Ill posedness of a neural field equation with Heaviside firing rate function

We consider the initial value problem associated to the neural field equationut(x, t) = -u(x, t) + ZRm w(x, y) [1 + g(u(x, t) -u(y, t))] f(u(y, t)) dy, (x, t) Rm x (0, 1),where f is a Heaviside function, then we show that the problem is ill posed in Cb(Rm). The proof follows from a discontinuity arg...

Full description

Autores:
Cordero Ceballos, Juan Carlos
Pinilla Estupiñan, Ricardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/61887
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/61887
http://bdigital.unal.edu.co/60699/
Palabra clave:
51 Matemáticas / Mathematics
Neural field equation
ring rate function
synaptic and sensitive kernel
well and ill posedness
flow of the equation.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:We consider the initial value problem associated to the neural field equationut(x, t) = -u(x, t) + ZRm w(x, y) [1 + g(u(x, t) -u(y, t))] f(u(y, t)) dy, (x, t) Rm x (0, 1),where f is a Heaviside function, then we show that the problem is ill posed in Cb(Rm). The proof follows from a discontinuity argument apply to the equation's flow.