Comparison of frequency response and neural network techniques for system identification of an actively controlled structure
System identification methodsare generally used to obtain the dynamic properties of structural systems. The dynamic properties are used for various purposes, such as model updating, structural health monitoring, and control synthesis. This paper presents the identification of an actively controlled...
- Autores:
-
Gómez Pizano, Daniel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2011
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/40453
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/40453
http://bdigital.unal.edu.co/30550/
- Palabra clave:
- Structural dynamics and control
system identification
frequency response
artificial neural networks
MISOsystem
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_2ef3a3833564ad68102284a0b8939997 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/40453 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Pizano, Daniela04ecf20-ce00-4a56-abfb-a2fac7050f123002019-06-28T09:33:55Z2019-06-28T09:33:55Z2011https://repositorio.unal.edu.co/handle/unal/40453http://bdigital.unal.edu.co/30550/System identification methodsare generally used to obtain the dynamic properties of structural systems. The dynamic properties are used for various purposes, such as model updating, structural health monitoring, and control synthesis. This paper presents the identification of an actively controlled structure with an active mass damper based on input-outputrelationships.The input signals include accelerations in the base of the structure and control force inputs while the output signals are the accelerations of the structure due to the inputs. In this paper, the system identification using frequency response functions iscompared with non-linear relationships obtained by using artificial neural networks (ANN) for bothasingle-input, single-output, and multiple-inputsingle-output (MISO) system. The results indicate that for the MISO structural system,the ANN technique providesa more accurate identification than identifications obtained with frequency responsemethods.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/29390Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDyna; Vol. 78, núm. 170 (2011); 79-89 DYNA; Vol. 78, núm. 170 (2011); 79-89 2346-2183 0012-7353Gómez Pizano, Daniel (2011) Comparison of frequency response and neural network techniques for system identification of an actively controlled structure. Dyna; Vol. 78, núm. 170 (2011); 79-89 DYNA; Vol. 78, núm. 170 (2011); 79-89 2346-2183 0012-7353 .Comparison of frequency response and neural network techniques for system identification of an actively controlled structureArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTStructural dynamics and controlsystem identificationfrequency responseartificial neural networksMISOsystemORIGINAL29390-105927-1-PB.pdfapplication/pdf1865946https://repositorio.unal.edu.co/bitstream/unal/40453/1/29390-105927-1-PB.pdfae2f205a74c8511ec0090a7297feda84MD51THUMBNAIL29390-105927-1-PB.pdf.jpg29390-105927-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9105https://repositorio.unal.edu.co/bitstream/unal/40453/2/29390-105927-1-PB.pdf.jpgb18709334e3cb5ad8628330b1462cd88MD52unal/40453oai:repositorio.unal.edu.co:unal/404532024-01-25 23:06:23.246Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Comparison of frequency response and neural network techniques for system identification of an actively controlled structure |
title |
Comparison of frequency response and neural network techniques for system identification of an actively controlled structure |
spellingShingle |
Comparison of frequency response and neural network techniques for system identification of an actively controlled structure Structural dynamics and control system identification frequency response artificial neural networks MISOsystem |
title_short |
Comparison of frequency response and neural network techniques for system identification of an actively controlled structure |
title_full |
Comparison of frequency response and neural network techniques for system identification of an actively controlled structure |
title_fullStr |
Comparison of frequency response and neural network techniques for system identification of an actively controlled structure |
title_full_unstemmed |
Comparison of frequency response and neural network techniques for system identification of an actively controlled structure |
title_sort |
Comparison of frequency response and neural network techniques for system identification of an actively controlled structure |
dc.creator.fl_str_mv |
Gómez Pizano, Daniel |
dc.contributor.author.spa.fl_str_mv |
Gómez Pizano, Daniel |
dc.subject.proposal.spa.fl_str_mv |
Structural dynamics and control system identification frequency response artificial neural networks MISOsystem |
topic |
Structural dynamics and control system identification frequency response artificial neural networks MISOsystem |
description |
System identification methodsare generally used to obtain the dynamic properties of structural systems. The dynamic properties are used for various purposes, such as model updating, structural health monitoring, and control synthesis. This paper presents the identification of an actively controlled structure with an active mass damper based on input-outputrelationships.The input signals include accelerations in the base of the structure and control force inputs while the output signals are the accelerations of the structure due to the inputs. In this paper, the system identification using frequency response functions iscompared with non-linear relationships obtained by using artificial neural networks (ANN) for bothasingle-input, single-output, and multiple-inputsingle-output (MISO) system. The results indicate that for the MISO structural system,the ANN technique providesa more accurate identification than identifications obtained with frequency responsemethods. |
publishDate |
2011 |
dc.date.issued.spa.fl_str_mv |
2011 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T09:33:55Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T09:33:55Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/40453 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/30550/ |
url |
https://repositorio.unal.edu.co/handle/unal/40453 http://bdigital.unal.edu.co/30550/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/dyna/article/view/29390 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.ispartofseries.none.fl_str_mv |
Dyna; Vol. 78, núm. 170 (2011); 79-89 DYNA; Vol. 78, núm. 170 (2011); 79-89 2346-2183 0012-7353 |
dc.relation.references.spa.fl_str_mv |
Gómez Pizano, Daniel (2011) Comparison of frequency response and neural network techniques for system identification of an actively controlled structure. Dyna; Vol. 78, núm. 170 (2011); 79-89 DYNA; Vol. 78, núm. 170 (2011); 79-89 2346-2183 0012-7353 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/40453/1/29390-105927-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/40453/2/29390-105927-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
ae2f205a74c8511ec0090a7297feda84 b18709334e3cb5ad8628330b1462cd88 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089307767439360 |