Variabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de Marte

ilustraciones, diagramas

Autores:
Molina Córdoba, Johan Nicolás
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85032
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85032
https://repositorio.unal.edu.co/
Palabra clave:
520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
530 - Física::535 - Luz y radiación relacionada
520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
530 - Física::536 - Calor
Atmósfera
Cirdulación atmosférica
Ciclo solar
Atmosphere
Atmospheric circulation
Solar cycle
Atmósferas planetarias
Marte
Ciclo Solar
Modelos climatológicos
NRLMSISE−00
Periodograma de Lomb−Scargle
Mars Express
Clima Espacial
Planetary atmospheres
Mars
Solar Cycle
Climatological models
Lomb−Scargle Periodogram
Mars Express
Space Weather
NRLMSISE−00
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_2e38a9bae1434df2dc229cc9e57e83fc
oai_identifier_str oai:repositorio.unal.edu.co:unal/85032
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Variabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de Marte
dc.title.translated.eng.fl_str_mv Variability in planetary atmospheres associated to solar activity cycle: The case of Mars
title Variabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de Marte
spellingShingle Variabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de Marte
520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
530 - Física::535 - Luz y radiación relacionada
520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
530 - Física::536 - Calor
Atmósfera
Cirdulación atmosférica
Ciclo solar
Atmosphere
Atmospheric circulation
Solar cycle
Atmósferas planetarias
Marte
Ciclo Solar
Modelos climatológicos
NRLMSISE−00
Periodograma de Lomb−Scargle
Mars Express
Clima Espacial
Planetary atmospheres
Mars
Solar Cycle
Climatological models
Lomb−Scargle Periodogram
Mars Express
Space Weather
NRLMSISE−00
title_short Variabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de Marte
title_full Variabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de Marte
title_fullStr Variabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de Marte
title_full_unstemmed Variabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de Marte
title_sort Variabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de Marte
dc.creator.fl_str_mv Molina Córdoba, Johan Nicolás
dc.contributor.advisor.none.fl_str_mv Vargas Domínguez, Santiago Jr
Zuluaga Callejas, Jorge Iván Jr
dc.contributor.author.none.fl_str_mv Molina Córdoba, Johan Nicolás
dc.contributor.referee.none.fl_str_mv Pinzón Estrada, Giovanni Alejandro
Flor Torres, Lauren Melissa
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Astronomía Galáctica, Gravitación y Cosmología
dc.contributor.orcid.spa.fl_str_mv 0000-0001-7938-8295
dc.subject.ddc.spa.fl_str_mv 520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
530 - Física::535 - Luz y radiación relacionada
520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
530 - Física::536 - Calor
topic 520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
530 - Física::535 - Luz y radiación relacionada
520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
530 - Física::536 - Calor
Atmósfera
Cirdulación atmosférica
Ciclo solar
Atmosphere
Atmospheric circulation
Solar cycle
Atmósferas planetarias
Marte
Ciclo Solar
Modelos climatológicos
NRLMSISE−00
Periodograma de Lomb−Scargle
Mars Express
Clima Espacial
Planetary atmospheres
Mars
Solar Cycle
Climatological models
Lomb−Scargle Periodogram
Mars Express
Space Weather
NRLMSISE−00
dc.subject.lemb.spa.fl_str_mv Atmósfera
Cirdulación atmosférica
Ciclo solar
dc.subject.lemb.eng.fl_str_mv Atmosphere
Atmospheric circulation
Solar cycle
dc.subject.proposal.spa.fl_str_mv Atmósferas planetarias
Marte
Ciclo Solar
Modelos climatológicos
NRLMSISE−00
Periodograma de Lomb−Scargle
Mars Express
Clima Espacial
dc.subject.proposal.eng.fl_str_mv Planetary atmospheres
Mars
Solar Cycle
Climatological models
Lomb−Scargle Periodogram
Mars Express
Space Weather
NRLMSISE−00
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-05T20:29:31Z
dc.date.available.none.fl_str_mv 2023-12-05T20:29:31Z
dc.date.issued.none.fl_str_mv 2023-11-29
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85032
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85032
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acton, C., Bachman, N., Semenov, B., and Wright, E. (2018). A look towards the future in the handling of space science mission geometry. Planetary and Space Science, 150:9–12.
Acton Jr, C. H. (1996). Ancillary data services of nasa’s navigation and ancillary information facility. Planetary and Space Science, 44(1):65–70.
Akeson, R., Chen, X., Ciardi, D., Crane, M., Good, J., Harbut, M., Jackson, E., Kane, S., Laity, A., Leifer, S., et al. (2013). The nasa exoplanet archive: data and tools for exoplanet research. Publications of the Astronomical Society of the Pacific, 125(930):989.
Altieri, F., Zasova, L., D’Aversa, E., Bellucci, G., Carrozzo, F., Gondet, B., and Bibring, J.-P. (2009). O2 1.27 µm emission maps as derived from omega/mex data. Icarus, 204(2):499511.
Astafyeva, E. (2019). Ionospheric detection of natural hazards. Reviews of Geophysics, 57(4):1265–1288.
Aulanier, G., D´emoulin, P., Schrijver, C., Janvier, M., Pariat, E., and Schmieder, B. (2013). The standard flare model in three dimensions-ii. upper limit on solar flare energy. Astronomy & Astrophysics, 549:A66.
Bruevich, E. and Yakunina, G. (2011). Solar activity indices in 21, 22 and 23 cycles. arXiv preprint arXiv:1102.5502.
Carroll, B. W. and Ostlie, D. A. (2017). An introduction to modern astrophysics. Cambridge University Press.
Catling, D. C. and Kasting, J. F. (2017). Atmospheric evolution on inhabited and lifeless worlds. Cambridge University Press.
Chandrasekhar, S. and Chandrasekhar, S. (1957). An introduction to the study of stellar structure, volume 2. Courier Corporation.
Chang, C.-J. and Kiang, J.-F. (2021). Simulations of switchback, fragmentation and sunspot pair in δ-sunspots during magnetic flux emergence. Sensors, 21(2):586.
Chicarro, A., Martin, P., and Trautner, R. (2004). The mars express mission: an overview. Mars Express: the scientific payload, 1240:3–13.
Cimino, G. and Calvin, W. (1996). Calibration and analysis of mariner 7 infrared spectra. In AAS/Division for Planetary Sciences Meeting Abstracts# 28, volume 28, pages 03–20.
Davies, D. W. (1981). The mars water cycle. Icarus, 45(2):398–414.
Fedorova, A., Bertaux, J.-L., Betsis, D., Montmessin, F., Korablev, O., Maltagliati, L., and Clarke, J. (2018). Water vapor in the middle atmosphere of mars during the 2007 global dust storm. Icarus, 300:440–457.
Fedorova, A., Korablev, O., Bertaux, J.-L., Rodin, A., Montmessin, F., Belyaev, D., and Reberac, A. (2009). Solar infrared occultation observations by spicam experiment on mars-express: Simultaneous measurements of the vertical distributions of h2o, co2 and aerosol. Icarus, 200(1):96–117.
Fedorova, A., Montmessin, F., Korablev, O., Lef`evre, F., Trokhimovskiy, A., and Bertaux, J.-L. (2021). Multi-annual monitoring of the water vapor vertical distribution on mars by spicam on mars express. Journal of Geophysical Research: Planets, 126(1):e2020JE006616.
Forget, F. (1998). Improved optical properties of the martian atmospheric dust for radiative transfer calculations in the infrared. Geophysical research letters, 25(7):1105–1108.
Franz, H. B., Trainer, M. G., Malespin, C. A., Mahaffy, P. R., Atreya, S. K., Becker, R. H., Benna, M., Conrad, P. G., Eigenbrode, J. L., Freissinet, C., et al. (2017). Initial sam calibration gas experiments on mars: Quadrupole mass spectrometer results and implications. Planetary and Space Science, 138:44–54.
Georgiev, G., Glenar, D. A., and Hillman, J. J. (2002). Spectral characterization of acoustooptic filters used in imaging spectroscopy. Applied optics, 41(1):209–217.
Giorgetta, M. A., Manzini, E., and Roeckner, E. (2002). Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophysical Research Letters, 29(8):86–1.
Haider, S. A., Mahajan, K. K., and Kallio, E. (2011). Mars ionosphere: A review of experimental results and modeling studies. Reviews of Geophysics, 49(4).
Hazra, G. (2021). Recent advances in the 3d kinematic babcock–leighton solar dynamo modeling. Journal of Astrophysics and Astronomy, 42(2):22.
Hedin, A. E. (1991). Extension of the msis thermosphere model into the middle and lower atmosphere. Journal of Geophysical Research: Space Physics, 96(A2):1159–1172.
Jakosky, B. M., Brain, D., Chaffin, M., Curry, S., Deighan, J., Grebowsky, J., Halekas, J., Leblanc, F., Lillis, R., Luhmann, J. G., et al. (2018). Loss of the martian atmosphere to space: Present-day loss rates determined from maven observations and integrated loss through time. Icarus, 315:146–157.
Jakosky, B. M. and Haberle, R. M. (1992). The seasonal behavior of water on mars. Mars, pages 969–1016.
Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., Baird, D., et al. (2015). The mars atmosphere and volatile evolution (maven) mission. Space Science Reviews, 195:3–48.
Kleint, L. and Gandorfer, A. (2015). Prospects of solar magnetometry—from ground and in space. Space Science Reviews, 210(1-4):397–426.
Klevs, M., Stefani, F., and Jouve, L. (2023). A synchronized two-dimensional α − ω model of the solar dynamo. arXiv preprint arXiv:2301.05452.
Korablev, O., Bertaux, J.-L., Fedorova, A., Fonteyn, D., Stepanov, A., Kalinnikov, Y., Kiselev, A., Grigoriev, A., Jegoulev, V., Perrier, S., et al. (2006). Spicam ir acousto-optic spectrometer experiment on mars express. Journal of Geophysical Research: Planets, 111(E9).
Leamon, R. J., McIntosh, S. W., and Marsh, D. R. (2018). Termination of solar cycles and correlated tropospheric variability.
Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 2(2):164–168.
Li, J., Gui, Y., Xu, R., Zhang, Z., Liu, W., Lv, G., Wang, M., Li, C., and He, Z. (2021). Applications of aotf spectrometers in in situ lunar measurements. Materials, 14(13):3454.
Linton, M., Dikpati, M., and Howe, R. (2021). Solar interior. Solar Physics and Solar Wind, pages 251–300.
Lipton, A. E., Moncet, J.-L., and Uymin, G. (2009). Approximations of the planck function for models and measurements into the submillimeter range. IEEE Geoscience and Remote Sensing Letters, 6(3):433–437.
Lomb, N. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39:16.
Malandraki, O. E. and Crosby, N. B. (2018). Solar energetic particles and space weather: Science and applications. Solar particle radiation storms forecasting and analysis: the HESPERIA HORIZON 2020 project and beyond, pages 1–26.
Maltagliati, L., Montmessin, F., Korablev, O., Fedorova, A., Forget, F., M¨a¨att¨anen, A., Lef`evre, F., and Bertaux, J.-L. (2013). Annual survey of water vapor vertical distribution and water–aerosol coupling in the martian atmosphere observed by spicam/mex solar occultations. Icarus, 223(2):942–962.
Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2):431–441.
McIntosh, S. W., Leamon, R. J., Egeland, R., Dikpati, M., Altrock, R. C., Banerjee, D., Chatterjee, S., Srivastava, A. K., and Velli, M. (2021a). Deciphering solar magnetic activity: 140 years of the ‘extended solar cycle’ –mapping the hale cycle. Solar Physics, 296(12).
McIntosh, S. W., Leamon, R. J., Egeland, R., Dikpati, M., Altrock, R. C., Banerjee, D., Chatterjee, S., Srivastava, A. K., and Velli, M. (2021b). Deciphering solar magnetic activity: 140 years of the ‘extended solar cycle’–mapping the hale cycle. Solar Physics, 296(12):189.
McMahon, S. K. (1996). Overview of the planetary data system. Planetary and Space Science, 44(1):3–12.
Medvedev, A. S. and Yi˘git, E. (2019). Gravity waves in planetary atmospheres: Their effects and parameterization in global circulation models. Atmosphere, 10(9):531.
Medvedev, A. S. and Yi˘git, E. (2019). Gravity Waves in Planetary Atmospheres: Their Effects and Parameterization in Global Circulation Models. Atmosphere, 10(9):531.
Millour, E., Forget, F., Spiga, A., Colaitis, A., Navarro, T., Madeleine, J.-B., Chauffray, J.Y., Montabone, L., Lopez-Valverde, M., Gonzalez-Galindo, F., et al. (2012). Mars climate database version 5.
Millour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Montabone, L., Lefevre, F., Montmessin, F., Chaufray, J.-Y., Lopez-Valverde, M., et al. (2019). The latest mars climate database (version 6.0).
Nagaraja, K., Basuvaraj, P. K., Chakravarty, S., and Kumar, K. P. (2021). Solar wind-driven day-to-day effects on the martian thermosphere/exosphere composition. arXiv preprint arXiv:2103.01930.
Ostlie, D. A. and Carroll, B. W. (1996). An introduction to modern stellar astrophysics.
Petrosyan, A., Galperin, B., Larsen, S. E., Lewis, S. R., M¨a¨att¨anen, A., Read, P. L., Renno, N., Rogberg, L. P. H. T., Savij¨arvi, H., Siili, T., Spiga, A., Toigo, A., and V´azquez, L. (2011). The martian atmospheric boundary layer. Reviews of Geophysics, 49(3).
Picone, J., Hedin, A., Drob, D. P., and Aikin, A. (2002). Nrlmsise-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, 107(A12):SIA–15.
Polyansky, O. L., Cs´asz´ar, A. G., Shirin, S. V., Zobov, N. F., Barletta, P., Tennyson, J., Schwenke, D. W., and Knowles, P. J. (2003). High-accuracy ab initio rotation-vibration transitions for water. Science, 299(5606):539–542.
Rothman, L. S. (2021). History of the hitran database. Nature Reviews Physics, 3(5):302304.
Savitzky, A. and Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8):1627–1639.
Scaife, A. A., Butchart, N., Warner, C. D., Stainforth, D., Norton, W., and Austin, J. (2000). Realistic quasi-biennial oscillations in a simulation of the global climate. Geophysical Research Letters, 27(21):3481–3484.
Scargle, J. D. (1982). Studies in astronomical time series analysis. ii-statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, Part 1, vol. 263, Dec. 15, 1982, p. 835-853., 263:835–853.
She, C.-Y., Yan, Z.-A., Gardner, C. S., Krueger, D. A., and Hu, X. (2022). Climatology and seasonal variations of temperatures and gravity wave activities in the mesopause region above ft. collins, co (40.6 n, 105.1 w). Journal of Geophysical Research: Atmospheres, 127(11):e2021JD036291.
Singh, A. and Bhargawa, A. (2019). Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum. Astrophysics and Space Science, 364(1):12.
States, R. J. and Gardner, C. S. (2000). Thermal structure of the mesopause region (80–105 km) at 40° n latitude. part i: Seasonal variations. Journal of the Atmospheric Sciences, 57(1):66–77.
Stix, M. (2004). The Sun: An Introduction. Astronomy and Astrophysics Library. Springer Berlin Heidelberg.
Takahashi, M. (1996). Simulation of the stratospheric quasi-biennial oscillation using a general circulation model. Geophysical Research Letters, 23(6):661–664.
Thiemann, E. M. B., Andersson, L., Lillis, R., Withers, P., Xu, S., Elrod, M., Jain, S., Pilinski, M. D., Pawlowski, D., Chamberlin, P. C., Eparvier, F. G., Benna, M., Fowler, C., Curry, S., Peterson, W. K., and Deighan, J. (2018). The Mars Topside Ionosphere Response to the X8.2 Solar Flare of 10 September 2017. , 45(16):8005–8013.
Thorne, A., Litz´en, U., and Johansson, S. (1999). Spectrophysics: principles and applications. Springer Science & Business Media.
Tian, R., Jiang, C., Yang, G., Yin, W., Zhang, Y., and Zhao, Z. (2022). Solar cycle and seasonal variability of martian ionospheric irregularities from mars atmosphere and volatile evolution observations. The Astrophysical Journal, 931(1):18.
Tinetti, G., Meadows, V. S., Crisp, D., Fong, W., Velusamy, T., and Snively, H. (2005). Disk-averaged synthetic spectra of mars. Astrobiology, 5(4):461–482.
Tritschler, A., Rimmele, T., Berukoff, S., Casini, R., Craig, S., Elmore, D., Hubbard, R., Kuhn, J., Lin, H., Mcmullin, J., Reardon, K., Schmidt, W., Warner, M., and W¨oger, F. (2014). Dkist: Observing the sun at high resolution.
VanderPlas, J. T. (2018). Understanding the lomb–scargle periodogram. The Astrophysical Journal Supplement Series, 236(1):16.
Venkateswara Rao, N., Gupta, N., and Kadhane, U. R. (2020). Enhanced densities in the martian thermosphere associated with the 2018 planet-encircling dust event: Results from menca/mom and ngims/maven. Journal of Geophysical Research: Planets, 125(10):e2020JE006430.
W. Anderson, P. (1954). A mathematical model for the narrowing of spectral lines by exchange or motion. Journal of the Physical Society of Japan, 9(3):316–339.
Walker, J. C. (1965). Analytic representation of upper atmosphere densities based on jacchia’s static diffusion models. Technical report.
Wallace, J. M. and Hobbs, P. V. (2006). Atmospheric science: an introductory survey, volume 92. Elsevier.
Withers, P., Bertaux, J.-L., Montmessin, F., Pratt, R., and Russo, J. (2009). Observations of tides and temperatures in the martian atmosphere by mars express spicam stellar occultations. In EGU General Assembly Conference Abstracts, page 5355.
Woiceshyn, P. M. (1974). Global seasonal atmospheric fluctuations on mars. Icarus, 22(3):325–344.
Wolff, M. J., Lop´ez-Valverde, M., Madeleine, J.-B., Wilson, R. J., Smith, M., Fouchet, T., and Delory, G. (2017). Radiative process: Techniques and applications. The atmosphere and climate of Mars, 18:106.
Xu, M. G., Geiger, H., and Dakin, J. P. (1996). Modeling and performance analysis of a f iber bragg grating interrogation system using an acousto-optic tunable filter. Journal of lightwave technology, 14(3):391–396.
Zhang, J., Ji, Q., Sheng, Z., He, M., He, Y., Zuo, X., He, Z., Qin, Z., and Wu, G. (2023). Observation based climatology martian atmospheric waves perturbation datasets. Scientific Data, 10(1):4.
Zurek, R. W., Tolson, R. A., Bougher, S. W., Lugo, R. A., Baird, D. T., Bell, J. M., and Jakosky, B. M. (2017). Mars thermosphere as seen in MAVEN accelerometer data. Journal of Geophysical Research (Space Physics), 122(3):3798–3814.
Zwaan, C. (1968). The structure of sunspots. Annual Review of Astronomy and Astrophysics, 6(1):135–164.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 114 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Astronomía
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85032/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85032/2/1073692635.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85032/3/1073692635.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
2ce7371fe8d22bdd59d0fb3a294a4aa7
cd76212aa5ae4196f534e1c189fd0756
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886673661820928
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Domínguez, Santiago Jr9e1bbfd7631d15befe5325e9e8191635Zuluaga Callejas, Jorge Iván Jr3368514a6a849ca6209a36a5de16bb06Molina Córdoba, Johan Nicolás90c378d6a42dfb6538e451cf2e854548Pinzón Estrada, Giovanni AlejandroFlor Torres, Lauren MelissaGrupo de Astronomía Galáctica, Gravitación y Cosmología0000-0001-7938-82952023-12-05T20:29:31Z2023-12-05T20:29:31Z2023-11-29https://repositorio.unal.edu.co/handle/unal/85032Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEste estudio presenta resultados con alta significación estadística sobre la existencia de una relación entre oscilaciones periódicas de un observable de la atmósfera de Marte (vapor de agua) y el índice Pectinton de flujo solar en radio centrado en la banda de 10.7 cm, alrededor del periodo de actividad solar característico de 11 años. Para caracterizar la variabilidad en la atmósfera de Marte, se utilizaron datos recopilados por el instrumento SPICAM de la sonda Mars Express durante un periodo de tiempo que abarca desde el año 2004 hasta el 2018. Se implementó el método de Periodograma de Lomb-Scargle para analizar la relación entre espectros de potencias de las dos señales alrededor del periodo de interés, teniendo como referente de calibración del método, la emergencia del pico asociado con el periodo estacional de Marte. El método se puso a prueba a través del análisis de los espectros de potencias generados sobre datos de abundancias de especies químicas de la atmósfera terrestre. Estos datos fueron obtenidos del modelo empírico NRLMSISE−00 proporcionado por el National Oceanic and Atmospheric Administration (NOAA). La ejecución del modelo reprodujo datos de abundancias químicas de diferentes especies atmosféricas, como N2, O2, N, H2, Ar y He, a alturas de 55 y 105 km, en una ventana de tiempo de 1961-2021. La investigación se enfoca en el campo de las ciencias planetarias, que incluye el estudio del clima espacial y las condiciones astrobiológicas en el entorno solar. Este enfoque resalta la importancia de considerar la búsqueda de modelos climatológicos a escala del Sistema Solar, que tomen en cuenta las conexiones y sinergias entre los cambios experimentados por los planetas en respuesta a la variabilidad solar durante el ciclo de actividad de la estrella. Los resultados sugieren la existencia de una relación entre los periodos de variabilidad en la concentración de diferentes especies químicas en las atmósferas de ambos planetas (Tierra y Marte) y las variaciones en el índice de flujo solar característico en radio. Esta relación destaca la importancia de comprender la interacción entre el Sol y los planetas en el sistema solar y cómo estas variaciones pueden influir en sus atmósferas y condiciones climatológicas. Es importante mencionar que aunque nuestros resultados iniciales brindan información valiosa que puede ampliar el campo hacia futuras investigaciones en el marco de la climatología planetaria y la física atmosférica, se requiere de análisis más detallados, contrastados con otras fuentes de datos (de otros orbitadores), que confirmen las relaciones encontradas en la investigación. (Texto tomado de la fuente)This study presents results with high statistical relevance about the existence of a relationship between periodic oscillations of an observable in the atmosphere of Mars (water vapor) and the Pectinton index of solar flux in radius centered on the 10.7 cm band, around the period of characteristic solar activity of 11 years. To characterize the variability in the atmosphere of Mars, data collected by the SPICAM instrument of the Mars Express probe over a period of time from 2004 to 2018 was used. The Lomb-Scargle Periodogram method was implemented to analyze the relationship between the power spectra of the two signals around the period of interest, taking as a reference for the calibration of the method, the emergence of the peak associated with the seasonal period of Mars. The method was put to the test through the analysis of the power spectra generated from abundance data of chemical species in the Earth’s atmosphere. These data were obtained from the empirical model NRLMSISE−00 provided by the National Oceanic and Atmospheric Administration (NOAA). The execution of the model reproduced data of chemical abundances of different atmospheric species, such as N2, O2, N, H2, Ar and He, at altitudes of 55 and 105 km, in a time window of 1961-2021. Research focuses on the field of planetary sciences, which includes the study of space weather and astrobiological conditions in the solar environment. This approach highlights the importance of considering the search for climate models at the scale of the Solar System, which take into account the connections and synergies between the changes experienced by the planets in response to solar variability during the star’s activity cycle. The results suggest the existence of a relationship between the periods of variability in the concentration of different chemical species in the atmospheres of both planets (Earth and Mars) and the variations in the characteristic solar flux index in radius. This relationship highlights the importance of understanding the interaction between the Sun and the planets in the solar system and how these variations can influence their atmospheres and weather conditions. It is important to mention that although our initial results provide valuable information that can broaden the field towards future research in the framework of planetary climatology and atmospheric physics, more detailed analysis is required, contrasted with other data sources (from other orbiters), that confirm the relationships found in the investigation.MaestríaMaestría en Ciencias: AstronomíaGroup of Solar Astrophysicsxix, 114 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - AstronomíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos530 - Física::535 - Luz y radiación relacionada520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales530 - Física::536 - CalorAtmósferaCirdulación atmosféricaCiclo solarAtmosphereAtmospheric circulationSolar cycleAtmósferas planetariasMarteCiclo SolarModelos climatológicosNRLMSISE−00Periodograma de Lomb−ScargleMars ExpressClima EspacialPlanetary atmospheresMarsSolar CycleClimatological modelsLomb−Scargle PeriodogramMars ExpressSpace WeatherNRLMSISE−00Variabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de MarteVariability in planetary atmospheres associated to solar activity cycle: The case of MarsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMActon, C., Bachman, N., Semenov, B., and Wright, E. (2018). A look towards the future in the handling of space science mission geometry. Planetary and Space Science, 150:9–12.Acton Jr, C. H. (1996). Ancillary data services of nasa’s navigation and ancillary information facility. Planetary and Space Science, 44(1):65–70.Akeson, R., Chen, X., Ciardi, D., Crane, M., Good, J., Harbut, M., Jackson, E., Kane, S., Laity, A., Leifer, S., et al. (2013). The nasa exoplanet archive: data and tools for exoplanet research. Publications of the Astronomical Society of the Pacific, 125(930):989.Altieri, F., Zasova, L., D’Aversa, E., Bellucci, G., Carrozzo, F., Gondet, B., and Bibring, J.-P. (2009). O2 1.27 µm emission maps as derived from omega/mex data. Icarus, 204(2):499511.Astafyeva, E. (2019). Ionospheric detection of natural hazards. Reviews of Geophysics, 57(4):1265–1288.Aulanier, G., D´emoulin, P., Schrijver, C., Janvier, M., Pariat, E., and Schmieder, B. (2013). The standard flare model in three dimensions-ii. upper limit on solar flare energy. Astronomy & Astrophysics, 549:A66.Bruevich, E. and Yakunina, G. (2011). Solar activity indices in 21, 22 and 23 cycles. arXiv preprint arXiv:1102.5502.Carroll, B. W. and Ostlie, D. A. (2017). An introduction to modern astrophysics. Cambridge University Press.Catling, D. C. and Kasting, J. F. (2017). Atmospheric evolution on inhabited and lifeless worlds. Cambridge University Press.Chandrasekhar, S. and Chandrasekhar, S. (1957). An introduction to the study of stellar structure, volume 2. Courier Corporation.Chang, C.-J. and Kiang, J.-F. (2021). Simulations of switchback, fragmentation and sunspot pair in δ-sunspots during magnetic flux emergence. Sensors, 21(2):586.Chicarro, A., Martin, P., and Trautner, R. (2004). The mars express mission: an overview. Mars Express: the scientific payload, 1240:3–13.Cimino, G. and Calvin, W. (1996). Calibration and analysis of mariner 7 infrared spectra. In AAS/Division for Planetary Sciences Meeting Abstracts# 28, volume 28, pages 03–20.Davies, D. W. (1981). The mars water cycle. Icarus, 45(2):398–414.Fedorova, A., Bertaux, J.-L., Betsis, D., Montmessin, F., Korablev, O., Maltagliati, L., and Clarke, J. (2018). Water vapor in the middle atmosphere of mars during the 2007 global dust storm. Icarus, 300:440–457.Fedorova, A., Korablev, O., Bertaux, J.-L., Rodin, A., Montmessin, F., Belyaev, D., and Reberac, A. (2009). Solar infrared occultation observations by spicam experiment on mars-express: Simultaneous measurements of the vertical distributions of h2o, co2 and aerosol. Icarus, 200(1):96–117.Fedorova, A., Montmessin, F., Korablev, O., Lef`evre, F., Trokhimovskiy, A., and Bertaux, J.-L. (2021). Multi-annual monitoring of the water vapor vertical distribution on mars by spicam on mars express. Journal of Geophysical Research: Planets, 126(1):e2020JE006616.Forget, F. (1998). Improved optical properties of the martian atmospheric dust for radiative transfer calculations in the infrared. Geophysical research letters, 25(7):1105–1108.Franz, H. B., Trainer, M. G., Malespin, C. A., Mahaffy, P. R., Atreya, S. K., Becker, R. H., Benna, M., Conrad, P. G., Eigenbrode, J. L., Freissinet, C., et al. (2017). Initial sam calibration gas experiments on mars: Quadrupole mass spectrometer results and implications. Planetary and Space Science, 138:44–54.Georgiev, G., Glenar, D. A., and Hillman, J. J. (2002). Spectral characterization of acoustooptic filters used in imaging spectroscopy. Applied optics, 41(1):209–217.Giorgetta, M. A., Manzini, E., and Roeckner, E. (2002). Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophysical Research Letters, 29(8):86–1.Haider, S. A., Mahajan, K. K., and Kallio, E. (2011). Mars ionosphere: A review of experimental results and modeling studies. Reviews of Geophysics, 49(4).Hazra, G. (2021). Recent advances in the 3d kinematic babcock–leighton solar dynamo modeling. Journal of Astrophysics and Astronomy, 42(2):22.Hedin, A. E. (1991). Extension of the msis thermosphere model into the middle and lower atmosphere. Journal of Geophysical Research: Space Physics, 96(A2):1159–1172.Jakosky, B. M., Brain, D., Chaffin, M., Curry, S., Deighan, J., Grebowsky, J., Halekas, J., Leblanc, F., Lillis, R., Luhmann, J. G., et al. (2018). Loss of the martian atmosphere to space: Present-day loss rates determined from maven observations and integrated loss through time. Icarus, 315:146–157.Jakosky, B. M. and Haberle, R. M. (1992). The seasonal behavior of water on mars. Mars, pages 969–1016.Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., Baird, D., et al. (2015). The mars atmosphere and volatile evolution (maven) mission. Space Science Reviews, 195:3–48.Kleint, L. and Gandorfer, A. (2015). Prospects of solar magnetometry—from ground and in space. Space Science Reviews, 210(1-4):397–426.Klevs, M., Stefani, F., and Jouve, L. (2023). A synchronized two-dimensional α − ω model of the solar dynamo. arXiv preprint arXiv:2301.05452.Korablev, O., Bertaux, J.-L., Fedorova, A., Fonteyn, D., Stepanov, A., Kalinnikov, Y., Kiselev, A., Grigoriev, A., Jegoulev, V., Perrier, S., et al. (2006). Spicam ir acousto-optic spectrometer experiment on mars express. Journal of Geophysical Research: Planets, 111(E9).Leamon, R. J., McIntosh, S. W., and Marsh, D. R. (2018). Termination of solar cycles and correlated tropospheric variability.Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 2(2):164–168.Li, J., Gui, Y., Xu, R., Zhang, Z., Liu, W., Lv, G., Wang, M., Li, C., and He, Z. (2021). Applications of aotf spectrometers in in situ lunar measurements. Materials, 14(13):3454.Linton, M., Dikpati, M., and Howe, R. (2021). Solar interior. Solar Physics and Solar Wind, pages 251–300.Lipton, A. E., Moncet, J.-L., and Uymin, G. (2009). Approximations of the planck function for models and measurements into the submillimeter range. IEEE Geoscience and Remote Sensing Letters, 6(3):433–437.Lomb, N. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39:16.Malandraki, O. E. and Crosby, N. B. (2018). Solar energetic particles and space weather: Science and applications. Solar particle radiation storms forecasting and analysis: the HESPERIA HORIZON 2020 project and beyond, pages 1–26.Maltagliati, L., Montmessin, F., Korablev, O., Fedorova, A., Forget, F., M¨a¨att¨anen, A., Lef`evre, F., and Bertaux, J.-L. (2013). Annual survey of water vapor vertical distribution and water–aerosol coupling in the martian atmosphere observed by spicam/mex solar occultations. Icarus, 223(2):942–962.Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2):431–441.McIntosh, S. W., Leamon, R. J., Egeland, R., Dikpati, M., Altrock, R. C., Banerjee, D., Chatterjee, S., Srivastava, A. K., and Velli, M. (2021a). Deciphering solar magnetic activity: 140 years of the ‘extended solar cycle’ –mapping the hale cycle. Solar Physics, 296(12).McIntosh, S. W., Leamon, R. J., Egeland, R., Dikpati, M., Altrock, R. C., Banerjee, D., Chatterjee, S., Srivastava, A. K., and Velli, M. (2021b). Deciphering solar magnetic activity: 140 years of the ‘extended solar cycle’–mapping the hale cycle. Solar Physics, 296(12):189.McMahon, S. K. (1996). Overview of the planetary data system. Planetary and Space Science, 44(1):3–12.Medvedev, A. S. and Yi˘git, E. (2019). Gravity waves in planetary atmospheres: Their effects and parameterization in global circulation models. Atmosphere, 10(9):531.Medvedev, A. S. and Yi˘git, E. (2019). Gravity Waves in Planetary Atmospheres: Their Effects and Parameterization in Global Circulation Models. Atmosphere, 10(9):531.Millour, E., Forget, F., Spiga, A., Colaitis, A., Navarro, T., Madeleine, J.-B., Chauffray, J.Y., Montabone, L., Lopez-Valverde, M., Gonzalez-Galindo, F., et al. (2012). Mars climate database version 5.Millour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Montabone, L., Lefevre, F., Montmessin, F., Chaufray, J.-Y., Lopez-Valverde, M., et al. (2019). The latest mars climate database (version 6.0).Nagaraja, K., Basuvaraj, P. K., Chakravarty, S., and Kumar, K. P. (2021). Solar wind-driven day-to-day effects on the martian thermosphere/exosphere composition. arXiv preprint arXiv:2103.01930.Ostlie, D. A. and Carroll, B. W. (1996). An introduction to modern stellar astrophysics.Petrosyan, A., Galperin, B., Larsen, S. E., Lewis, S. R., M¨a¨att¨anen, A., Read, P. L., Renno, N., Rogberg, L. P. H. T., Savij¨arvi, H., Siili, T., Spiga, A., Toigo, A., and V´azquez, L. (2011). The martian atmospheric boundary layer. Reviews of Geophysics, 49(3).Picone, J., Hedin, A., Drob, D. P., and Aikin, A. (2002). Nrlmsise-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, 107(A12):SIA–15.Polyansky, O. L., Cs´asz´ar, A. G., Shirin, S. V., Zobov, N. F., Barletta, P., Tennyson, J., Schwenke, D. W., and Knowles, P. J. (2003). High-accuracy ab initio rotation-vibration transitions for water. Science, 299(5606):539–542.Rothman, L. S. (2021). History of the hitran database. Nature Reviews Physics, 3(5):302304.Savitzky, A. and Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8):1627–1639.Scaife, A. A., Butchart, N., Warner, C. D., Stainforth, D., Norton, W., and Austin, J. (2000). Realistic quasi-biennial oscillations in a simulation of the global climate. Geophysical Research Letters, 27(21):3481–3484.Scargle, J. D. (1982). Studies in astronomical time series analysis. ii-statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, Part 1, vol. 263, Dec. 15, 1982, p. 835-853., 263:835–853.She, C.-Y., Yan, Z.-A., Gardner, C. S., Krueger, D. A., and Hu, X. (2022). Climatology and seasonal variations of temperatures and gravity wave activities in the mesopause region above ft. collins, co (40.6 n, 105.1 w). Journal of Geophysical Research: Atmospheres, 127(11):e2021JD036291.Singh, A. and Bhargawa, A. (2019). Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum. Astrophysics and Space Science, 364(1):12.States, R. J. and Gardner, C. S. (2000). Thermal structure of the mesopause region (80–105 km) at 40° n latitude. part i: Seasonal variations. Journal of the Atmospheric Sciences, 57(1):66–77.Stix, M. (2004). The Sun: An Introduction. Astronomy and Astrophysics Library. Springer Berlin Heidelberg.Takahashi, M. (1996). Simulation of the stratospheric quasi-biennial oscillation using a general circulation model. Geophysical Research Letters, 23(6):661–664.Thiemann, E. M. B., Andersson, L., Lillis, R., Withers, P., Xu, S., Elrod, M., Jain, S., Pilinski, M. D., Pawlowski, D., Chamberlin, P. C., Eparvier, F. G., Benna, M., Fowler, C., Curry, S., Peterson, W. K., and Deighan, J. (2018). The Mars Topside Ionosphere Response to the X8.2 Solar Flare of 10 September 2017. , 45(16):8005–8013.Thorne, A., Litz´en, U., and Johansson, S. (1999). Spectrophysics: principles and applications. Springer Science & Business Media.Tian, R., Jiang, C., Yang, G., Yin, W., Zhang, Y., and Zhao, Z. (2022). Solar cycle and seasonal variability of martian ionospheric irregularities from mars atmosphere and volatile evolution observations. The Astrophysical Journal, 931(1):18.Tinetti, G., Meadows, V. S., Crisp, D., Fong, W., Velusamy, T., and Snively, H. (2005). Disk-averaged synthetic spectra of mars. Astrobiology, 5(4):461–482.Tritschler, A., Rimmele, T., Berukoff, S., Casini, R., Craig, S., Elmore, D., Hubbard, R., Kuhn, J., Lin, H., Mcmullin, J., Reardon, K., Schmidt, W., Warner, M., and W¨oger, F. (2014). Dkist: Observing the sun at high resolution.VanderPlas, J. T. (2018). Understanding the lomb–scargle periodogram. The Astrophysical Journal Supplement Series, 236(1):16.Venkateswara Rao, N., Gupta, N., and Kadhane, U. R. (2020). Enhanced densities in the martian thermosphere associated with the 2018 planet-encircling dust event: Results from menca/mom and ngims/maven. Journal of Geophysical Research: Planets, 125(10):e2020JE006430.W. Anderson, P. (1954). A mathematical model for the narrowing of spectral lines by exchange or motion. Journal of the Physical Society of Japan, 9(3):316–339.Walker, J. C. (1965). Analytic representation of upper atmosphere densities based on jacchia’s static diffusion models. Technical report.Wallace, J. M. and Hobbs, P. V. (2006). Atmospheric science: an introductory survey, volume 92. Elsevier.Withers, P., Bertaux, J.-L., Montmessin, F., Pratt, R., and Russo, J. (2009). Observations of tides and temperatures in the martian atmosphere by mars express spicam stellar occultations. In EGU General Assembly Conference Abstracts, page 5355.Woiceshyn, P. M. (1974). Global seasonal atmospheric fluctuations on mars. Icarus, 22(3):325–344.Wolff, M. J., Lop´ez-Valverde, M., Madeleine, J.-B., Wilson, R. J., Smith, M., Fouchet, T., and Delory, G. (2017). Radiative process: Techniques and applications. The atmosphere and climate of Mars, 18:106.Xu, M. G., Geiger, H., and Dakin, J. P. (1996). Modeling and performance analysis of a f iber bragg grating interrogation system using an acousto-optic tunable filter. Journal of lightwave technology, 14(3):391–396.Zhang, J., Ji, Q., Sheng, Z., He, M., He, Y., Zuo, X., He, Z., Qin, Z., and Wu, G. (2023). Observation based climatology martian atmospheric waves perturbation datasets. Scientific Data, 10(1):4.Zurek, R. W., Tolson, R. A., Bougher, S. W., Lugo, R. A., Baird, D. T., Bell, J. M., and Jakosky, B. M. (2017). Mars thermosphere as seen in MAVEN accelerometer data. Journal of Geophysical Research (Space Physics), 122(3):3798–3814.Zwaan, C. (1968). The structure of sunspots. Annual Review of Astronomy and Astrophysics, 6(1):135–164.Johan Nicolás Molina CórdobaAdministradoresBibliotecariosConsejerosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPadres y familiasPersonal de apoyo escolarProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85032/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1073692635.2023.pdf1073692635.2023.pdfTesis de Maestría en Ciencias - Astronomíaapplication/pdf12416785https://repositorio.unal.edu.co/bitstream/unal/85032/2/1073692635.2023.pdf2ce7371fe8d22bdd59d0fb3a294a4aa7MD52THUMBNAIL1073692635.2023.pdf.jpg1073692635.2023.pdf.jpgGenerated Thumbnailimage/jpeg4556https://repositorio.unal.edu.co/bitstream/unal/85032/3/1073692635.2023.pdf.jpgcd76212aa5ae4196f534e1c189fd0756MD53unal/85032oai:repositorio.unal.edu.co:unal/850322023-12-05 23:03:46.887Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=