The need of impatience for general existence theorems for equilibria and pareto optima in mathematical economic systems
We consider a Mathematical Economic System (M.E.S.) of Arrow- Debreu type, [Formula Matemática] where E = E(ro) is a locally convex R- vector space. We assume E barreled, later on we assume E a reflexive Banach Latice. Example. /P, LP(μ), 1 ≤ p ≤∞Hilbert spaces. Question: Which topologies τ in X are...
- Autores:
-
Tillman, H. G.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1993
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43594
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43594
http://bdigital.unal.edu.co/33692/
- Palabra clave:
- Existence theorems
general equilibrium
Pareto optima
math
economic systems
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | We consider a Mathematical Economic System (M.E.S.) of Arrow- Debreu type, [Formula Matemática] where E = E(ro) is a locally convex R- vector space. We assume E barreled, later on we assume E a reflexive Banach Latice. Example. /P, LP(μ), 1 ≤ p ≤∞Hilbert spaces. Question: Which topologies τ in X are suitable for Economic Models? |
---|