Evaluación de herramientas de análisis de datos espectrales para la identificación y cuantificación de la madurez temprana en papa

ilustraciones, fotografías, diagramas, mapas

Autores:
Leon Rueda, William Alfonso
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84484
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84484
https://repositorio.unal.edu.co/
Palabra clave:
Análisis de datos
Madurez
data analysis
maturity
Verticillium
Métodos de clasificación
Sensores remotos
Aprendizaje automático
Bandas espectrales informativas
Detección indirecta de enfermedades
Detección indirecta
Classification methods
Remote sensing
Machine learning
Informative spectral bands
Indirect detection
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_2df2787386158c84dae38645d9345e5d
oai_identifier_str oai:repositorio.unal.edu.co:unal/84484
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de herramientas de análisis de datos espectrales para la identificación y cuantificación de la madurez temprana en papa
dc.title.translated.eng.fl_str_mv Evaluation of spectral data analysis tools for the identification and quantification of early maturity in potato
title Evaluación de herramientas de análisis de datos espectrales para la identificación y cuantificación de la madurez temprana en papa
spellingShingle Evaluación de herramientas de análisis de datos espectrales para la identificación y cuantificación de la madurez temprana en papa
Análisis de datos
Madurez
data analysis
maturity
Verticillium
Métodos de clasificación
Sensores remotos
Aprendizaje automático
Bandas espectrales informativas
Detección indirecta de enfermedades
Detección indirecta
Classification methods
Remote sensing
Machine learning
Informative spectral bands
Indirect detection
title_short Evaluación de herramientas de análisis de datos espectrales para la identificación y cuantificación de la madurez temprana en papa
title_full Evaluación de herramientas de análisis de datos espectrales para la identificación y cuantificación de la madurez temprana en papa
title_fullStr Evaluación de herramientas de análisis de datos espectrales para la identificación y cuantificación de la madurez temprana en papa
title_full_unstemmed Evaluación de herramientas de análisis de datos espectrales para la identificación y cuantificación de la madurez temprana en papa
title_sort Evaluación de herramientas de análisis de datos espectrales para la identificación y cuantificación de la madurez temprana en papa
dc.creator.fl_str_mv Leon Rueda, William Alfonso
dc.contributor.advisor.none.fl_str_mv Ramírez Gil, Joaquín Guillermo
Gómez Caro, Sandra
dc.contributor.author.none.fl_str_mv Leon Rueda, William Alfonso
dc.contributor.researchgroup.spa.fl_str_mv Biogénesis
dc.contributor.orcid.spa.fl_str_mv William Alfonso Leon Rueda [0000000310511093]
dc.subject.agrovoc.spa.fl_str_mv Análisis de datos
Madurez
topic Análisis de datos
Madurez
data analysis
maturity
Verticillium
Métodos de clasificación
Sensores remotos
Aprendizaje automático
Bandas espectrales informativas
Detección indirecta de enfermedades
Detección indirecta
Classification methods
Remote sensing
Machine learning
Informative spectral bands
Indirect detection
dc.subject.agrovoc.eng.fl_str_mv data analysis
maturity
dc.subject.agrovoc.none.fl_str_mv Verticillium
dc.subject.proposal.spa.fl_str_mv Métodos de clasificación
Sensores remotos
Aprendizaje automático
Bandas espectrales informativas
Detección indirecta de enfermedades
Detección indirecta
dc.subject.proposal.eng.fl_str_mv Classification methods
Remote sensing
Machine learning
Informative spectral bands
Indirect detection
description ilustraciones, fotografías, diagramas, mapas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-08T15:31:11Z
dc.date.available.none.fl_str_mv 2023-08-08T15:31:11Z
dc.date.issued.none.fl_str_mv 2023-08-02
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84484
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84484
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aasen, H., Honkavaara, E., Lucieer, A., & Zarco-Tejada, P. J. (2018). Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correctionworkflows. In Remote Sensing (Vol. 10, Issue 7, p. 1091). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs10071091
Abdulridha, J., Ampatzidis, Y., Kakarla, S. C., & Roberts, P. (2020). Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precision Agriculture, 21(5), 955–978. https://doi.org/10.1007/s11119-019-09703-4
Aggarwal, N., Srivastava, M., & Dutta, M. (2016). Comparative Analysis of Pixel-Based and Object-Based Classification of High Resolution Remote Sensing Images – A Review. International Journal of Engineering Trends and Technology, 38(1), 5–11. https://doi.org/10.14445/22315381/ijett-v38p202
Agilandeeswari, L., Prabukumar, M., Radhesyam, V., Phaneendra, K. L. N. B., & Farhan, A. (2022). Crop Classification for Agricultural Applications in Hyperspectral Remote Sensing Images. Applied Sciences, 12(3). https://doi.org/10.3390/app12031670
Agronet. (2018). Agronet. http://www.agronet.gov.co/estadistica/Paginas/default.aspx
Al-Saddik, H., Simon, J. C., & Cointault, F. (2017). Development of spectral disease indices for ‘flavescence dorée’ grapevine disease identification. Sensors (Switzerland), 17(12). https://doi.org/10.3390/s17122772
AlAfandy, K. A., Omara, H., Lazaar, M., & Al Achhab, M. (2019, October 23). Artificial neural networks optimization and convolution neural networks to classifying images in remote sensing: A review. ACM International Conference Proceeding Series. https://doi.org/10.1145/3372938.3372945
Albetis, J., Jacquin, A., Goulard, M., Poilvé, H., Rousseau, J., Clenet, H., Dedieu, G., & Duthoit, S. (2019). On the potentiality of UAV multispectral imagery to detect Flavescence dorée and Grapevine Trunk Diseases. Remote Sensing, 11(1). https://doi.org/10.3390/rs11010023
Ali, M. M., Bachik, N. A., Muhadi, N. ‘Atirah, Tuan Yusof, T. N., & Gomes, C. (2019). Non-destructive techniques of detecting plant diseases: A review. In Physiological and Molecular Plant Pathology (Vol. 108). Academic Press. https://doi.org/10.1016/j.pmpp.2019.101426
Antunes, E., Vuppaladadiyam, A. K., Sarmah, A. K., Varsha, S. S. V., Pant, K. K., Tiwari, B., & Pandey, A. (2021). Application of biochar for emerging contaminant mitigation. In Advances in Chemical Pollution, Environmental Management and Protection (Vol. 7, pp. 65–91). Elsevier. https://doi.org/10.1016/bs.apmp.2021.08.003
Arneson, P. A. (2001). Plant Disease Epidemiology. The Plant Health Instructor,https://www.apsnet.org/edcenter/disimpactmngmnt/to. https://doi.org/10.1094/PHI-A-2001-0524-01
Ashourloo, D., Aghighi, H., Matkan, A. A., Mobasheri, M. R., & Rad, A. M. (2016). An Investigation Into Machine Learning Regression Techniques for the Leaf Rust Disease Detection Using Hyperspectral Measurement. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9), 4344–4351. https://doi.org/10.1109/JSTARS.2016.2575360
Ashraf, A., Rauf, A., Fahim Abbas, M., & Rehman, R. (2012). ISOLATION AND IDENTIFICATION OF VERTICILLIUM DAHLIAE CAUSING WILT ON POTATO IN PAKISTAN. J. Phytopathol, 24(2), 112–116
Baldi, P., & La Porta, N. (2020). Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. In Frontiers in Plant Science (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fpls.2020.570862
Barbedo, J. G. A. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones, 3(2), 1–27. https://doi.org/10.3390/drones3020040
Behmann, J., Mahlein, A. K., Rumpf, T., Römer, C., & Plümer, L. (2015). A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. In Precision Agriculture. https://doi.org/10.1007/s11119-014-9372-7
Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation Measures for Models Assessment over Imbalanced Data Sets. Journal of Information Engineering and Applications.
Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. In ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Blekos, K., Tsakas, A., Xouris, C., Evdokidis, I., Alexandropoulos, D., Alexakos, C., Katakis, S., Makedonas, A., Theoharatos, C., & Lalos, A. (2021). Analysis, Modeling and Multi-Spectral Sensing for the Predictive Management of Verticillium Wilt in Olive Groves. Journal of Sensor and Actuator Networks, 10(1), 15. https://doi.org/10.3390/jsan10010015
Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29(2), 59–107. https://doi.org/10.1080/07352681003617285
Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010). The balanced accuracy and its posterior distribution. Proceedings - International Conference on Pattern Recognition. https://doi.org/10.1109/ICPR.2010.764
Buja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., De Bellis, L., Luvisi, A., & Maruccio, G. (2021). Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. Sensors (Basel, Switzerland), 21(6), 1–22. https://doi.org/10.3390/S21062129
Buriticá, P. (1999). Directorio de patógenos y enfermedades de las plantas de importancia económica en Colombia. http://www.buritica-antioquia.gov.co/presentacion.shtml
Calderón, R., Montes-Borrego, M., Landa, B. B., Navas-Cortés, J. A., & Zarco-Tejada, P. J. (2014). Detection of downy mildew of opium poppy using high-resolution multi-spectral and thermal imagery acquired with an unmanned aerial vehicle. Precision Agriculture, 15(6), 639–661. https://doi.org/10.1007/s11119-014-9360-y
Calderón, Rocío, Navas-Cortés, J. A., & Zarco-Tejada, P. J. (2015). Early detection and quantification of verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sensing. https://doi.org/10.3390/rs70505584
Campbell, J. B., & Wynne., R. H. (2011). Introduction to Remote Sensing FIFTH EDITION. In Uma ética para quantos? https://doi.org/10.1007/s13398-014-0173-7.2
Cockerton, H. M., Li, B., Vickerstaff, R. J., Eyre, C. A., Sargent, D. J., Armitage, A. D., Marina-Montes, C., Garcia-Cruz, A., Passey, A. J., Simpson, D. W., & Harrison, R. J. (2019). Identifying Verticillium dahliae resistance in strawberry through disease screening of multiple populations and image based phenotyping. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00924
Cortes, C., & Mohri, M. (2004). AUC optimization vs. Error rate minimization. Advances in Neural Information Processing Systems.
Couture, J. J., Singh, A., Charkowski, A. O., Groves, R. L., Gray, S. M., Bethke, P. C., & Townsend, P. A. (2018). Integrating Spectroscopy with Potato Disease Management. Plant Disease, 102(11), 2233–2240. https://doi.org/10.1094/pdis-01-18-0054-re
Dash, J. P., Watt, M. S., Pearse, G. D., Heaphy, M., & Dungey, H. S. (2017). Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 1–14. https://doi.org/10.1016/j.isprsjprs.2017.07.007
Duarte-Carvajalino, J. M., Alzate, D. F., Ramirez, A. A., Santa-Sepulveda, J. D., Fajardo-Rojas, A. E., & Soto-Suárez, M. (2018). Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sensing. https://doi.org/10.3390/rs10101513
Dung, J. K. S., Ingram, J. T., Cummings, T. F., & Johnson, D. A. (2012). Impact of seed lot infection on the development of black dot and verticillium wilt of potato in Washington. Plant Disease. https://doi.org/10.1094/PDIS-01-12-0061-RE
El Hoummaidi, L., Larabi, A., & Alam, K. (2021). Using unmanned aerial systems and deep learning for agriculture mapping in Dubai. Heliyon, 7(10). https://doi.org/10.1016/j.heliyon.2021.e08154
Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. In Biosensors. https://doi.org/10.3390/bios5030537
FAOSTAT. (2020). FAOSTAT: Statistical database. FAOSTAT: Statistical Database. https://www.fao.org/faostat/es/#home
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2005.10.010
Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of performance measures for classification. Pattern Recognition Letters
Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28(2), 337–407
Galieni, A., D’Ascenzo, N., Stagnari, F., Pagnani, G., Xie, Q., & Pisante, M. (2021). Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography. In Frontiers in Plant Science (Vol. 11, p. 1975). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.609155
Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2012.12.002
Gholami, R., & Fakhari, N. (2017). Support Vector Machine: Principles, Parameters, and Applications. In Handbook of Neural Computation (pp. 515–535). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811318-9.00027-2
Gibson-Poole, S., Humphris, S., Toth, I., & Hamilton, A. (2017). Identification of the onset of disease within a potato crop using a UAV equipped with un-modified and modified commercial off-the-shelf digital cameras. Advances in Animal Biosciences, 8(2), 812–816. https://doi.org/10.1017/s204047001700084x
Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. https://doi.org/10.1078/0176-1617-00887
Gitelson, A. A., & Merzlyak, M. N. (1996). Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. Journal of Plant Physiology, 148(3–4), 494–500. https://doi.org/10.1016/S0176-1617(96)80284-7
Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochemistry and Photobiology, 74(1), 38. https://doi.org/10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2
Gold, K. M., Townsend, P. A., Chlus, A., Herrmann, I., Couture, J. J., Larson, E. R., & Gevens, A. J. (2020). Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sensing, 12(2), 286. https://doi.org/10.3390/rs12020286
Gold, K. M., Townsend, P. A., Herrmann, I., & Gevens, A. J. (2020). Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning. Plant Science, 295, 110316. https://doi.org/10.1016/j.plantsci.2019.110316
Gold, K. M., Townsend, P. A., Larson, E. R., Herrmann, I., & Gevens, A. J. (2020). Contact reflectance spectroscopy for rapid, accurate, and nondestructive phytophthora infestans clonal lineage discrimination. Phytopathology, 110(4), 851–862. https://doi.org/10.1094/PHYTO-08-19-0294-R
Görlich, F., Marks, E., Mahlein, A. K., König, K., Lottes, P., & Stachniss, C. (2021). Uav-based classification of cercospora leaf spot using rgb images. Drones, 5(2), 34. https://doi.org/10.3390/drones5020034
Hamylton, S. M., Morris, R. H., Carvalho, R. C., Roder, N., Barlow, P., Mills, K., & Wang, L. (2020). Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2020.102085
Hasmadi, I., Pakhriazad, H., & Shahrin, M. (2009). Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geografia - Malaysian Journal of Society and Space
Honkavaara, E., Saari, H., Kaivosoja, J., Pölönen, I., Hakala, T., Litkey, P., Mäkynen, J., & Pesonen, L. (2013). Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sensing, 5(10), 5006–5039. https://doi.org/10.3390/rs5105006
Hopkins, D. W. (2001). What is a Norris Derivative? NIR News, 12(3), 3–5. https://doi.org/10.1255/nirn.611
Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X
Hussain, T. (2016). Potatoes: Ensuring Food for the Future. Advances in Plants & Agriculture Research, 3(6). https://doi.org/10.15406/apar.2016.03.00117
Imanian, K., Pourdarbani, R., Sabzi, S., García-Mateos, G., Arribas, J. I., & Molina Martínez, J. M. (2021). Identification of internal defects in potato using spectroscopy and computational intelligence based on majority voting techniques. Foods, 10(5). https://doi.org/10.3390/foods10050982
Jasiński, J., Pietrek, S., Walczykowski, P., & Orych, A. (2010). Acquisition of spectral reflectance characteristics of land cover features based on hyperspectral images . January
Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. https://doi.org/10.1016/j.rse.2008.06.006
Jing, R., Li, H., Hu, X., Shang, W., Shen, R., Guo, C., Guo, Q., & Subbarao, K. V. (2018). Verticillium wilt caused by verticillium dahliae and v. Nonalfalfae in potato in northern China. Plant Disease, 102(10), 1958–1964. https://doi.org/10.1094/PDIS-01-18-0162-RE
Johnson, D. A., & Cummings, T. F. (2015). Effect of extended crop rotations on incidence of black dot, Silver scurf, and verticillium wilt of potato. Plant Disease, 99(2), 257–262. https://doi.org/10.1094/PDIS-03-14-0271-RE
Johnson, D. A., Jeremiah, K., & Dung, S. (2010). Verticillium wilt of potato - The pathogen, disease and management. Canadian Journal of Plant Pathology. https://doi.org/10.1080/07060661003621134
Junges, A. H., Almança, M. A. K., Fajardo, T. V. M., & Ducati, J. R. (2020). Leaf hyperspectral reflectance as a potential tool to detect diseases associated with vineyard decline. Tropical Plant Pathology, 45(5), 522–533. https://doi.org/10.1007/s40858-020-00387-0
Kanti, M., Pradhan, R., & Sushan, S. (2010). Decision Tree Classification of Remotely Sensed Satellite Data using Spectral Separability Matrix. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/ijacsa.2010.010516
Klosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, pathogenicity, and management of verticillium species. Annual Review of Phytopathology, 47, 39–62. https://doi.org/10.1146/annurev-phyto-080508-081748
Kollist, H., Zandalinas, S. I., Sengupta, S., Nuhkat, M., Kangasjärvi, J., & Mittler, R. (2019). Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. In Trends in Plant Science (Vol. 24, Issue 1, pp. 25–37). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2018.10.003
Kong, W., Zhang, C., Huang, W., Liu, F., & He, Y. (2018). Application of hyperspectral imaging to detect Sclerotinia sclerotiorum on oilseed rape stems. Sensors (Switzerland), 18(1). https://doi.org/10.3390/s18010123
Kuang, B., Mahmood, H. S., Quraishi, M. Z., Hoogmoed, W. B., Mouazen, A. M., & van Henten, E. J. (2012). Sensing soil properties in the laboratory, in situ, and on-line. A review. In Advances in Agronomy (1st ed., Vol. 114, Issue October 2017). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394275-3.00003-1
Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05
Kuska, M. T., & Mahlein, A. K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. European Journal of Plant Pathology, 152(4), 987–992. https://doi.org/10.1007/s10658-018-1464-1
Larkin, R. P., Honeycutt, C. W., & Olanya, O. M. (2011). Management of Verticillium Wilt of Potato with Disease-Suppressive Green Manures and as Affected by Previous Cropping History. Plant Disease. https://doi.org/10.1094/pdis-09-10-0670
Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1), 3–10. https://doi.org/10.1016/j.gsf.2015.07.003
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01
León-Rueda, W. A., León, C., Caro, S. G., & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167. https://doi.org/10.1007/s40858-021-00460-2
Li, Haiyuan, Wang, Z., Hu, X., Shang, W., Shen, R., Guo, C., Guo, Q., & Subbarao, K. V. (2019). Assessment of resistance in potato cultivars to verticillium wilt caused by verticillium dahliae and verticillium nonalfalfae. Plant Disease, 103(6), 1357–1362. https://doi.org/10.1094/PDIS-10-18-1815-RE
Li, Hong, Yang, W., Lei, J., She, J., & Zhou, X. (2021). Estimation of leaf water content from hyperspectral data of different plant species by using three new spectral absorption indices. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0249351
Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of Spatio-contextual information. European Journal of Remote Sensing, 47(1), 389–411. https://doi.org/10.5721/EuJRS20144723
Liao, P. S., Chen, T. S., & Chung, P. C. (2001). A fast algorithm for multilevel thresholding. Journal of Information Science and Engineering, 17(5), 713–727
Lillesand, T. M., & Kiefer, R. W. (2004). Remote sensing and image interpretation. In Remote sensing and image interpretation. https://doi.org/10.2307/634969
Liu, C., Sun, P. Sen, & Liu, S. R. (2016). A review of plant spectral reflectance response to water physiological changes. Chinese Journal of Plant Ecology, 40(1), 80–91. https://doi.org/10.17521/cjpe.2015.0267
Liu, L., Dong, Y., Huang, W., Du, X., Ren, B., Huang, L., Zheng, Q., & Ma, H. (2020). A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery. IEEE Access, 8, 52181–52191. https://doi.org/10.1109/ACCESS.2020.2980310
Liu, X. (2003). Supervised Classification and Unsupervised Classification. Cfa.Harvard.Edu.
Lizarazo, I., Rodriguez, J. L., Cristancho, O., Olaya, F., Duarte, M., & Prieto, F. (2023). Identification of symptoms related to potato Verticillium wilt from UAV-based multispectral imagery using an ensemble of gradient boosting machines. Smart Agricultural Technology, 3, 100138. https://doi.org/https://doi.org/10.1016/j.atech.2022.100138
Lizarazo Peña, P. A. (2020). Desarrollo , crecimiento y rendimiento de cultivares de papa diploide en ambientes contrastantes por altitud. In Universidad Nacional de Colombia. https://repositorio.unal.edu.co/bitstream/handle/unal/78234/1022359762.2020.pdf?sequence=1&isAllowed=y
Lowe, A., Harrison, N., & French, A. (2017). Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. In Plant Methods. https://doi.org/10.1186/s13007-017-0233-z
Lowe, B., & Kulkarni, A. (2015). Multispectral Image Analysis Using Random Forest. International Journal on Soft Computing. https://doi.org/10.5121/ijsc.2015.6101
Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. In International Journal of Remote Sensing. https://doi.org/10.1080/01431160600746456
Lu, J., Ehsani, R., Shi, Y., de Castro, A. I., & Wang, S. (2018). Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-21191-6
Lu, N., Zhou, J., Han, Z., Li, D., Cao, Q., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T. (2019). Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods, 15(1), 17. https://doi.org/10.1186/s13007-019-0402-3
Mahlein, A. K. (2016). Plant disease detection by imaging sensors – Parallels and specific demands for precision agriculture and plant phenotyping. In Plant Disease (Vol. 100, Issue 2, pp. 241–254). https://doi.org/10.1094/PDIS-03-15-0340-FE
Mahlein, A. K., Kuska, M. T., Thomas, S., Bohnenkamp, D., Alisaac, E., Behmann, J., Wahabzada, M., & Kersting, K. (2017). Plant disease detection by hyperspectral imaging: from the lab to the field. Advances in Animal Biosciences. https://doi.org/10.1017/s2040470017001248
Mahlein, A. K., Oerke, E. C., Steiner, U., & Dehne, H. W. (2012). Recent advances in sensing plant diseases for precision crop protection. In European Journal of Plant Pathology. https://doi.org/10.1007/s10658-011-9878-z
Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019
Manici, L. M., & Cerato, C. (1994). Pathogenicity of Fusarium oxysporum f.sp. tuberosi isolates from tubers and potato plants. Potato Research, 37(2), 129–134. https://doi.org/10.1007/BF02358713
Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1), 88. https://doi.org/10.1016/J.SJBS.2019.05.007
Mauromicale, G., Ierna, A., & Marchese, M. (2006). Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica, 44(1), 76–82. https://doi.org/10.1007/S11099-005-0161-4
Meng, R., Lv, Z., Yan, J., Chen, G., Zhao, F., Zeng, L., & Xu, B. (2020). Development of spectral disease indices for southern corn rust detection and severity classification. Remote Sensing, 12(19), 1–16. https://doi.org/10.3390/rs12193233
Mishra, P., Polder, G., & Vilfan, N. (2020). Close Range Spectral Imaging for Disease Detection in Plants Using Autonomous Platforms: a Review on Recent Studies. Current Robotics Reports, 1(2), 43–48. https://doi.org/10.1007/s43154-020-00004-7
Mohapatra, S. K., & Mohanty, M. N. (2022). Big data classification with IoT-based application for e-health care. Cognitive Big Data Intelligence with a Metaheuristic Approach, 147–172. https://doi.org/10.1016/B978-0-323-85117-6.00014-5
Mohseni-Dargah, M., Falahati, Z., Dabirmanesh, B., Nasrollahi, P., & Khajeh, K. (2022). Machine learning in surface plasmon resonance for environmental monitoring. In Artificial Intelligence and Data Science in Environmental Sensing (pp. 269–298). Academic Press. https://doi.org/10.1016/B978-0-323-90508-4.00012-5
Mosley, L. S. D. (2013). A balanced approach to the multi-class imbalance problem. In ProQuest Dissertations and Theses.
Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of Green-Red Vegetation Index for remote sensing of vegetation phenology. Remote Sensing, 2(10), 2369–2387. https://doi.org/10.3390/rs2102369
Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. In ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2010.11.001
Müller, A. C., & Guido, S. (2016). Introduction to Machine Learning with Python: a guide for data scientists. In Journal of Chemical Information and Modeling. https://doi.org/10.1017/CBO9781107415324.004
Mundt, C. C. (2019). The Study of Plant Disease Epidemics. HortScience, 44(7), 2065b – 2065. https://doi.org/10.21273/hortsci.44.7.2065b
Neupane, K., & Baysal-Gurel, F. (2021). Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review. In Remote Sensing (Vol. 13, Issue 19, p. 3841). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs13193841
Nieto, L. E. (1988). La Madurez Prematura de la Papa Causada por Verticillium spp. en Colombia. Revista ICA, 4, 334–340.
Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., & Barbano, P. E. (2005). Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2005.852470
Oerke, E. C. (2020). Remote Sensing of Diseases. Annual Review of Phytopathology, 58, 225–252. https://doi.org/10.1146/annurev-phyto-010820-012832
Oerke, E. C., Mahlein, A. K., & Steiner, U. (2014). Proximal sensing of plant diseases. In Detection and Diagnostics of Plant Pathogens (pp. 55–68). Springer Netherlands. https://doi.org/10.1007/978-94-017-9020-8_4
Pandala, S. R. (2022). lazypredict. Python Software Foundation. https://pypi.org/project/lazypredict/
Patrick, A., Pelham, S., Culbreath, A., Corely Holbrook, C., De Godoy, I. J., & Li, C. (2017). High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging. IEEE Instrumentation and Measurement Magazine, 20(3), 4–12. https://doi.org/10.1109/MIM.2017.7951684
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html
Pourazar, H., Samadzadegan, F., Dadrass Javan, F., Giacomo, R., David, G., Gilbertson, J. K., Forum, P. O., Bouroubi, Y., Bugnet, P., Nguyen-xuan, T., Gosselin, C., Bélec, C., Longchamps, L., Vigneault, P., Ji, S., Zhang, C., Xu, A., Shi, Y., Duan, Y., … Gore, M. A. (2017). Pest Detection on UAV Imagery using a Deep Convolutional Neural Network. Remote Sensing, 52(19), 17–31. https://doi.org/10.3390/rs11192209
Powelson, M. L., & Rowe, R. C. (1993). Biology and management of early dying of potatoes. In Annual Review of Phytopathology (Vol. 31, pp. 111–126). Annual Reviews Inc. https://doi.org/10.1146/annurev.py.31.090193.000551
Puletti, N., Perria, R., & Storchi, P. (2014). Unsupervised classification of very high remotely sensed images for grapevine rows detection. European Journal of Remote Sensing, 47(1), 45–54. https://doi.org/10.5721/EuJRS20144704
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/10.1016/0034-4257(94)90134-1
Rahman, H. ur, Jabbar Ch, N., Manzoor, S., Najeeb, F., Siddique, M. Y., & Khan, R. A. (2017). A comparative analysis of machine learning approaches for plant disease identification. Advancements in Life Sciences, 4(4), 120–126.
Ramegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. In Journal of Plant Physiology (Vol. 176, pp. 47–54). Urban und Fischer Verlag GmbH und Co. KG. https://doi.org/10.1016/j.jplph.2014.11.008
Ramesh Reddy, D., Naga Santhosh, K., & Kodali, P. (2022). Convolutional Neural Networks for the Intuitive Identification of Plant Diseases. 5th International Conference on Inventive Computation Technologies, ICICT 2022 - Proceedings, 10, 941. https://doi.org/10.1109/ICICT54344.2022.9850695
Ramirez-Gil, J., Navas, J., & Gómez, S. (2019). Epidemiología e importancia económica de una alteración de origen desconocido en papa en la sabana occidente de Cundinamarca. XXXIV CONGRESO COLOMBIANO DE FITOPOPATOLOGIA Y CIENCIAS AFINES MEMORIAS, 205–205.
Ramirez Gil, J., Garcia, C., Navas, J., Leon, J., & Gómez, S. (2019). Implicaciones epidemológicas y económicas de Verticillium sp., en una región productora de papa en Cundinamarca. XXXIV CONGRESO COLOMBIANO DE FITOPOPATOLOGIA Y CIENCIAS AFINES MEMORIAS, 206–207.
Raymundo, R., Asseng, S., Prassad, R., Kleinwechter, U., Concha, J., Condori, B., Bowen, W., Wolf, J., Olesen, J. E., Dong, Q., Zotarelli, L., Gastelo, M., Alva, A., Travasso, M., Quiroz, R., Arora, V., Graham, W., & Porter, C. (2017). Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Research, 202, 57–76. https://doi.org/10.1016/j.fcr.2016.04.012
Ren, Y., Zhang, L., & Suganthan, P. N. (2016). Ensemble Classification and Regression-Recent Developments, Applications and Future Directions [Review Article]. In IEEE Computational Intelligence Magazine (Vol. 11, Issue 1, pp. 41–53). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/MCI.2015.2471235
Rodríguez, J., Lizarazo, I., Prieto, F., & Angulo-Morales, V. (2021). Assessment of potato late blight from UAV-based multispectral imagery. Computers and Electronics in Agriculture, 184, 106061. https://doi.org/10.1016/j.compag.2021.106061
Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS proceeding. Third Earth Reserves Technology Satellite Symposium, Greenbelt: NASA SP-351, 30103017, 317. https://ui.adsabs.harvard.edu/abs/1974NASSP.351..309R/abstract
Rowe, R. C., & Powelson, M. L. (2002). Potato early dying: Management challenges in a changing production environment. In Plant Disease (Vol. 86, Issue 11, pp. 1184–1193). The American Phytopathological Society. https://doi.org/10.1094/PDIS.2002.86.11.1184
Salamí, E., Barrado, C., & Pastor, E. (2014). UAV flight experiments applied to the remote sensing of vegetated areas. In Remote Sensing (Vol. 6, Issue 11, pp. 11051–11081). MDPI AG. https://doi.org/10.3390/rs61111051
Sami, K., KC, K., John, F., Scott, S., & Erdal, O. (2020). Remote Sensing in Agriculture ( Challenges and Opportunities ). Remote Sensing, 10, 83–87.
Sarić, R., Nguyen, V. D., Burge, T., Berkowitz, O., Trtílek, M., Whelan, J., Lewsey, M. G., & Čustović, E. (2022). Applications of hyperspectral imaging in plant phenotyping. In Trends in Plant Science (Vol. 27, Issue 3, pp. 301–315). Elsevier Current Trends. https://doi.org/10.1016/j.tplants.2021.12.003
Sarkar, S. K., Das, J., Ehsani, R., & Kumar, V. (2016). Towards autonomous phytopathology: Outcomes and challenges of citrus greening disease detection through close-range remote sensing. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 5143–5148. https://doi.org/10.1109/ICRA.2016.7487719
Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047
Seetha, M., Muralikrishna, Deekshatulu, B. L., Malleswari, B. L., Nagaratna, & Hegde, P. (2008). Artificial Neural Networks and Other Methods of Image Classification. Theoretical and Applied Information Technology
Segarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 1–18. https://doi.org/10.3390/agronomy10050641
Shammi, S., Sohel, F., Diepeveen, D., Zander, S., & Jones, M. G. K. (2022). A survey of image-based computational learning techniques for frost detection in plants. In Information Processing in Agriculture. Elsevier. https://doi.org/10.1016/j.inpa.2022.02.003
Shattock, R. (2002). Compendium of Potato Diseases, Second Edition. W.R. Stevenson. Plant Pathology, 51(4), 520–520. https://doi.org/10.1046/j.1365-3059.2002.06934.x
Shi, Y., Han, L., Kleerekoper, A., Chang, S., & Hu, T. (2022). Novel CropdocNet Model for Automated Potato Late Blight Disease Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery. Remote Sensing, 14(2), 396. https://doi.org/10.3390/rs14020396
Shin, M. Y., Gonzalez Viejo, C., Tongson, E., Wiechel, T., Taylor, P. W. J., & Fuentes, S. (2023). Early detection of Verticillium wilt of potatoes using near-infrared spectroscopy and machine learning modeling. Computers and Electronics in Agriculture, 204, 107567. https://doi.org/10.1016/J.COMPAG.2022.107567
Shruthi, U., Nagaveni, V., & Raghavendra, B. K. (2019). A Review on Machine Learning Classification Techniques for Plant Disease Detection. 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, 281–284. https://doi.org/10.1109/ICACCS.2019.8728415
Simko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology, 102(4), 381–389. https://doi.org/10.1094/PHYTO-07-11-0216
Singh, A., & Kaur, H. (2021). Potato plant leaves disease detection and classification using machine learning methodologies. IOP Conference Series: Materials Science and Engineering, 1022(1). https://doi.org/10.1088/1757-899X/1022/1/012121
Singh, V., Sharma, N., & Singh, S. (2020). A review of imaging techniques for plant disease detection. In Artificial Intelligence in Agriculture (Vol. 4, pp. 229–242). KeAi Communications Co. https://doi.org/10.1016/j.aiia.2020.10.002
Stehman, S. V., & Foody, G. M. (2008). Accuracy Assessment. In The SAGE Handbook of Remote Sensing. https://doi.org/10.4135/9780857021052.n21
Stevens, A., & Ramirez Lopez, L. (2014). An introduction to the prospectr package. In R Package Vignette, Report No.: R Package Version 0.1 (Vol. 3, Issue August 2013, pp. 1–22). https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr.html
Stevenson, W., Loria, R., Franc, G., & Weingartner, D. (2001). Compendium of Potato Diseases, Second Edition. Phytopathological Society. https://doi.org/10.1046/j.1365-3059.2002.06934.x
Su, J., Yi, D., Coombes, M., Liu, C., Zhai, X., McDonald-Maier, K., & Chen, W. H. (2022). Spectral analysis and mapping of blackgrass weed by leveraging machine learning and UAV multispectral imagery. Computers and Electronics in Agriculture, 192. https://doi.org/10.1016/j.compag.2021.106621
Sugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya, Y., Hirafuji, M., & Nuske, S. (2016). Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering. https://doi.org/10.1016/j.biosystemseng.2016.04.010
Sun, W., & Du, Q. (2019). Hyperspectral band selection: A review. In IEEE Geoscience and Remote Sensing Magazine (Vol. 7, Issue 2, pp. 118–139). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/MGRS.2019.2911100
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32–43. https://doi.org/10.1111/nph.12797
Tetila, E. C., Brandoli Machado, B., Belete, N. A. D. S., Guimaraes, D. A., & Pistori, H. (2017). Identification of Soybean Foliar Diseases Using Unmanned Aerial Vehicle Images. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2017.2743715
Thai, L. H., Hai, T. S., & Thuy, N. T. (2012). Image Classification using Support Vector Machine and Artificial Neural Network. International Journal of Information Technology and Computer Science. https://doi.org/10.5815/ijitcs.2012.05.05
Tripathi, K., Vyas, R. G., & Gupta, A. K. (2019). Document Classification Using Artificial Neural Network. Asian Journal of Computer Science and Technology, 8(2), 55–58.
Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information (Switzerland), 10(11). https://doi.org/10.3390/info10110349
van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu, T., & the scikit-image contributors. (2014). scikit-image: image processing in {P}ython. PeerJ, 2, e453. https://doi.org/10.7717/peerj.453
Vishnoi, V. K., Kumar, K., & Kumar, B. (2021). Plant disease detection using computational intelligence and image processing. In Journal of Plant Diseases and Protection (Vol. 128, Issue 1, pp. 19–53). Springer. https://doi.org/10.1007/s41348-020-00368-0
Wan, L., Li, Y., Cen, H., Zhu, J., Yin, W., Wu, W., Zhu, H., Sun, D., Zhou, W., & He, Y. (2018). Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sensing, 10(9), 1484. https://doi.org/10.3390/rs10091484
Wang, C. ling, Shen, S. he, Zhang, S. yu, Li, Q. zhen, & Yao, Y. bi. (2015). Adaptation of potato production to climate change by optimizing sowing date in the Loess Plateau of central Gansu, China. Journal of Integrative Agriculture, 14(2), 398–409. https://doi.org/10.1016/S2095-3119(14)60783-8
Wang, J., Lu, S., Wang, S. H., & Zhang, Y. D. (2021). A review on extreme learning machine. Multimedia Tools and Applications, 1–50. https://doi.org/10.1007/s11042-021-11007-7
Wei, X., Johnson, M. A., Langston, D. B., Mehl, H. L., & Li, S. (2021). Identifying optimal wavelengths as disease signatures using hyperspectral sensor and machine learning. Remote Sensing, 13(14), 2833. https://doi.org/10.3390/rs13142833
Xu, M., Watanachaturaporn, P., Varshney, P. K., & Arora, M. K. (2005). Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 97(3), 322–336. https://doi.org/10.1016/j.rse.2005.05.008
Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. In Journal of Sensors. Hindawi Limited. https://doi.org/10.1155/2017/1353691
Yan, Z., Ma, L., He, W., Zhou, L., Lu, H., Liu, G., & Huang, G. (2022). Comparing Object-Based and Pixel-Based Methods for Local Climate Zones Mapping with Multi-Source Data. Remote Sensing, 14(15). https://doi.org/10.3390/rs14153744
Yang, C. M., Cheng, C. H., & Chen, R. K. (2007). Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Science. https://doi.org/10.2135/cropsci2006.05.0335
Yeom, J., Jung, J., Chang, A., Ashapure, A., Maeda, M., Maeda, A., & Landivar, J. (2019). Comparison of vegetation indices derived from UAV data for differentiation of tillage effects in agriculture. Remote Sensing, 11(13). https://doi.org/10.3390/rs11131548
Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. In Precision Agriculture (Vol. 13, Issue 6, pp. 693–712). Springer. https://doi.org/10.1007/s11119-012-9274-5
Zhang, H., Xu, F., Wu, Y., Hu, H. hai, & Dai, X. feng. (2017). Progress of potato staple food research and industry development in China. In Journal of Integrative Agriculture (Vol. 16, Issue 12, pp. 2924–2932). Elsevier. https://doi.org/10.1016/S2095-3119(17)61736-2
Zheng, H., Li, W., Jiang, J., Liu, Y., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Zhang, Y., & Yao, X. (2018). A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing, 10(12). https://doi.org/10.3390/rs10122026
Zhou, X., Huang, W., Zhang, J., Kong, W., Casa, R., & Huang, Y. (2019). A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. International Journal of Applied Earth Observation and Geoinformation, 76, 128–142. https://doi.org/https://doi.org/10.1016/j.jag.2018.10.012
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 135 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Geomática
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84484/2/Evaluaci%c3%b3n%20de%20t%c3%a9cnicas%20de%20teledetecci%c3%b3n%20para%20la%20identificaci%c3%b3n%20y%20cuantificaci%c3%b3n%20de%20la%20madurez%20temprana%20en%20cultivos%20de%20papa%20a%20partir%20de%20datos%20espectrales.pdf
https://repositorio.unal.edu.co/bitstream/unal/84484/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84484/3/Evaluaci%c3%b3n%20de%20t%c3%a9cnicas%20de%20teledetecci%c3%b3n%20para%20la%20identificaci%c3%b3n%20y%20cuantificaci%c3%b3n%20de%20la%20madurez%20temprana%20en%20cultivos%20de%20papa%20a%20partir%20de%20datos%20espectrales.pdf.jpg
bitstream.checksum.fl_str_mv 24487e8336e94bcab88d4f909943f230
eb34b1cf90b7e1103fc9dfd26be24b4a
d08e7bbab01a23d8a5b951667e90bdf1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089880502796288
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramírez Gil, Joaquín Guillermo057a48c561d6f5700e30039433833652Gómez Caro, Sandra77d745816cfeb1efd84c4b544e809c49Leon Rueda, William Alfonso019139c0464708950a828494a7e1c263BiogénesisWilliam Alfonso Leon Rueda [0000000310511093]2023-08-08T15:31:11Z2023-08-08T15:31:11Z2023-08-02https://repositorio.unal.edu.co/handle/unal/84484Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, diagramas, mapasEl cultivo de papa es afectado por diferentes enfermedades que disminuyen su rendimiento, entre ellas, los problemas asociados a madurez temprana (MT) causada por Verticillium spp. han cobrado importancia en Colombia. La falta de estrategias de manejo y en especial herramientas de diagnóstico y detección temprana ha generado la necesidad de identificar técnicas de detección indirecta con aplicación potencial a nivel comercial. Por lo anterior, este trabajo tuvo como objetivo evaluar herramientas de análisis de datos espectrales para la identificación y cuantificación de MT asociada a Verticillium spp. en cultivos de papa. El trabajo se dividió en dos fases en busca de caracterizar a nivel espectral plantas sanas y enfermas, además de hacer una aproximación a la cuantificación indirecta de distintos niveles de severidad de la enfermedad. En primer lugar, se compararon firmas espectrales adquiridas mediante un espectro radiómetro fijo bajo condiciones controladas con el fin de identificar bandas e índices espectrales contrastantes por su capacidad para la detección y cuantificación indirecta de esta patología. Posteriormente, en dos áreas de producción comercial se generaron clasificaciones utilizando algoritmos de aprendizaje automático (Bosques aleatorios, Máquinas de soporte vectorial, Redes neuronales y Adaboost), seleccionando aquellos de mejor comportamiento mediante parámetros de rendimiento por su capacidad para la identificación de plantas sanas y enfermas. Adicionalmente, se realizó una aproximación a la cuantificación de la severidad usando datos multiespectrales adquiridos por medio de un dron. Los resultados indican que los algoritmos usados no tuvieron diferencias significativas entre la capacidad de clasificación usando como predictoras firmas espectrales de plantas sanas y enfermas. Igualmente, las regiones del rojo y el borde rojo fueron las que presentaron mayor importancia en los clasificadores, conllevando a que los índices espectrales RECI, NDRE y GRVI presentaron mayor capacidad discriminatoria. En cuanto a los lotes comerciales, se observó que las clasificaciones alcanzaron niveles aceptables de exactitud, los cuales están directamente relacionados con las variables de intensidad de la enfermedad. Por otra parte, se resalta que en esta propuesta se hace un vínculo entre firmas espectrales e imágenes multiespectrales adquiridas bajo condiciones controladas y tomados en cultivos de condición comercial campo, hallando regiones e índices espectrales informativos con un alto potencial para el desarrollo de sensores ópticos de bajo costo que permitan la detección indirecta de la MT en el cultivo de papa. (Texto tomado de la fuente)Potato crop is affected by different diseases that reduce yield, among them, problems associated with early maturity (MT) caused by Verticillium spp. have gained importance in Colombia. The lack of management strategies, especially diagnostic and early detection tools, has generated the need to identify indirect detection techniques with potential commercial application. Therefore, the objective of this work was to evaluate spectral data analysis tools for the identification and quantification of MT associated with Verticillium spp. in potato crops. The work was divided into two phases in order to characterize healthy and diseased plants at the spectral level, as well as to make an approximation to the indirect quantification of different levels of disease severity. First, spectral signatures acquired by means of a fixed radiometer spectrum were compared under controlled conditions in order to identify contrasting spectral bands and indices for their capacity for the detection and indirect quantification of this pathology. Subsequently, in two commercial production areas, classifications were generated using machine learning algorithms (Random Forests, Support Vector Machines, Neural Networks and Adaboost), selecting those with the best performance parameters for their ability to identify healthy and diseased plants. Additionally, a severity quantification approach was performed using multispectral data acquired from a drone. The results indicate that the algorithms used had no significant differences between the classification capability using spectral signatures of healthy and diseased plants as predictors. Likewise, the red and red-edge regions were those that presented the greatest importance in the classifiers, leading to the RECI, NDRE and GRVI spectral indices presenting greater discriminatory capacity. As for the commercial lots, it was observed that the classifications reached acceptable levels of accuracy, which are directly related to the variables of disease intensity. On the other hand, it is highlighted that in this proposal a link is made between spectral signatures and multispectral images acquired under controlled conditions and taken in commercial field condition crops, finding regions and informative spectral indices with a high potential for the development of lowcost optical sensors that allow the indirect detection of MT in potato crops.MaestríaMagíster en GeomáticaTecnologías Geoespaciales135 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáEvaluación de herramientas de análisis de datos espectrales para la identificación y cuantificación de la madurez temprana en papaEvaluation of spectral data analysis tools for the identification and quantification of early maturity in potatoTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAasen, H., Honkavaara, E., Lucieer, A., & Zarco-Tejada, P. J. (2018). Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correctionworkflows. In Remote Sensing (Vol. 10, Issue 7, p. 1091). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs10071091Abdulridha, J., Ampatzidis, Y., Kakarla, S. C., & Roberts, P. (2020). Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precision Agriculture, 21(5), 955–978. https://doi.org/10.1007/s11119-019-09703-4Aggarwal, N., Srivastava, M., & Dutta, M. (2016). Comparative Analysis of Pixel-Based and Object-Based Classification of High Resolution Remote Sensing Images – A Review. International Journal of Engineering Trends and Technology, 38(1), 5–11. https://doi.org/10.14445/22315381/ijett-v38p202Agilandeeswari, L., Prabukumar, M., Radhesyam, V., Phaneendra, K. L. N. B., & Farhan, A. (2022). Crop Classification for Agricultural Applications in Hyperspectral Remote Sensing Images. Applied Sciences, 12(3). https://doi.org/10.3390/app12031670Agronet. (2018). Agronet. http://www.agronet.gov.co/estadistica/Paginas/default.aspxAl-Saddik, H., Simon, J. C., & Cointault, F. (2017). Development of spectral disease indices for ‘flavescence dorée’ grapevine disease identification. Sensors (Switzerland), 17(12). https://doi.org/10.3390/s17122772AlAfandy, K. A., Omara, H., Lazaar, M., & Al Achhab, M. (2019, October 23). Artificial neural networks optimization and convolution neural networks to classifying images in remote sensing: A review. ACM International Conference Proceeding Series. https://doi.org/10.1145/3372938.3372945Albetis, J., Jacquin, A., Goulard, M., Poilvé, H., Rousseau, J., Clenet, H., Dedieu, G., & Duthoit, S. (2019). On the potentiality of UAV multispectral imagery to detect Flavescence dorée and Grapevine Trunk Diseases. Remote Sensing, 11(1). https://doi.org/10.3390/rs11010023Ali, M. M., Bachik, N. A., Muhadi, N. ‘Atirah, Tuan Yusof, T. N., & Gomes, C. (2019). Non-destructive techniques of detecting plant diseases: A review. In Physiological and Molecular Plant Pathology (Vol. 108). Academic Press. https://doi.org/10.1016/j.pmpp.2019.101426Antunes, E., Vuppaladadiyam, A. K., Sarmah, A. K., Varsha, S. S. V., Pant, K. K., Tiwari, B., & Pandey, A. (2021). Application of biochar for emerging contaminant mitigation. In Advances in Chemical Pollution, Environmental Management and Protection (Vol. 7, pp. 65–91). Elsevier. https://doi.org/10.1016/bs.apmp.2021.08.003Arneson, P. A. (2001). Plant Disease Epidemiology. The Plant Health Instructor,https://www.apsnet.org/edcenter/disimpactmngmnt/to. https://doi.org/10.1094/PHI-A-2001-0524-01Ashourloo, D., Aghighi, H., Matkan, A. A., Mobasheri, M. R., & Rad, A. M. (2016). An Investigation Into Machine Learning Regression Techniques for the Leaf Rust Disease Detection Using Hyperspectral Measurement. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9), 4344–4351. https://doi.org/10.1109/JSTARS.2016.2575360Ashraf, A., Rauf, A., Fahim Abbas, M., & Rehman, R. (2012). ISOLATION AND IDENTIFICATION OF VERTICILLIUM DAHLIAE CAUSING WILT ON POTATO IN PAKISTAN. J. Phytopathol, 24(2), 112–116Baldi, P., & La Porta, N. (2020). Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. In Frontiers in Plant Science (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fpls.2020.570862Barbedo, J. G. A. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones, 3(2), 1–27. https://doi.org/10.3390/drones3020040Behmann, J., Mahlein, A. K., Rumpf, T., Römer, C., & Plümer, L. (2015). A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. In Precision Agriculture. https://doi.org/10.1007/s11119-014-9372-7Bekkar, M., Djemaa, H. K., & Alitouche, T. A. (2013). Evaluation Measures for Models Assessment over Imbalanced Data Sets. Journal of Information Engineering and Applications.Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. In ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2016.01.011Blekos, K., Tsakas, A., Xouris, C., Evdokidis, I., Alexandropoulos, D., Alexakos, C., Katakis, S., Makedonas, A., Theoharatos, C., & Lalos, A. (2021). Analysis, Modeling and Multi-Spectral Sensing for the Predictive Management of Verticillium Wilt in Olive Groves. Journal of Sensor and Actuator Networks, 10(1), 15. https://doi.org/10.3390/jsan10010015Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29(2), 59–107. https://doi.org/10.1080/07352681003617285Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010). The balanced accuracy and its posterior distribution. Proceedings - International Conference on Pattern Recognition. https://doi.org/10.1109/ICPR.2010.764Buja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., De Bellis, L., Luvisi, A., & Maruccio, G. (2021). Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. Sensors (Basel, Switzerland), 21(6), 1–22. https://doi.org/10.3390/S21062129Buriticá, P. (1999). Directorio de patógenos y enfermedades de las plantas de importancia económica en Colombia. http://www.buritica-antioquia.gov.co/presentacion.shtmlCalderón, R., Montes-Borrego, M., Landa, B. B., Navas-Cortés, J. A., & Zarco-Tejada, P. J. (2014). Detection of downy mildew of opium poppy using high-resolution multi-spectral and thermal imagery acquired with an unmanned aerial vehicle. Precision Agriculture, 15(6), 639–661. https://doi.org/10.1007/s11119-014-9360-yCalderón, Rocío, Navas-Cortés, J. A., & Zarco-Tejada, P. J. (2015). Early detection and quantification of verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sensing. https://doi.org/10.3390/rs70505584Campbell, J. B., & Wynne., R. H. (2011). Introduction to Remote Sensing FIFTH EDITION. In Uma ética para quantos? https://doi.org/10.1007/s13398-014-0173-7.2Cockerton, H. M., Li, B., Vickerstaff, R. J., Eyre, C. A., Sargent, D. J., Armitage, A. D., Marina-Montes, C., Garcia-Cruz, A., Passey, A. J., Simpson, D. W., & Harrison, R. J. (2019). Identifying Verticillium dahliae resistance in strawberry through disease screening of multiple populations and image based phenotyping. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00924Cortes, C., & Mohri, M. (2004). AUC optimization vs. Error rate minimization. Advances in Neural Information Processing Systems.Couture, J. J., Singh, A., Charkowski, A. O., Groves, R. L., Gray, S. M., Bethke, P. C., & Townsend, P. A. (2018). Integrating Spectroscopy with Potato Disease Management. Plant Disease, 102(11), 2233–2240. https://doi.org/10.1094/pdis-01-18-0054-reDash, J. P., Watt, M. S., Pearse, G. D., Heaphy, M., & Dungey, H. S. (2017). Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 1–14. https://doi.org/10.1016/j.isprsjprs.2017.07.007Duarte-Carvajalino, J. M., Alzate, D. F., Ramirez, A. A., Santa-Sepulveda, J. D., Fajardo-Rojas, A. E., & Soto-Suárez, M. (2018). Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sensing. https://doi.org/10.3390/rs10101513Dung, J. K. S., Ingram, J. T., Cummings, T. F., & Johnson, D. A. (2012). Impact of seed lot infection on the development of black dot and verticillium wilt of potato in Washington. Plant Disease. https://doi.org/10.1094/PDIS-01-12-0061-REEl Hoummaidi, L., Larabi, A., & Alam, K. (2021). Using unmanned aerial systems and deep learning for agriculture mapping in Dubai. Heliyon, 7(10). https://doi.org/10.1016/j.heliyon.2021.e08154Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. In Biosensors. https://doi.org/10.3390/bios5030537FAOSTAT. (2020). FAOSTAT: Statistical database. FAOSTAT: Statistical Database. https://www.fao.org/faostat/es/#homeFawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2005.10.010Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of performance measures for classification. Pattern Recognition LettersFriedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28(2), 337–407Galieni, A., D’Ascenzo, N., Stagnari, F., Pagnani, G., Xie, Q., & Pisante, M. (2021). Past and Future of Plant Stress Detection: An Overview From Remote Sensing to Positron Emission Tomography. In Frontiers in Plant Science (Vol. 11, p. 1975). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.609155Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2012.12.002Gholami, R., & Fakhari, N. (2017). Support Vector Machine: Principles, Parameters, and Applications. In Handbook of Neural Computation (pp. 515–535). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811318-9.00027-2Gibson-Poole, S., Humphris, S., Toth, I., & Hamilton, A. (2017). Identification of the onset of disease within a potato crop using a UAV equipped with un-modified and modified commercial off-the-shelf digital cameras. Advances in Animal Biosciences, 8(2), 812–816. https://doi.org/10.1017/s204047001700084xGitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. https://doi.org/10.1078/0176-1617-00887Gitelson, A. A., & Merzlyak, M. N. (1996). Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. Journal of Plant Physiology, 148(3–4), 494–500. https://doi.org/10.1016/S0176-1617(96)80284-7Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochemistry and Photobiology, 74(1), 38. https://doi.org/10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2Gold, K. M., Townsend, P. A., Chlus, A., Herrmann, I., Couture, J. J., Larson, E. R., & Gevens, A. J. (2020). Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sensing, 12(2), 286. https://doi.org/10.3390/rs12020286Gold, K. M., Townsend, P. A., Herrmann, I., & Gevens, A. J. (2020). Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning. Plant Science, 295, 110316. https://doi.org/10.1016/j.plantsci.2019.110316Gold, K. M., Townsend, P. A., Larson, E. R., Herrmann, I., & Gevens, A. J. (2020). Contact reflectance spectroscopy for rapid, accurate, and nondestructive phytophthora infestans clonal lineage discrimination. Phytopathology, 110(4), 851–862. https://doi.org/10.1094/PHYTO-08-19-0294-RGörlich, F., Marks, E., Mahlein, A. K., König, K., Lottes, P., & Stachniss, C. (2021). Uav-based classification of cercospora leaf spot using rgb images. Drones, 5(2), 34. https://doi.org/10.3390/drones5020034Hamylton, S. M., Morris, R. H., Carvalho, R. C., Roder, N., Barlow, P., Mills, K., & Wang, L. (2020). Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2020.102085Hasmadi, I., Pakhriazad, H., & Shahrin, M. (2009). Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geografia - Malaysian Journal of Society and SpaceHonkavaara, E., Saari, H., Kaivosoja, J., Pölönen, I., Hakala, T., Litkey, P., Mäkynen, J., & Pesonen, L. (2013). Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sensing, 5(10), 5006–5039. https://doi.org/10.3390/rs5105006Hopkins, D. W. (2001). What is a Norris Derivative? NIR News, 12(3), 3–5. https://doi.org/10.1255/nirn.611Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-XHussain, T. (2016). Potatoes: Ensuring Food for the Future. Advances in Plants & Agriculture Research, 3(6). https://doi.org/10.15406/apar.2016.03.00117Imanian, K., Pourdarbani, R., Sabzi, S., García-Mateos, G., Arribas, J. I., & Molina Martínez, J. M. (2021). Identification of internal defects in potato using spectroscopy and computational intelligence based on majority voting techniques. Foods, 10(5). https://doi.org/10.3390/foods10050982Jasiński, J., Pietrek, S., Walczykowski, P., & Orych, A. (2010). Acquisition of spectral reflectance characteristics of land cover features based on hyperspectral images . JanuaryJiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. https://doi.org/10.1016/j.rse.2008.06.006Jing, R., Li, H., Hu, X., Shang, W., Shen, R., Guo, C., Guo, Q., & Subbarao, K. V. (2018). Verticillium wilt caused by verticillium dahliae and v. Nonalfalfae in potato in northern China. Plant Disease, 102(10), 1958–1964. https://doi.org/10.1094/PDIS-01-18-0162-REJohnson, D. A., & Cummings, T. F. (2015). Effect of extended crop rotations on incidence of black dot, Silver scurf, and verticillium wilt of potato. Plant Disease, 99(2), 257–262. https://doi.org/10.1094/PDIS-03-14-0271-REJohnson, D. A., Jeremiah, K., & Dung, S. (2010). Verticillium wilt of potato - The pathogen, disease and management. Canadian Journal of Plant Pathology. https://doi.org/10.1080/07060661003621134Junges, A. H., Almança, M. A. K., Fajardo, T. V. M., & Ducati, J. R. (2020). Leaf hyperspectral reflectance as a potential tool to detect diseases associated with vineyard decline. Tropical Plant Pathology, 45(5), 522–533. https://doi.org/10.1007/s40858-020-00387-0Kanti, M., Pradhan, R., & Sushan, S. (2010). Decision Tree Classification of Remotely Sensed Satellite Data using Spectral Separability Matrix. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/ijacsa.2010.010516Klosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, pathogenicity, and management of verticillium species. Annual Review of Phytopathology, 47, 39–62. https://doi.org/10.1146/annurev-phyto-080508-081748Kollist, H., Zandalinas, S. I., Sengupta, S., Nuhkat, M., Kangasjärvi, J., & Mittler, R. (2019). Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. In Trends in Plant Science (Vol. 24, Issue 1, pp. 25–37). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2018.10.003Kong, W., Zhang, C., Huang, W., Liu, F., & He, Y. (2018). Application of hyperspectral imaging to detect Sclerotinia sclerotiorum on oilseed rape stems. Sensors (Switzerland), 18(1). https://doi.org/10.3390/s18010123Kuang, B., Mahmood, H. S., Quraishi, M. Z., Hoogmoed, W. B., Mouazen, A. M., & van Henten, E. J. (2012). Sensing soil properties in the laboratory, in situ, and on-line. A review. In Advances in Agronomy (1st ed., Vol. 114, Issue October 2017). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394275-3.00003-1Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05Kuska, M. T., & Mahlein, A. K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. European Journal of Plant Pathology, 152(4), 987–992. https://doi.org/10.1007/s10658-018-1464-1Larkin, R. P., Honeycutt, C. W., & Olanya, O. M. (2011). Management of Verticillium Wilt of Potato with Disease-Suppressive Green Manures and as Affected by Previous Cropping History. Plant Disease. https://doi.org/10.1094/pdis-09-10-0670Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1), 3–10. https://doi.org/10.1016/j.gsf.2015.07.003Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01León-Rueda, W. A., León, C., Caro, S. G., & Ramírez-Gil, J. G. (2022). Identification of diseases and physiological disorders in potato via multispectral drone imagery using machine learning tools. Tropical Plant Pathology, 47(1), 152–167. https://doi.org/10.1007/s40858-021-00460-2Li, Haiyuan, Wang, Z., Hu, X., Shang, W., Shen, R., Guo, C., Guo, Q., & Subbarao, K. V. (2019). Assessment of resistance in potato cultivars to verticillium wilt caused by verticillium dahliae and verticillium nonalfalfae. Plant Disease, 103(6), 1357–1362. https://doi.org/10.1094/PDIS-10-18-1815-RELi, Hong, Yang, W., Lei, J., She, J., & Zhou, X. (2021). Estimation of leaf water content from hyperspectral data of different plant species by using three new spectral absorption indices. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0249351Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of Spatio-contextual information. European Journal of Remote Sensing, 47(1), 389–411. https://doi.org/10.5721/EuJRS20144723Liao, P. S., Chen, T. S., & Chung, P. C. (2001). A fast algorithm for multilevel thresholding. Journal of Information Science and Engineering, 17(5), 713–727Lillesand, T. M., & Kiefer, R. W. (2004). Remote sensing and image interpretation. In Remote sensing and image interpretation. https://doi.org/10.2307/634969Liu, C., Sun, P. Sen, & Liu, S. R. (2016). A review of plant spectral reflectance response to water physiological changes. Chinese Journal of Plant Ecology, 40(1), 80–91. https://doi.org/10.17521/cjpe.2015.0267Liu, L., Dong, Y., Huang, W., Du, X., Ren, B., Huang, L., Zheng, Q., & Ma, H. (2020). A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery. IEEE Access, 8, 52181–52191. https://doi.org/10.1109/ACCESS.2020.2980310Liu, X. (2003). Supervised Classification and Unsupervised Classification. Cfa.Harvard.Edu.Lizarazo, I., Rodriguez, J. L., Cristancho, O., Olaya, F., Duarte, M., & Prieto, F. (2023). Identification of symptoms related to potato Verticillium wilt from UAV-based multispectral imagery using an ensemble of gradient boosting machines. Smart Agricultural Technology, 3, 100138. https://doi.org/https://doi.org/10.1016/j.atech.2022.100138Lizarazo Peña, P. A. (2020). Desarrollo , crecimiento y rendimiento de cultivares de papa diploide en ambientes contrastantes por altitud. In Universidad Nacional de Colombia. https://repositorio.unal.edu.co/bitstream/handle/unal/78234/1022359762.2020.pdf?sequence=1&isAllowed=yLowe, A., Harrison, N., & French, A. (2017). Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. In Plant Methods. https://doi.org/10.1186/s13007-017-0233-zLowe, B., & Kulkarni, A. (2015). Multispectral Image Analysis Using Random Forest. International Journal on Soft Computing. https://doi.org/10.5121/ijsc.2015.6101Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. In International Journal of Remote Sensing. https://doi.org/10.1080/01431160600746456Lu, J., Ehsani, R., Shi, Y., de Castro, A. I., & Wang, S. (2018). Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-21191-6Lu, N., Zhou, J., Han, Z., Li, D., Cao, Q., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T. (2019). Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods, 15(1), 17. https://doi.org/10.1186/s13007-019-0402-3Mahlein, A. K. (2016). Plant disease detection by imaging sensors – Parallels and specific demands for precision agriculture and plant phenotyping. In Plant Disease (Vol. 100, Issue 2, pp. 241–254). https://doi.org/10.1094/PDIS-03-15-0340-FEMahlein, A. K., Kuska, M. T., Thomas, S., Bohnenkamp, D., Alisaac, E., Behmann, J., Wahabzada, M., & Kersting, K. (2017). Plant disease detection by hyperspectral imaging: from the lab to the field. Advances in Animal Biosciences. https://doi.org/10.1017/s2040470017001248Mahlein, A. K., Oerke, E. C., Steiner, U., & Dehne, H. W. (2012). Recent advances in sensing plant diseases for precision crop protection. In European Journal of Plant Pathology. https://doi.org/10.1007/s10658-011-9878-zMahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019Manici, L. M., & Cerato, C. (1994). Pathogenicity of Fusarium oxysporum f.sp. tuberosi isolates from tubers and potato plants. Potato Research, 37(2), 129–134. https://doi.org/10.1007/BF02358713Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1), 88. https://doi.org/10.1016/J.SJBS.2019.05.007Mauromicale, G., Ierna, A., & Marchese, M. (2006). Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica, 44(1), 76–82. https://doi.org/10.1007/S11099-005-0161-4Meng, R., Lv, Z., Yan, J., Chen, G., Zhao, F., Zeng, L., & Xu, B. (2020). Development of spectral disease indices for southern corn rust detection and severity classification. Remote Sensing, 12(19), 1–16. https://doi.org/10.3390/rs12193233Mishra, P., Polder, G., & Vilfan, N. (2020). Close Range Spectral Imaging for Disease Detection in Plants Using Autonomous Platforms: a Review on Recent Studies. Current Robotics Reports, 1(2), 43–48. https://doi.org/10.1007/s43154-020-00004-7Mohapatra, S. K., & Mohanty, M. N. (2022). Big data classification with IoT-based application for e-health care. Cognitive Big Data Intelligence with a Metaheuristic Approach, 147–172. https://doi.org/10.1016/B978-0-323-85117-6.00014-5Mohseni-Dargah, M., Falahati, Z., Dabirmanesh, B., Nasrollahi, P., & Khajeh, K. (2022). Machine learning in surface plasmon resonance for environmental monitoring. In Artificial Intelligence and Data Science in Environmental Sensing (pp. 269–298). Academic Press. https://doi.org/10.1016/B978-0-323-90508-4.00012-5Mosley, L. S. D. (2013). A balanced approach to the multi-class imbalance problem. In ProQuest Dissertations and Theses.Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of Green-Red Vegetation Index for remote sensing of vegetation phenology. Remote Sensing, 2(10), 2369–2387. https://doi.org/10.3390/rs2102369Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. In ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2010.11.001Müller, A. C., & Guido, S. (2016). Introduction to Machine Learning with Python: a guide for data scientists. In Journal of Chemical Information and Modeling. https://doi.org/10.1017/CBO9781107415324.004Mundt, C. C. (2019). The Study of Plant Disease Epidemics. HortScience, 44(7), 2065b – 2065. https://doi.org/10.21273/hortsci.44.7.2065bNeupane, K., & Baysal-Gurel, F. (2021). Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: A review. In Remote Sensing (Vol. 13, Issue 19, p. 3841). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs13193841Nieto, L. E. (1988). La Madurez Prematura de la Papa Causada por Verticillium spp. en Colombia. Revista ICA, 4, 334–340.Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., & Barbano, P. E. (2005). Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing. https://doi.org/10.1109/TIP.2005.852470Oerke, E. C. (2020). Remote Sensing of Diseases. Annual Review of Phytopathology, 58, 225–252. https://doi.org/10.1146/annurev-phyto-010820-012832Oerke, E. C., Mahlein, A. K., & Steiner, U. (2014). Proximal sensing of plant diseases. In Detection and Diagnostics of Plant Pathogens (pp. 55–68). Springer Netherlands. https://doi.org/10.1007/978-94-017-9020-8_4Pandala, S. R. (2022). lazypredict. Python Software Foundation. https://pypi.org/project/lazypredict/Patrick, A., Pelham, S., Culbreath, A., Corely Holbrook, C., De Godoy, I. J., & Li, C. (2017). High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging. IEEE Instrumentation and Measurement Magazine, 20(3), 4–12. https://doi.org/10.1109/MIM.2017.7951684Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.htmlPourazar, H., Samadzadegan, F., Dadrass Javan, F., Giacomo, R., David, G., Gilbertson, J. K., Forum, P. O., Bouroubi, Y., Bugnet, P., Nguyen-xuan, T., Gosselin, C., Bélec, C., Longchamps, L., Vigneault, P., Ji, S., Zhang, C., Xu, A., Shi, Y., Duan, Y., … Gore, M. A. (2017). Pest Detection on UAV Imagery using a Deep Convolutional Neural Network. Remote Sensing, 52(19), 17–31. https://doi.org/10.3390/rs11192209Powelson, M. L., & Rowe, R. C. (1993). Biology and management of early dying of potatoes. In Annual Review of Phytopathology (Vol. 31, pp. 111–126). Annual Reviews Inc. https://doi.org/10.1146/annurev.py.31.090193.000551Puletti, N., Perria, R., & Storchi, P. (2014). Unsupervised classification of very high remotely sensed images for grapevine rows detection. European Journal of Remote Sensing, 47(1), 45–54. https://doi.org/10.5721/EuJRS20144704Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126. https://doi.org/10.1016/0034-4257(94)90134-1Rahman, H. ur, Jabbar Ch, N., Manzoor, S., Najeeb, F., Siddique, M. Y., & Khan, R. A. (2017). A comparative analysis of machine learning approaches for plant disease identification. Advancements in Life Sciences, 4(4), 120–126.Ramegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. In Journal of Plant Physiology (Vol. 176, pp. 47–54). Urban und Fischer Verlag GmbH und Co. KG. https://doi.org/10.1016/j.jplph.2014.11.008Ramesh Reddy, D., Naga Santhosh, K., & Kodali, P. (2022). Convolutional Neural Networks for the Intuitive Identification of Plant Diseases. 5th International Conference on Inventive Computation Technologies, ICICT 2022 - Proceedings, 10, 941. https://doi.org/10.1109/ICICT54344.2022.9850695Ramirez-Gil, J., Navas, J., & Gómez, S. (2019). Epidemiología e importancia económica de una alteración de origen desconocido en papa en la sabana occidente de Cundinamarca. XXXIV CONGRESO COLOMBIANO DE FITOPOPATOLOGIA Y CIENCIAS AFINES MEMORIAS, 205–205.Ramirez Gil, J., Garcia, C., Navas, J., Leon, J., & Gómez, S. (2019). Implicaciones epidemológicas y económicas de Verticillium sp., en una región productora de papa en Cundinamarca. XXXIV CONGRESO COLOMBIANO DE FITOPOPATOLOGIA Y CIENCIAS AFINES MEMORIAS, 206–207.Raymundo, R., Asseng, S., Prassad, R., Kleinwechter, U., Concha, J., Condori, B., Bowen, W., Wolf, J., Olesen, J. E., Dong, Q., Zotarelli, L., Gastelo, M., Alva, A., Travasso, M., Quiroz, R., Arora, V., Graham, W., & Porter, C. (2017). Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Research, 202, 57–76. https://doi.org/10.1016/j.fcr.2016.04.012Ren, Y., Zhang, L., & Suganthan, P. N. (2016). Ensemble Classification and Regression-Recent Developments, Applications and Future Directions [Review Article]. In IEEE Computational Intelligence Magazine (Vol. 11, Issue 1, pp. 41–53). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/MCI.2015.2471235Rodríguez, J., Lizarazo, I., Prieto, F., & Angulo-Morales, V. (2021). Assessment of potato late blight from UAV-based multispectral imagery. Computers and Electronics in Agriculture, 184, 106061. https://doi.org/10.1016/j.compag.2021.106061Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS proceeding. Third Earth Reserves Technology Satellite Symposium, Greenbelt: NASA SP-351, 30103017, 317. https://ui.adsabs.harvard.edu/abs/1974NASSP.351..309R/abstractRowe, R. C., & Powelson, M. L. (2002). Potato early dying: Management challenges in a changing production environment. In Plant Disease (Vol. 86, Issue 11, pp. 1184–1193). The American Phytopathological Society. https://doi.org/10.1094/PDIS.2002.86.11.1184Salamí, E., Barrado, C., & Pastor, E. (2014). UAV flight experiments applied to the remote sensing of vegetated areas. In Remote Sensing (Vol. 6, Issue 11, pp. 11051–11081). MDPI AG. https://doi.org/10.3390/rs61111051Sami, K., KC, K., John, F., Scott, S., & Erdal, O. (2020). Remote Sensing in Agriculture ( Challenges and Opportunities ). Remote Sensing, 10, 83–87.Sarić, R., Nguyen, V. D., Burge, T., Berkowitz, O., Trtílek, M., Whelan, J., Lewsey, M. G., & Čustović, E. (2022). Applications of hyperspectral imaging in plant phenotyping. In Trends in Plant Science (Vol. 27, Issue 3, pp. 301–315). Elsevier Current Trends. https://doi.org/10.1016/j.tplants.2021.12.003Sarkar, S. K., Das, J., Ehsani, R., & Kumar, V. (2016). Towards autonomous phytopathology: Outcomes and challenges of citrus greening disease detection through close-range remote sensing. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 5143–5148. https://doi.org/10.1109/ICRA.2016.7487719Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047Seetha, M., Muralikrishna, Deekshatulu, B. L., Malleswari, B. L., Nagaratna, & Hegde, P. (2008). Artificial Neural Networks and Other Methods of Image Classification. Theoretical and Applied Information TechnologySegarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 1–18. https://doi.org/10.3390/agronomy10050641Shammi, S., Sohel, F., Diepeveen, D., Zander, S., & Jones, M. G. K. (2022). A survey of image-based computational learning techniques for frost detection in plants. In Information Processing in Agriculture. Elsevier. https://doi.org/10.1016/j.inpa.2022.02.003Shattock, R. (2002). Compendium of Potato Diseases, Second Edition. W.R. Stevenson. Plant Pathology, 51(4), 520–520. https://doi.org/10.1046/j.1365-3059.2002.06934.xShi, Y., Han, L., Kleerekoper, A., Chang, S., & Hu, T. (2022). Novel CropdocNet Model for Automated Potato Late Blight Disease Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery. Remote Sensing, 14(2), 396. https://doi.org/10.3390/rs14020396Shin, M. Y., Gonzalez Viejo, C., Tongson, E., Wiechel, T., Taylor, P. W. J., & Fuentes, S. (2023). Early detection of Verticillium wilt of potatoes using near-infrared spectroscopy and machine learning modeling. Computers and Electronics in Agriculture, 204, 107567. https://doi.org/10.1016/J.COMPAG.2022.107567Shruthi, U., Nagaveni, V., & Raghavendra, B. K. (2019). A Review on Machine Learning Classification Techniques for Plant Disease Detection. 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, 281–284. https://doi.org/10.1109/ICACCS.2019.8728415Simko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology, 102(4), 381–389. https://doi.org/10.1094/PHYTO-07-11-0216Singh, A., & Kaur, H. (2021). Potato plant leaves disease detection and classification using machine learning methodologies. IOP Conference Series: Materials Science and Engineering, 1022(1). https://doi.org/10.1088/1757-899X/1022/1/012121Singh, V., Sharma, N., & Singh, S. (2020). A review of imaging techniques for plant disease detection. In Artificial Intelligence in Agriculture (Vol. 4, pp. 229–242). KeAi Communications Co. https://doi.org/10.1016/j.aiia.2020.10.002Stehman, S. V., & Foody, G. M. (2008). Accuracy Assessment. In The SAGE Handbook of Remote Sensing. https://doi.org/10.4135/9780857021052.n21Stevens, A., & Ramirez Lopez, L. (2014). An introduction to the prospectr package. In R Package Vignette, Report No.: R Package Version 0.1 (Vol. 3, Issue August 2013, pp. 1–22). https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr.htmlStevenson, W., Loria, R., Franc, G., & Weingartner, D. (2001). Compendium of Potato Diseases, Second Edition. Phytopathological Society. https://doi.org/10.1046/j.1365-3059.2002.06934.xSu, J., Yi, D., Coombes, M., Liu, C., Zhai, X., McDonald-Maier, K., & Chen, W. H. (2022). Spectral analysis and mapping of blackgrass weed by leveraging machine learning and UAV multispectral imagery. Computers and Electronics in Agriculture, 192. https://doi.org/10.1016/j.compag.2021.106621Sugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya, Y., Hirafuji, M., & Nuske, S. (2016). Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering. https://doi.org/10.1016/j.biosystemseng.2016.04.010Sun, W., & Du, Q. (2019). Hyperspectral band selection: A review. In IEEE Geoscience and Remote Sensing Magazine (Vol. 7, Issue 2, pp. 118–139). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/MGRS.2019.2911100Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32–43. https://doi.org/10.1111/nph.12797Tetila, E. C., Brandoli Machado, B., Belete, N. A. D. S., Guimaraes, D. A., & Pistori, H. (2017). Identification of Soybean Foliar Diseases Using Unmanned Aerial Vehicle Images. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2017.2743715Thai, L. H., Hai, T. S., & Thuy, N. T. (2012). Image Classification using Support Vector Machine and Artificial Neural Network. International Journal of Information Technology and Computer Science. https://doi.org/10.5815/ijitcs.2012.05.05Tripathi, K., Vyas, R. G., & Gupta, A. K. (2019). Document Classification Using Artificial Neural Network. Asian Journal of Computer Science and Technology, 8(2), 55–58.Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information (Switzerland), 10(11). https://doi.org/10.3390/info10110349van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu, T., & the scikit-image contributors. (2014). scikit-image: image processing in {P}ython. PeerJ, 2, e453. https://doi.org/10.7717/peerj.453Vishnoi, V. K., Kumar, K., & Kumar, B. (2021). Plant disease detection using computational intelligence and image processing. In Journal of Plant Diseases and Protection (Vol. 128, Issue 1, pp. 19–53). Springer. https://doi.org/10.1007/s41348-020-00368-0Wan, L., Li, Y., Cen, H., Zhu, J., Yin, W., Wu, W., Zhu, H., Sun, D., Zhou, W., & He, Y. (2018). Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sensing, 10(9), 1484. https://doi.org/10.3390/rs10091484Wang, C. ling, Shen, S. he, Zhang, S. yu, Li, Q. zhen, & Yao, Y. bi. (2015). Adaptation of potato production to climate change by optimizing sowing date in the Loess Plateau of central Gansu, China. Journal of Integrative Agriculture, 14(2), 398–409. https://doi.org/10.1016/S2095-3119(14)60783-8Wang, J., Lu, S., Wang, S. H., & Zhang, Y. D. (2021). A review on extreme learning machine. Multimedia Tools and Applications, 1–50. https://doi.org/10.1007/s11042-021-11007-7Wei, X., Johnson, M. A., Langston, D. B., Mehl, H. L., & Li, S. (2021). Identifying optimal wavelengths as disease signatures using hyperspectral sensor and machine learning. Remote Sensing, 13(14), 2833. https://doi.org/10.3390/rs13142833Xu, M., Watanachaturaporn, P., Varshney, P. K., & Arora, M. K. (2005). Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 97(3), 322–336. https://doi.org/10.1016/j.rse.2005.05.008Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. In Journal of Sensors. Hindawi Limited. https://doi.org/10.1155/2017/1353691Yan, Z., Ma, L., He, W., Zhou, L., Lu, H., Liu, G., & Huang, G. (2022). Comparing Object-Based and Pixel-Based Methods for Local Climate Zones Mapping with Multi-Source Data. Remote Sensing, 14(15). https://doi.org/10.3390/rs14153744Yang, C. M., Cheng, C. H., & Chen, R. K. (2007). Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Science. https://doi.org/10.2135/cropsci2006.05.0335Yeom, J., Jung, J., Chang, A., Ashapure, A., Maeda, M., Maeda, A., & Landivar, J. (2019). Comparison of vegetation indices derived from UAV data for differentiation of tillage effects in agriculture. Remote Sensing, 11(13). https://doi.org/10.3390/rs11131548Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. In Precision Agriculture (Vol. 13, Issue 6, pp. 693–712). Springer. https://doi.org/10.1007/s11119-012-9274-5Zhang, H., Xu, F., Wu, Y., Hu, H. hai, & Dai, X. feng. (2017). Progress of potato staple food research and industry development in China. In Journal of Integrative Agriculture (Vol. 16, Issue 12, pp. 2924–2932). Elsevier. https://doi.org/10.1016/S2095-3119(17)61736-2Zheng, H., Li, W., Jiang, J., Liu, Y., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Zhang, Y., & Yao, X. (2018). A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing, 10(12). https://doi.org/10.3390/rs10122026Zhou, X., Huang, W., Zhang, J., Kong, W., Casa, R., & Huang, Y. (2019). A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. International Journal of Applied Earth Observation and Geoinformation, 76, 128–142. https://doi.org/https://doi.org/10.1016/j.jag.2018.10.012Análisis de datosMadurezdata analysismaturityVerticilliumMétodos de clasificaciónSensores remotosAprendizaje automáticoBandas espectrales informativasDetección indirecta de enfermedadesDetección indirectaClassification methodsRemote sensingMachine learningInformative spectral bandsIndirect detectionEstudio de Verticillium y de una patología de origen desconocido en papa: aproximación desde la detección, epidemiología, manejo e importancia económicaFEDEPAPA - FNFPEstudiantesInvestigadoresPúblico generalORIGINALEvaluación de técnicas de teledetección para la identificación y cuantificación de la madurez temprana en cultivos de papa a partir de datos espectrales.pdfEvaluación de técnicas de teledetección para la identificación y cuantificación de la madurez temprana en cultivos de papa a partir de datos espectrales.pdfTesis de Maestría en Geomáticaapplication/pdf4668542https://repositorio.unal.edu.co/bitstream/unal/84484/2/Evaluaci%c3%b3n%20de%20t%c3%a9cnicas%20de%20teledetecci%c3%b3n%20para%20la%20identificaci%c3%b3n%20y%20cuantificaci%c3%b3n%20de%20la%20madurez%20temprana%20en%20cultivos%20de%20papa%20a%20partir%20de%20datos%20espectrales.pdf24487e8336e94bcab88d4f909943f230MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84484/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAILEvaluación de técnicas de teledetección para la identificación y cuantificación de la madurez temprana en cultivos de papa a partir de datos espectrales.pdf.jpgEvaluación de técnicas de teledetección para la identificación y cuantificación de la madurez temprana en cultivos de papa a partir de datos espectrales.pdf.jpgGenerated Thumbnailimage/jpeg4928https://repositorio.unal.edu.co/bitstream/unal/84484/3/Evaluaci%c3%b3n%20de%20t%c3%a9cnicas%20de%20teledetecci%c3%b3n%20para%20la%20identificaci%c3%b3n%20y%20cuantificaci%c3%b3n%20de%20la%20madurez%20temprana%20en%20cultivos%20de%20papa%20a%20partir%20de%20datos%20espectrales.pdf.jpgd08e7bbab01a23d8a5b951667e90bdf1MD53unal/84484oai:repositorio.unal.edu.co:unal/844842023-08-16 23:03:53.466Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=