trabajos para la caracterización de proteínas como la NAD quinasa y la nicotinamida/nicotinato mononucleótido adenilil transferasa (LbNMNAT); sin embargo, estos estudios se han enfocado principalmente en su actividad enzimática y estructura cuaternaria en ausencia de sustratos. En este trabajo se analizó el efecto que ejercen los sustratos de la enzima LbNMNAT sobre su oligomerización, encontrándose que sus organizaciones en forma de dímeros, trímeros y tetrámeros, no es modificada por la presencia de los sustratos analizados. Esta evidencia estructural es concordante con la cinética de tipo Michaelis-Menten reportada para la enzima, puesto que los sustratos no ejercen regulación homo-trópica sobre la LbNMNAT. Por otro lado, considerando que uno de los principales niveles de regulación de expresión génica en los tripanosomátidos es post-transcripcional, entonces se efectuó una aproximación bioinformática basada en la identificación de sitios aceptores de splicing, para delimitar las regiones no codificantes (UTRs) del gen lbnmnat. En este sentido, se encontraron numerosos sitios aceptores que podrían generar UTRs de diferentes longitudes, como se ha reportado para otras especies del parásito. Adicionalmente, se identificaron 29 proteínas de unión a ARN (RBPs) con probabilidad de reconocer dichas UTRs, las cuales participan en procesos diversos como splicing, poli-adenilación y represión post-transcripcional. De este modo, se indican proteínas que posiblemente explican las diferencias reportadas por otros autores para la abundancia del transcrito del gen lbnmnat a través del ciclo biológico de L. braziliensis. Con el propósito de comprobar experimentalmente algunos de los hallazgos bioinformáticos de este trabajo, se implementó la técnica de Retro-Transcripción acoplada a PCR (RT-PCR), partiendo del ARN obtenido de promastigotes de L. braziliensis, para identificar los UTRs asociados al gen lbnmnat en este estadio del parásito. Dicha técnica permitió la síntesis de ADN complementario apropiado para el estudio de UTRs y la amplificación de un producto de menor tamaño al esperado para el UTR 5’. Este resultado indica la necesidad de determinar la secuencia exacta del amplicón mediante eventuales técnicas de aislamiento y secuenciamiento de ADN. En conclusión, el presente trabajo aporta evidencia experimental y bioinformática acerca del efecto estructural que ejercen los sustratos de la enzima LbNMNAT sobre su oligomerización y acerca de sus UTRs y proteínas de unión, que podrían explicar mecanismos de regulación de la expresión del gen lbnmnat en el parásito L. braziliensis. (Texto tomado de la fuente)Leishmaniasis is a disease that can manifest in three clinical forms: cutaneous, mucocutaneous, and visceral. This illness is caused by protozoan parasites of the genus Leishmania. There are 22 human pathogenic species. According to the World Health Organization, 1.3 million cases are recorded annually. Colombia is one of the affected countries, where several species circulate, including Leishmania braziliensis. Currently, there are no approved vaccines available for the prevention of Leishmaniasis, and first-line treatment, such as pentavalent antimonates, generate various and serious adverse effects, including nephrotoxicity, hepatotoxicity, and myalgia. Additionally, drug-resistant strains have been reported. Therefore, the exploration of new therapeutic targets is required, such as the synthesis of nicotinamide adenine dinucleotide (NAD), which stands out as a promising metabolic pathway, since the importance of this electronic transporter. In recent years, our research group has focused on obtaining and characterizing NAD metabolism proteins from protozoa such as Giardia lamblia, Plasmodium falciparum, Trypanosoma cruzi and L. braziliensis. Specifically, in Leishmania research has been carried out to characterize these kinds of proteins: NAD kinase and nicotinamide/nicotinate mononucleotide adenylyl transferase (LbNMNAT); however, these studies have mainly focused on their enzymatic activity and quaternary structure in the absence of substrates. In this Thesis, the effect of the substrates of the LbNMNAT enzyme on its oligomerization was analyzed, finding that its organizations in the form of dimers, trimers, and tetramers, is not modified by the presence of the analyzed substrates. This structural evidence is consistent with the Michaelis-Menten kinetics reported for the enzyme since the substrates do not exert homotropic regulation on LbNMNAT. On the other hand, considering that one of the main levels of regulation of gene expression in trypanosomatids is post-transcriptional, a bioinformatics approach based on the identification of splicing acceptor sites was carried out to delimit the non-coding regions (UTRs) of the lbnmnat gene. In this sense, numerous acceptor sites were found that could generate UTRs of different lengths, as has been reported for other species of the parasite. Additionally, 29 RNA-binding proteins (RBPs) were identified with a probability of recognizing these UTRs, which participate in various processes, for instance, splicing, polyadenylation, and post-transcriptional repression. In this way, this study indicates proteins that possibly explain the differences reported by other authors for the abundance of the lbnmnat gene transcript throughout the life cycle of L. braziliensis. In order to experimentally verify some of the bioinformatic findings of this work, the Retro-Transcription coupled to PCR (RT-PCR) technique was implemented, starting from the RNA obtained from L. braziliensis promastigotes, to identify the UTRs associated with the lbnmnat gene in this stage of the parasite. This technique allowed the synthesis of complementary DNA appropriate for studying UTRs and amplifying a product smaller than expected for the 5' UTR. This result indicates the need to determine the exact sequence of the amplicon by possible DNA isolation and sequencing techniques. In conclusion, the present work provides experimental and bioinformatic evidence about the structural effect of the LbNMNAT enzyme's substrates on its oligomerization and its UTRs and binding proteins, which could explain mechanisms of regulation of the expression of the lbnmnat gene in the parasite L. braziliensis.MaestríaMagíster en Ciencias - Bioquímicabioquímica básicaxix, 116 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaParasitosParasitesLeishmaniasisLeishmania braziliensisNADLbNMNATOligomerizaciónRegulación post-transcripcionalUTRRBPOligomerizationPost-transcriptional regulationEstudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensisStudy of oligomerization and gene regulation mechanisms of the enzyme nicotinamide/nicotinate mononucleotide adenylyltransferase from Leishmania braziliensisUntersuchung der Oligomerisierungs- und Genregulationsmechanismen des Enzyms Nicotinamid/Nicotinat-Mononukleotid-Adenylyltransferase aus Leishmania braziliensisTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMWorld Health Organization, “leishmanisis,” Leishmanisis. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed Oct. 10, 2022).Manual de procedimientos para la vigilancia y control de las leishmaniasis. Washington, D.C: Organización Panamericana de la Salud, 2019.R. Tandon et al., “Parasitology International Identification of protein biomarkers of attenuation and immunogenicity of centrin or p27 gene deleted live vaccine candidates of Leishmania against visceral leishmaniasis,” Parasitol. Int., vol. 92, no. December 2021, p. 102661, 2023, doi: 10.1016/j.parint.2022.102661.A. Ponte-Sucre and M. Padrón-Nieves, Drug resistance in Leishmania parasites: Consequences, molecular mechanisms and possible treatments. 2018.J. Medina, L. C. Saavedra, L. H. Patiño, M. Muñoz, and J. D. Ramírez, “Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony,” Parasit. Vectors, 2021, doi: 10.1186/s13071-021-04915-y.Directrices para el tratamiento de las leishmaniasis en la Región de las Américas., Segunda ed. Organización Panamericana de la Salud, 2022.D. Álvarez, P. Zambrano, M. Ayala, E. Parra, J. Padilla, and J. Escobar, “guía para la atención clínica integral del paciente con leishmaniasis,” Inst. Nac. salud. Bogotá, 2010.J. S. de Toledo, E. J. R. Vasconcelos, T. R. Ferreira, and A. K. Cruz, “Using genomic information to understand Leishmania biology,” Open Parasitol. J., vol. 4, no. SPEC. ISS.1, pp. 156–166, 2010, doi: 10.2174/1874421401004010156.R. Lin and J. Yu, “The role of NAD + metabolism in macrophages in age-related macular degeneration,” Mech. Ageing Dev., vol. 209, no. November 2022, p. 111755, 2023, doi: 10.1016/j.mad.2022.111755.E. Katsyuba, M. Romani, D. Hofer, and J. Auwerx, “NAD+ homeostasis in health and disease,” Nat. Metab., vol. 2, no. 1, pp. 9–31, 2020, doi: 10.1038/s42255-019-0161-5.C. Fortunato, “The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions,” no. October 2021, pp. 562–572, 2022, doi: 10.1002/iub.2584.L. Sorci et al., “Targeting NAD Biosynthesis in Bacterial Pathogens: Structure-Based Development of Inhibitors of Nicotinate Mononucleotide Adenylyltransferase NadD,” Chem. Biol., vol. 16, no. 8, pp. 849–861, 2009, doi: 10.1016/j.chembiol.2009.07.006.H. Zhang, T. Zhou, O. Kurnasov, S. Cheek, N. V. Grishin, and A. Osterman, “Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD,” Structure, vol. 10, no. 1, pp. 69–79, 2002, doi: 10.1016/S0969-2126(01)00693-1.X. Zhang, O. V. Kurnasov, S. Karthikeyan, N. V. Grishin, A. L. Osterman, and H. Zhang, “Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis,” J. Biol. Chem., vol. 278, no. 15, pp. 13503–13511, 2003, doi: 10.1074/jbc.M300073200.WHO, “Leishmanisis: status of endemicity of cutaneus leishmaniasis,” 2021. https://apps.who.int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.html (accessed Jan. 05, 2023).Organización Panamericana de la Salud, “Informe epidemiológico de las Américas. Núm. 11,” 2022.Instituto Nacional de Salud, “Boletín epidemilógico semana 51,” 2022. [Online]. Available: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2022_Boletín_epidemiologico_semana_51.pdf.Ministerio de Salud y Protección social Colombia, “Ejecución presupuestal,” Ejecución mensual, 2022.J. M. Bezemer, B. P. Freire-Paspuel, H. D. F. H. Schallig, H. J. C. de Vries, and M. Calvopiña, “Leishmania species and clinical characteristics of Pacific and Amazon cutaneous leishmaniasis in Ecuador and determinants of health-seeking delay: a cross-sectional study,” BMC Infect. Dis., vol. 23, no. 1, p. 395, 2023, doi: 10.1186/s12879-023-08377-8.L. A. Delgado-Noguera et al., “Diversity and geographical distribution of Leishmania species and the emergence of Leishmania (Leishmania) infantum and L. (Viannia) panamensis in Central-Western Venezuela,” Acta Trop., vol. 242, p. 106901, 2023, doi: https://doi.org/10.1016/j.actatropica.2023.106901.A. Sandoval-Juárez, G. Minaya-Gómez, N. Rojas-Palomino, and O. Cáceres, “Identificación de especies de Leishmania en pacientes derivados al Instituto Nacional de Salud del Perú,” Rev. Peru. Med. Exp. Salud Publica, vol. 37, no. 1, pp. 87–92, 2020, doi: 10.17843/rpmesp.2020.371.4514.R. Oddone et al., “Development of a multilocus microsatellite typing approach for discriminating strains of Leishmania (Viannia) species,” J. Clin. Microbiol., vol. 47, no. 9, pp. 2818–2825, 2009, doi: 10.1128/JCM.00645-09.S. Jagadesh et al., “Spatial variations in Leishmaniasis: A biogeographic approach to mapping the distribution of Leishmania species,” One Heal., vol. 13, 2021, doi: 10.1016/j.onehlt.2021.100307.J. D. Marco et al., “Multilocus sequence typing approach for a broader range of species of Leishmania genus: Describing parasite diversity in Argentina,” Infect. Genet. Evol., vol. 30, pp. 308–317, 2015, doi: 10.1016/j.meegid.2014.12.031.J. Salgado-Almario, C. A. Hernández, and C. Ovalle-Bracho, “Geographical distribution of Leishmania species in Colombia, 1985-2017,” Biomedica, vol. 39, no. 2, pp. 278–290, 2019, doi: 10.7705/biomedica.v39i3.4312.C. A. Correa-Cárdenas et al., “Distribution, treatment outcome and genetic diversity of Leishmania species in military personnel from Colombia with cutaneous leishmaniasis,” BMC Infect. Dis., vol. 20, no. 1, pp. 1–11, 2020, doi: 10.1186/s12879-020-05529-y.H. J. Venial et al., “Investigation of Leishmania (Viannia) braziliensis Infection in Wild Mammals in Brazil,” Acta Parasitol., vol. 67, no. 2, pp. 648–657, 2022, doi: 10.1007/s11686-021-00498-x.J. F. Marinho-Júnior et al., “High levels of infectiousness of asymptomatic Leishmania (Viannia) braziliensis infections in wild rodents highlights their importance in the epidemiology of American Tegumentary Leishmaniasis in Brazil,” PLoS Negl. Trop. Dis., vol. 17, no. 1, pp. 1–23, 2023, doi: 10.1371/journal.pntd.0010996.J. Lago et al., “Efficacy of intralesional meglumine antimoniate in the treatment of canine tegumentary leishmaniasis: A Randomized controlled trial,” PLoS Negl.Trop. Dis., vol. 17, no. 2, pp. 1–10, 2023, doi: 10.1371/journal.pntd.0011064.M. J. McConville and T. Naderer, “Metabolic pathways required for the intracellular survival of Leishmania,” Annu. Rev. Microbiol., vol. 65, pp. 543–561, 2011, doi: 10.1146/annurev-micro-090110-102913.J. M. Andrade and S. M. F. Murta, “Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum lines,” Parasites and Vectors, vol. 7, no. 1, pp. 1–9, 2014, doi: 10.1186/1756-3305-7-406.L. Rivas and C. Gil, Eds., Drug Discovery for Leishmaniasis. The Royal Society of Chemistry, 2018.M. F. Laranjeira-Silva, I. Hamza, and J. M. Pérez-Victoria, “Iron and Heme Metabolism at the Leishmania–Host Interface,” Trends Parasitol., vol. 36, no. 3, pp. 279–289, 2020, doi: 10.1016/j.pt.2019.12.010.“DNDi,” Visceral leishmaniasis DNDI-0690, 2021. https://dndi.org/research-development/portfolio/dndi-0690/ (accessed Dec. 27, 2021).L. Sellés Vidal, C. L. Kelly, P. M. Mordaka, and J. T. Heap, “Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application,” Biochim. Biophys. Acta - Proteins Proteomics, vol. 1866, no. 2, pp. 327–347, 2018, doi: 10.1016/j.bbapap.2017.11.005.F. J. Martínez-Morcillo et al., “Non-canonical roles of NAMPT and PARP in inflammation,” Dev. Comp. Immunol., vol. 115, no. October 2020, 2021, doi: 10.1016/j.dci.2020.103881.C. Nelson, Lehninger’s principles of biochemistry, vol. 53, no. 9. 2013.S. Amjad et al., “Role of NAD+ in regulating cellular and metabolic signaling pathways,” Mol. Metab., vol. 49, no. February, p. 101195, 2021, doi: 10.1016/j.molmet.2021.101195.L. E. Contreras, “Obtención y caracterización bioquímica y funcional de la enzima recombinante nicotinamida/nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis (LbNMNAT),” Bogotá, Colombia: Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Química, 2016.R. Petrelli, K. Felczak, and L. Cappellacci, “NMN / NaMN Adenylyltransferase ( NMNAT ) and NAD Kinase ( NADK ) Inhibitors : Chemistry and Potential Therapeutic Applications,” Curr. Med. Chem., vol. 18, no. 13, pp. 1973–1992,2011.C. Dölle, R. Skoge, M. VanLinden, and M. Ziegler, “NAD Biosynthesis in Humans - Enzymes, Metabolites and Therapeutic Aspects,” Curr. Top. Med. Chem., vol. 13, no. 23, pp. 2907–2917, 2015, doi: 10.2174/15680266113136660206.C. Lau, M. Niere, and M. Ziegler, “The NMN/NaMN adenylyltransferase (NMNAT) protein family,” Front. Biosci., vol. 14, no. 2, pp. 410–431, 2009, doi: 10.2741/3252.I. D’Angelo, N. Raffaelli, V. Dabusti, T. Lorenzi, G. Magni, and M. Rizzi, “Structure of nicotinamide mononucleotide adenylyltransferase: a key enzyme in NAD(+) biosynthesis.,” Structure, vol. 8, no. 9, pp. 993–1004, Sep. 2000, doi: 10.1016/s0969-2126(00)00190-8.M. Di Stefano, L. Galassi, and G. Magni, “Unique expression pattern of human nicotinamide mononucleotide adenylyltransferase isozymes in red blood cells,” Blood Cells, Mol. Dis., vol. 45, no. 1, pp. 33–39, 2010, doi: 10.1016/j.bcmd.2010.04.003.L. E. Contreras, M. Ziegler, and M. H. Ramírez Hernández, “Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase,” Heliyon, vol. 6, no. 4, 2020, doi: 10.1016/j.heliyon.2020.e03733.L. Sorci et al., “Initial-rate kinetics of human NMN-adenylyltransferases: Substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD+ biosynthesis,” Biochemistry, vol. 46, no. 16, pp. 4912–4922, 2007, doi: 10.1021/bi6023379.L. E. Contreras, R. Neme, and M. H. Ramírez, “Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase,” Protein Expr. Purif., vol. 115, pp. 26–33, 2015, doi: 10.1016/j.pep.2015.08.022.W. Dahmen, B. Webb, and J. Preiss, “The deamido-diphosphopyridine nucleotide and diphosphopyridine nucleotide pyrophosphorylases of Escherichia coli and yeast,” Arch. Biochem. Biophys., vol. 120, no. 2, pp. 440–450, 1967, doi: 10.1016/0003-9861(67)90262-7.G. Magni, N. Raffaelli, M. Emanuelli, A. Amici, P. Natalini, and S. Ruggieri, “Nicotinamide-mononucleotide adenylyltransferases from yeast and other microorganisms,” Methods Enzymol., vol. 280, no. 1995, pp. 248–255, 1997, doi:10.1016/S0076-6879(97)80116-4.L. J. Ortiz Joya, “Caracterización de la nicotinamida/nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis (LbNMNAT) mediante análisis estructural y de interacción proteína-proteína,” Repos. Inst. Bibl. Digit., vol. 1, pp. 1–101, 2018, [Online]. Available: https://repositorio.unal.edu.co/handle/unal/64043.R. G. Zhai, M. Rizzi, and S. Garavaglia, “Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme,” Cell. Mol. Life Sci., vol. 66, no. 17, pp. 2805–2818, 2009, doi: 10.1007/s00018-009-0047-x.F. Berger, C. Lau, M. Dahlmann, and M. Ziegler, “Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms,” J. Biol. Chem., vol. 280, no. 43, pp. 36334–36341, 2005, doi: 10.1074/jbc.M508660200.F. J. Olivas-aguirre, A. Wall-medrano, G. A. González-aguilar, J. A. López-díaz, E. Álvarez-parrilla, and L. A. De, “Taninos hidrolizables ; bioquímica , aspectos nutricionales y analíticos y efectos en la salud,” vol. 31, no. 1, pp. 55–66, 2015, doi: 10.3305/nh.2015.31.1.7699.E. Werner, M. Ziegler, F. Lerner, M. Schweiger, and U. Heinemann, “Crystal structure of human nicotinamide mononucleotide adenylyltransferase in complex with NMN,” FEBS Letters, vol. 516, no. 1–3. pp. 239–244, 2002, doi: 10.1016/S0014-5793(02)02556-5.D. S. Goodsell and A. J. Olson, “Structural symmetry and protein function,” vol. 29, no. 1, pp. 105–153, 2000.R. H. Garrett and C. M. Grisham, Biochemistry, 4th ed. Belmont: Cengage Learning, 2010.B. Zarzycka, M. A. Kuenemann, M. A. Miteva, G. A. F. Nicolaes, G. Vriend, and O. Sperandio, “Stabilization of protein-protein interaction complexes through small molecules,” Drug Discov. Today, vol. 21, no. 1, pp. 48–57, 2016, doi: 10.1016/j.drudis.2015.09.011.A. D. Cirilo, C. M. Llombart, and J. J. Tamargo, Introducción a la química terapéutica, Segunda ed. Ediciones Díaz de Santos, 2003.V. C. Sershon, B. D. Santarsiero, and A. D. Mesecar, “Kinetic and X-Ray Structural Evidence for Negative Cooperativity in Substrate Binding to Nicotinate Mononucleotide Adenylyltransferase (NMAT) from Bacillus anthracis,” J. Mol. Biol., vol. 385, no. 3, pp. 867–888, 2009, doi: 10.1016/j.jmb.2008.10.037.B. Alberts et al., Molecular biology of the cell, Sixth Edit. New York: Garland Science, 2015.S. Martínez-Calvillo, J. C. Vizuet-De-Rueda, L. E. Florencio-Martínez, R. G. Manning-Cela, and E. E. Figueroa-Angulo, “Gene expression in trypanosomatid parasites,” J. Biomed. Biotechnol., vol. 2010, 2010, doi: 10.1155/2010/525241.E. R. Marvez, C. A. Ramírez, J. C. Casas, M. I. Ospina, J. M. Requena, and C. J. Puerta, “Characterization of the mRNA untranslated regions [UTR] of the Trypanosoma cruzi LYT1 isoforms derived by alternative trans-splicing,” Univ. Sci., vol. 23, no. 2, pp. 267–290, 2018, doi: 10.11144/Javeriana.SC23-2.cotm.K. Benabdellah, E. González-Rey, and A. González, “Alternative trans-splicing of the Trypanosoma cruzi LYT1 gene transcript results in compartmental and functional switch for the encoded protein,” Mol. Microbiol., vol. 65, no. 6, pp. 1559–1567, 2007, doi: 10.1111/j.1365-2958.2007.05892.x.J. N. Agudelo Chivatá, “Leishmaniasis Cutánea, Mucosa Y Visceral, Colombia 2019,” Colombia, 2019. [Online]. Available: https://www.ins.gov.co/buscador-eventos/Informesdeevento/LEISHMANIASIS_2019.pdf.N. Bodhale et al., “Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection,” Cytokine, no. August, p. 155267, 2020, doi: 10.1016/j.cyto.2020.155267.C. Villalobos-González, “El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte.,” 2021.Y. Tomioka et al., “Ladder observation of bovine serum albumin by high resolution agarose native gel electrophoresis,” Int. J. Biol. Macromol., vol. 215, no. March, pp. 512–520, 2022, doi: 10.1016/j.ijbiomac.2022.06.118.M. Aslett et al., “TriTrypDB : a functional genomic resource for the Trypanosomatidae,” vol. 38, no. October 2009, pp. 457–462, 2010, doi: 10.1093/nar/gkp851.J. Zuallaert, F. Godin, M. Kim, A. Soete, Y. Saeys, and W. De Neve, “SpliceRover: interpretable convolutional neural networks for improved splice site prediction,” Bioinformatics, vol. 34, no. 24, pp. 4180–4188, 2018.M. G. Reese, F. H. Eeckman, D. Kulp, and D. Haussler, “Improved splice site detection in Genie,” J. Comput. Biol., vol. 4, no. 3, pp. 311–323, 1997.S. Brunak, J. Engelbrecht, and S. Knudsen, “Prediction of human mRNA donor and acceptor sites from the DNA sequence,” J. Mol. Biol., vol. 220, no. 1, pp. 49–65, 1991.I. Paz, I. Kosti, M. Ares, M. Cline, and Y. Mandel-Gutfreund, “RBPmap: A web server for mapping binding sites of RNA-binding proteins,” Nucleic Acids Res., vol. 42, no. W1, pp. 361–367, 2014, doi: 10.1093/nar/gku406.B. Amos et al., “VEuPathDB : the eukaryotic pathogen , vector and host bioinformatics resource center,” vol. 50, no. October 2021, pp. 898–911, 2022.Thermo Scientific, “DyNAmo cDNA Synthesis Kit #F-470L,” DyNAmo cDNA Synthesis Kit #F-470L, 2014. https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FMAN0013405_DyNAmo_cDNA_Syn_UG.pdf&title=VXNlciBHdWlkZTogRHlOQW1vIGNETkEgU3ludGhlc2lzIEtpdA==.Promega, “RQ1 RNase-Free DNase (Cat.# M6101),” pp. 9–10, 2018, [Online]. Available: https://worldwide.promega.com/products/cloning-and-dna-markers/molecular-biology-enzymes-and-reagents/rq1-rnase_free-dnase/?catNum=M6101.E. Gasteiger, C. Hoogland, A. Gattiker, M. R. Wilkins, R. D. Appel, and A. Bairoch, “Protein identification and analysis tools on the ExPASy server,” proteomics Protoc. Handb., pp. 571–607, 2005.amersham pharmacia biotech, Gel filtration principle and methods, 8th ed. .P. D. C. Ruy et al., “Comparative transcriptomics in Leishmania braziliensis : disclosing differential gene expression of coding and putative noncoding RNAs across developmental stages,” RNA Biol., vol. 16, no. 5, pp. 639–660, 2019, doi: 10.1080/15476286.2019.1574161.B. Alberts et al., Molecular biology of the cell, 8th editio. New York: Garland Science, 2015C. Clayton, “Regulation of gene expression in trypanosomatids : living with polycistronic transcription,” 2019.Q. Liu et al., “DeepGenGrep: a general deep learning-based predictor for multiple genomic signals and regions,” Bioinformatics, vol. 38, no. July, pp. 4053–4061,2022, doi: 10.1093/bioinformatics/btac454.A. Waithaka, O. Maiakovska, D. Grimm, L. Melo, and C. C. Id, Sequences and proteins that influence mRNA processing in Trypanosoma brucei : Evolutionary conservation of SR-domain and PTB protein functions. 2022.G. Elena, G. Claudia, G. Ceballos-p, S. M. Fern, and A. M. Est, “The RNA-binding protein RBP33 dampens non-productive transcription in trypanosomes,” vol. 50, no. 21, pp. 12251–12265, 2022.M. H. Licon, F. Goodstein, D. Ortiz, S. M. Landfear, and P. A. Yates, “Distinct cis -acting elements govern purine-responsive regulation of the Leishmania donovani nucleoside transporters , LdNT1 and LdNT2,” 2020.A. Rastrojo, L. Corvo, R. Lombraña, J. C. Solana, B. Aguado, and J. M. Requena, “Analysis by RNA-seq of transcriptomic changes elicited by heat shock in Leishmania major,” no. July 2018, pp. 1–18, 2019, doi: 10.1038/s41598-019-43354-9.T. U. Consortium, “UniProt: the Universal Protein Knowledgebase in 2023,” Nucleic Acids Res., vol. 51, no. D1, pp. D523–D531, 2023, doi: 10.1093/nar/gkac1052.D. Of, N. Acids, and U. Absorption, “Quantitation of DNA and RNA with Absorption and Fluorescence Spectroscopy,” no. 1994, pp. 1–8, 2000.J. M. Kelly, “Isolation of DNA and RNA from Leishmania BT - Protocols in Molecular Parasitology,” J. E. Hyde, Ed. Totowa, NJ: Humana Press, 1993, pp. 123–131.C. A. Ramírez, J. M. Requena, and C. J. Puerta, “Alpha tubulin genes from Leishmania braziliensis:genomic organization, gene structure and insights on their expression,” BMC Genomics, vol. 14, no. 1, p. 454, 2013, doi: 10.1186/1471-2164-14-454.M. Mohebali et al., “Gene expression analysis of antimony resistance in Leishmania tropica using quantitative real-time PCR focused on genes involved in trypanothione metabolism and drug transport,” Arch. Dermatol. Res., vol. 311, no. 1, pp. 9–17, 2019, doi: 10.1007/s00403-018-1872-2.L. Pérez-díaz, T. Caroline, and S. M. R. Teixeira, “Molecular & Biochemical Parasitology Involvement of an RNA binding protein containing Alba domain in the stage-specific regulation of beta-amastin expression in Trypanosoma cruzi,” Mol. Biochem. Parasitol., vol. 211, pp. 1–8, 2017, doi:10.1016/j.molbiopara.2016.12.005.Y. Wei, H. Xiang, and W. Zhang, “Review of various NAMPT inhibitors for the treatment of cancer,” Front. Pharmacol., vol. 13, no. September, pp. 1–23, 2022, doi: 10.3389/fphar.2022.970553.A. Poniewierska-Baran, P. Warias, and K. Zgutka, “Sirtuins (SIRTs) As a Novel Target in Gastric Cancer,” Int. J. Mol. Sci., vol. 23, no. 23, 2022, doi: 10.3390/ijms232315119.S. Chubanava and J. T. Treebak, “Regular exercise effectively protects against the aging-associated decline in skeletal muscle NAD content,” Exp. Gerontol., p. 112109, 2023, doi: https://doi.org/10.1016/j.exger.2023.112109.M. Abdellatif et al., “Nicotinamide for the treatment of heart failure with preserved ejection fraction,” Sci. Transl. Med., vol. 13, no. 580, p. eabd7064, Feb. 2021, doi: 10.1126/scitranslmed.abd7064.T. Helman and N. Braidy, “Importance of NAD+ Anabolism in Metabolic, Cardiovascular and Neurodegenerative Disorders,” Drugs and Aging, vol. 40, no. 1, pp. 33–48, 2022, doi: 10.1007/s40266-022-00989-0.T. G. A. Mack et al., “Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene,” Nat. Neurosci., vol. 4, no. 12, pp. 1199–1206, 2001, doi: 10.1038/nn770.H. N. Jayaram, P. Kusumanchi, and J. A. Yalowitz, “Nmnat expression and its relation to nad metabolism,” Curr. Med. Chem., vol. 18, no. 13, pp. 1962–1972, May 2011, doi: 10.2174/092986711795590138.C. Fortunato, F. Mazzola, and N. Raffaelli, “The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions,” IUBMB Life, vol. 74, no. 7, pp. 562–572, 2022, doi: 10.1002/iub.2584.D. A. Korasick, T. A. White, S. Chakravarthy, and J. J. Tanner, “NAD+ promotes assembly of the active tetramer of aldehyde dehydrogenase 7A1,” FEBS Lett., vol. 592, no. 19, pp. 3229–3238, 2018, doi: 10.1002/1873-3468.13238.S. Fekete, A. Beck, J. L. Veuthey, and D. Guillarme, “Theory and practice of size exclusion chromatography for the analysis of protein aggregates,” J. Pharm. Biomed. Anal., vol. 101, pp. 161–173, 2014, doi: 10.1016/j.jpba.2014.04.011.A. Goyon, S. Fekete, A. Beck, J. L. Veuthey, and D. Guillarme, “Unraveling the mysteries of modern size exclusion chromatography - the way to achieve confident characterization of therapeutic proteins,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 1092, no. June, pp. 368–378, 2018, doi: 10.1016/j.jchromb.2018.06.029.H. J. Yoon, L. K. Hye, B. Mikami, and W. S. Se, “Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Pseudomonas aeruginosa in its apo and substrate-complexed forms reveals a fully open conformation,” J. Mol. Biol., vol. 351, no. 2, pp. 258–265, 2005, doi: 10.1016/j.jmb.2005.06.001.A. Waterhouse et al., “SWISS-MODEL: homology modelling of protein structures and complexes,” Nucleic Acids Res., vol. 46, no. W1, pp. W296–W303, Jul. 2018, doi: 10.1093/NAR/GKY427.P. Natalini, I. Biochimica, F. Medicinae, B. Mca, U. Ancona, and C. Mc, “NAD Biosynthesis in Human Placenta : Purification and Characterization of Homogeneous NMN Adenylyltransferase ’,” vol. 298, no. 1, pp. 29–34, 1992.M. Haley Licon and P. A. Yates, “Purine-responsive expression of the leishmania donovani nt3 purine nucleobase transporter is mediated by a conserved RNA stem-loop,” J. Biol. Chem., vol. 295, no. 25, pp. 8449–8459, 2020, doi: 10.1074/jbc.ra120.012696.H. H. Wippel et al., “Unveiling the partners of the DRBD2-mRNP complex , an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2,” pp. 1–12, 2019.S. M. Ferna and A. M. Este, “Alterations in DRBD3 Ribonucleoprotein Complexes in Response to Stress in Trypanosoma brucei,” vol. 7, no. 11, pp. 1–10, 2012, doi: 10.1371/journal.pone.0048870.S. Go, T. T. Kramer, A. J. Verhoeven, R. P. J. O. Elferink, and J. C. Chang, “The extracellular lactate ‑ to ‑ pyruvate ratio modulates the sensitivity to oxidative stress ‑ induced apoptosis via the cytosolic NADH / NAD + redox state,” Apoptosis, vol. 26, no. 1, pp. 38–51, 2021, doi: 10.1007/s10495-020-01648-8.C. J. Jeffery, “An introduction to protein moonlighting.,” Biochem. Soc. Trans., vol. 42, no. 6, pp. 1679–1683, Dec. 2014, doi: 10.1042/BST20140226.B. Sharmistha, N. A. Kumar, R. Podili, A. Niyaz, and H. S. E., “Iron-Dependent RNA-Binding Activity of Mycobacterium tuberculosis Aconitase,” J. Bacteriol., vol. 189, no. 11, pp. 4046–4052, Jun. 2007, doi: 10.1128/JB.00026-07.J. Ziveri et al., “The metabolic enzyme fructose-1,6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella,” Nat. Commun., vol. 8, no. 1, p. 853, 2017, doi: 10.1038/s41467-017-00889-7.P. Das, A. Mukherjee, and S. Adak, “Glyceraldehyde-3-phosphate dehydrogenase present in extracellular vesicles from Leishmania major suppresses host TNF-alpha expression,” J. Biol. Chem., vol. 297, no. 4, p. 101198, 2021, doi: 10.1016/j.jbc.2021.101198.C. Griffoni et al., “The Rossmann fold of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a nuclear docking site for antisense oligonucleotides containing a TAAAT motif,” Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, vol. 1530, no. 1, pp. 32–46, 2001, doi: https://doi.org/10.1016/S1388-1981(00)00166-9.E. Sei and N. K. Conrad, “Chapter Four - UV Cross-Linking of Interacting RNA and Protein in Cultured Cells,” in Laboratory Methods in Enzymology: Protein Part B, vol. 539, J. B. T.-M. in E. Lorsch, Ed. Academic Press, 2014, pp. 53–66.C. A. Ramírez, J. M. Requena, and C. J. Puerta, “Identification of the HSP70-II gene in Leishmania braziliensis HSP70 locus : genomic organization and UTRs characterization,” pp. 1–11, 2011.D. Clark, N. Pazdernik, and M. McGehee, Molecular biology, 3th ed. Elsevier, 2019.INNOVANDO METODOLOGÍAS: DESARROLLO DE UN SISTEMA DE INFECCIÓN IN VITRO DE MACRÓFAGOS MURINOS CON PARÁSITOS FLUORESCENTES DE LEISHMANIA BRAZILIENSISUniversidad Nacional de Colombia - Sede de Bogotá - Facultad de cienciasEstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84167/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1069752050_2023.pdf1069752050_2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf4414114https://repositorio.unal.edu.co/bitstream/unal/84167/2/1069752050_2023.pdfbe2422892962829493234f992f814cc2MD52unal/84167oai:repositorio.unal.edu.co:unal/841672023-07-07 15:09:42.987Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=