Evaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-A

ilustraciones, diagramas, gráficas, tablas

Autores:
Lozano Oviedo, John Jair
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82230
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82230
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
Compuestos heterocíclicos
Química orgánica-Síntesis
Heterocyclic Compounds
Organic compounds-Synthesis
in silico
pirazolopiridinas
microondas
receptor GABA-A
síntesis
5-aminopirazoles
olefinas ricas en electrones
5-aminopyrazoles
Pyrazolopyridine
Electron-rich olefins
Multicomponent
Microwave reaction
GABA-A receptor
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_2dc7796ce2012b14f906b99f0886ab68
oai_identifier_str oai:repositorio.unal.edu.co:unal/82230
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-A
dc.title.translated.eng.fl_str_mv In silico evaluation and microwave-assisted synthesis of heterocyclic compounds with pyrazolopyridinic nucleus as potential allosteric modulators of GABA-A receptors
title Evaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-A
spellingShingle Evaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-A
540 - Química y ciencias afines
Compuestos heterocíclicos
Química orgánica-Síntesis
Heterocyclic Compounds
Organic compounds-Synthesis
in silico
pirazolopiridinas
microondas
receptor GABA-A
síntesis
5-aminopirazoles
olefinas ricas en electrones
5-aminopyrazoles
Pyrazolopyridine
Electron-rich olefins
Multicomponent
Microwave reaction
GABA-A receptor
title_short Evaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-A
title_full Evaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-A
title_fullStr Evaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-A
title_full_unstemmed Evaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-A
title_sort Evaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-A
dc.creator.fl_str_mv Lozano Oviedo, John Jair
dc.contributor.advisor.none.fl_str_mv Cuervo Prado, Paola Andrea
dc.contributor.author.none.fl_str_mv Lozano Oviedo, John Jair
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach)
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
Compuestos heterocíclicos
Química orgánica-Síntesis
Heterocyclic Compounds
Organic compounds-Synthesis
in silico
pirazolopiridinas
microondas
receptor GABA-A
síntesis
5-aminopirazoles
olefinas ricas en electrones
5-aminopyrazoles
Pyrazolopyridine
Electron-rich olefins
Multicomponent
Microwave reaction
GABA-A receptor
dc.subject.other.spa.fl_str_mv Compuestos heterocíclicos
Química orgánica-Síntesis
dc.subject.other.eng.fl_str_mv Heterocyclic Compounds
Organic compounds-Synthesis
dc.subject.proposal.spa.fl_str_mv in silico
pirazolopiridinas
microondas
receptor GABA-A
síntesis
5-aminopirazoles
olefinas ricas en electrones
dc.subject.proposal.eng.fl_str_mv 5-aminopyrazoles
Pyrazolopyridine
Electron-rich olefins
Multicomponent
Microwave reaction
GABA-A receptor
description ilustraciones, diagramas, gráficas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-31T20:56:47Z
dc.date.available.none.fl_str_mv 2022-08-31T20:56:47Z
dc.date.issued.none.fl_str_mv 2022-08-28
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82230
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82230
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Olsen, R. W.; Sieghart, W. International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric Acid A Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update. Pharmacol. Rev. 2008, 60 (3), 243–260. https://doi.org/10.1124/pr.108.00505.
Medel, J.; Cortijo, L.; Gasca, E.; Tepetlan, P.; Pérez, A.; Ramos, F. Receptor GABAA: Implicaciones Farmacológicas a Nivel Central. Arch. neurociencias (México, D.F.) 2011, 16 (1), 40–45.
Phulera, S.; Zhu, H.; Yu, J.; Claxton, D. P.; Yoder, N.; Yoshioka, C.; Gouaux, E. Cryo-EM Structure of the Benzodiazepine-Sensitive Α1β1γ2S Tri-Heteromeric GABAA Receptor in Complex with GABA. Elife 2018, 7. https://doi.org/10.7554/eLife.39383.
Cedillo Ildefonso, B. Generalidades de La Neurobiología de La Ansiedad. Rev. Electrónica Psicol. Iztacala 2017, 20 (1), 239.
Botto, A.; Acuña, J.; Jiménez, J. P. La Depresión Como Un Diagnóstico Complejo: Implicancias Para El Desarrollo de Recomendaciones Clínicas. Rev. Med. Chil. 2014, 142 (10), 1297–1305. https://doi.org/10.4067/S0034-98872014001000010.
Sullivan, P. F.; Neale, M. C.; Kendler, K. S. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. Am. J. Psychiatry 2000, 157 (10), 1552–1562. https://doi.org/10.1176/APPI.AJP.157.10.1552.
Caspi, A.; Sugden, K.; Moffitt, T. E.; Taylor, A.; Craig, I. W.; Harrington, H. L.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science (80-. ). 2003, 301 (5631), 386–389. https://doi.org/10.1126/SCIENCE.1083968.
Diaz Villa, B. A.; González González, C. Actualidades En Neurobiología de La Depresión. Rev Lationam Psiquitría 2012, 11 (3), 106–115.
Heim, C.; Nemeroff, C. B. The Role of Childhood Trauma in the Neurobiology of Mood and Anxiety Disorders: Preclinical and Clinical Studies. Biol. Psychiatry 2001, 49 (12), 1023–1039. https://doi.org/10.1016/S0006-3223(01)01157-X.
Gavernet, L. Introducción a La Química Medicinal; Editorial de la Universidad Nacional de La Plata (EDULP): Ciudad de la plata, 2021. https://doi.org/10.35537/10915/114312.
Medina-Franco, J. L.; Fernán-Dezde Gortari, E.; Jesús Naveja, J. Avances En El Diseño de Fármacos Asistido Por Computadora. Educ. Química 2015, 26 (3), 180–186. https://doi.org/10.1016/J.EQ.2015.05.002.
Saldívar-González, F.; Prieto-Martínez, F. D.; Medina-Franco, J. L. Descubrimiento y Desarrollo de Fármacos: Un Enfoque Computacional. Educ. Química 2017, 28 (1), 51–58. https://doi.org/10.1016/J.EQ.2016.06.002.
Rojas, W. M.; Oviedo, K. N. Acoplamiento Inverso Y Mapeo De Farmacóforo Como Herramientas Para Encontrar Nuevos Blancos Farmacológicos De Compuestos Naturales. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2012, 36 (140), 411–420.
Claudio Viegas-Junior; Eliezer J. Barreiro; Carlos Alberto Manssour Fraga. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14 (17), 1829–1852. https://doi.org/10.2174/092986707781058805.
Umar, T.; Shalini, S.; Raza, M. K.; Gusain, S.; Kumar, J.; Seth, P.; Tiwari, M.; Hoda, N. A Multifunctional Therapeutic Approach: Synthesis, Biological Evaluation, Crystal Structure and Molecular Docking of Diversified 1H-Pyrazolo[3,4-b]Pyridine Derivatives against Alzheimer’s Disease. Eur. J. Med. Chem. 2019, 175, 2–19. https://doi.org/10.1016/j.ejmech.2019.04.038.
Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman. Review: Biologically Active Pyrazole Derivatives. New J. Chem. 2016, 41 (1), 16–41. https://doi.org/10.1039/c6nj03181a.
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules. MDPI AG 2018. https://doi.org/10.3390/molecules23010134.
Tripathi, A. C.; Upadhyay, S.; Paliwal, S.; Saraf, S. K. Derivatives of 4,5-Dihydro (1H) Pyrazoles as Possible MAO-A Inhibitors in Depression and Anxiety Disorders: Synthesis, Biological Evaluation and Molecular Modeling Studies. Med. Chem. Res. 2018, 27 (5), 1485–1503. https://doi.org/10.1007/s00044-018-2167-z.
Faisal, M.; Saeed, A.; Hussain, S.; Dar, P.; Larik, F. A. Recent Developments in Synthetic Chemistry and Biological Activities of Pyrazole Derivatives. J. Chem. Sci. 2019, 131 (8). https://doi.org/10.1007/s12039-019-1646-1.
Yadav, J. S.; Purushothama Rao, P.; Sreenu, D.; Rao, R. S.; Naveen Kumar, V.; Nagaiah, K.; Prasad, A. R. Sulfamic Acid: An Efficient, Cost-Effective and Recyclable Solid Acid Catalyst for the Friedlander Quinoline Synthesis. Tetrahedron Lett. 2005, 46 (42), 7249–7253. https://doi.org/10.1016/j.tetlet.2005.08.042.
Gervasini, G.; Carrillo, J.; Benitez, J. Importancia Del Citocromo P-450 En Terapéutica Farmacológica. 2022.
Ritchie, T. J.; Ertl, P.; Lewis, R. The Graphical Representation of ADME-Related Molecule Properties for Medicinal Chemists. Drug Discov. Today 2011, 16 (1–2), 65–72. https://doi.org/10.1016/j.drudis.2010.11.002.
Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I. H.; Frearson, J.; Wyatt, P. G. Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3 (3), 435–444. https://doi.org/10.1002/cmdc.200700139.
Smith, G. B.; Olsen, R. W. Functional Domains of GABAA Receptors. Trends Pharmacol. Sci. 1995, 16 (5), 162–168. https://doi.org/10.1016/S0165-6147(00)89009-4.
Nitro bioisosteres. | News | Cambridge MedChem Consulting https://www.cambridgemedchemconsulting.com/news/index_files/e257c4796cad57a277e5b735ea47bf96-136.html (accessed May 4, 2022).
Hügel, H. Microwave Multicomponent Synthesis. Molecules 2009, 14 (12), 4936–4972. https://doi.org/10.3390/molecules14124936.
Alegre, J. V.; Marqués, E.; Herrera, R. P. Introduction. In Multicomponent Reactions; John Wiley & Sons, Inc: Hoboken, NJ, 2015; pp 1–15. https://doi.org/10.1002/9781118863992.ch1.
Sharma, A.; Appukkuttan, P.; Van der Eycken, E. Microwave-Assisted Synthesis of Medium-Sized Heterocycles. Chem. Commun. 2012, 48 (11), 1623–1637. https://doi.org/10.1039/c1cc15238f.
Alcázar, J.; de M. Muñoz, J. Microwave-Assisted Continuous Flow Organic Synthesis (MACOS). In Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Vol. 2, pp 1173–1204. https://doi.org/10.1002/9783527651313.ch25.
Perreux, L.; Loupy, A. Nonthermal Effects of Microwaves in Organic Synthesis. Microwaves Org. Synth. Second Ed. 2008, 1, 134–218. https://doi.org/10.1002/9783527619559.ch4.
Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley Blackwell, 2006; Vol. 25. https://doi.org/10.1002/3527606556.
Parada, C.; Morán, E. Microwave-Assisted Synthesis and Magnetic Study of Nanosized Ni/NiO Materials. Chem. Mater. 2006, 18 (11), 2719–2725. https://doi.org/10.1021/cm0511365.
Leadbeater, N. E. Organic Synthesis Using Microwave Heating. In Comprehensive Organic Synthesis: Second Edition; Elsevier Ltd., 2014; Vol. 9, pp 234–286. https://doi.org/10.1016/B978-0-08-097742-3.00920-4.
Kappe, C. O.; Pieber, B.; Dallinger, D. Microwave Effects in Organic Synthesis: Myth or Reality? Angew. Chemie Int. Ed. 2013, 52 (4), 1088–1094. https://doi.org/10.1002/anie.201204103.
Perreux, L.; Loupy, A.; Petit, A. Nonthermal Effects of Microwaves in Organic Synthesis. In Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Vol. 1, pp 127–207. https://doi.org/10.1002/9783527651313.ch4.
Corey, E. . (harvard university); Li, J. Name Reactions in Heterocyclic Chemistry; Li, J., Ed.; 2004.
paquette, L. Fundamentos de Química Heterocíclica; Universidad estatal de Ohio, Ed.; Limusa Noriega, 2000.
Lager, E.; Nilsson, J.; Østergaard Nielsen, E.; Nielsen, M.; Liljefors, T.; Sterner, O. Affinity of 3-Acyl Substituted 4-Quinolones at the Benzodiazepine Site of GABAA Receptors. Bioorg. Med. Chem. 2008, 16 (14), 6936–6948. https://doi.org/10.1016/j.bmc.2008.05.049.
Shi, F.; Zhang, J.; Tu, S.; Jia, R.; Zhang, Y.; Jiang, B.; Jiang, H. An Efficient Synthesis of New Class of Pyrazolo[3,4- b ]Pyridine-6-One Derivatives by a Novel Cascade Reaction. J. Heterocycl. Chem. 2007, 44 (5), 1013–1017. https://doi.org/10.1002/jhet.5570440506.
Chen, Z.; Shi, Y.; Shen, Q.; Xu, H.; Zhang, F. Facile and Efficient Synthesis of Pyrazoloisoquinoline and Pyrazolopyridine Derivatives Using Recoverable Carbonaceous Material as Solid Acid Catalyst. Tetrahedron Lett. 2015, 56 (33), 4749–4752. https://doi.org/10.1016/j.tetlet.2015.06.044.
Shi, C.-L.; Chen, H.; Shi, D.-Q. An Efficient One-Pot Synthesis of Pyrazolo[3,4-b]Pyridinone Derivatives Catalyzed by L-Proline. J. Heterocycl. Chem. 2011, 48 (2), 351–354. https://doi.org/10.1002/jhet.573.
Orlov, V. D.; Kiroga, K.; Kolos, N. N. Synthesis of Aromatic Pyrazolo[4,5-b]Pyridine Derivatives. Chem. Heterocycl. Compd. 1988 239 1987, 23 (9), 997–1001. https://doi.org/10.1007/BF00475369.
Daniela Ahumada, C.; Segovia-Paccini, A.; Navas, G. R. S. Los 5-Aminopirazoles Como Bloque de Construcción de Compuestos Heterocíclicos Fusionados. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2019, 43 (168), 531–538. https://doi.org/10.18257/RACCEFYN.762.
Gálvez, J.; Quiroga, J.; Insuasty, B.; Abonia, R. Microwave-Assisted and Iodine Mediated Synthesis of 5-n-Alkyl-Cycloalkane[d]-Pyrazolo[3,4-b]Pyridines from 5-Aminopyrazoles and Cyclic Ketones. Tetrahedron Lett. 2014, 55 (12), 1998–2002. https://doi.org/10.1016/j.tetlet.2014.02.015.
Chu, X. Q.; Wang, S. Y.; Ji, S. J. Recyclable NaHSO<inf>4</Inf> Catalyzed Alkylation of Tert-Enamides with Indoles or Amines in Water: Facile Construction of Pharmaceutically Analogous Bis-Alkaloid Scaffolds. RSC Adv. 2013, 3 (22), 8380–8387. https://doi.org/10.1039/c3ra40833g.
Ziyaei Halimehjani, A.; Goudarzi, M.; Lotfi Nosood, Y. Alkylation of Aromatic Amines by Tert-Enamides: Direct Access to Protected Aminals. Synth. Commun. 2017, 47 (21), 2022–2029. https://doi.org/10.1080/00397911.2017.1363241.
Zaytsev, V. P.; Zubkov, F. I.; Toze, F. A. A.; Orlova, D. N.; Eliseeva, M. N.; Grudinin, D. G.; Nikitina, E. V.; Varlamov, A. V. 5-Amido- and 5-Amino-Substituted Epoxyisoindolo[2,1-a]Tetrahydroquinolines and 10-Carboxylic Acids: Their Synthesis and Reactivity. J. Heterocycl. Chem. 2013, 50 (SUPPL.1). https://doi.org/10.1002/jhet.1024.
Khadem, S.; Udachin, K. A.; Enright, G. D.; Prakesch, M.; Arya, P. One-Pot Construction of Isoindolo[2,1-a]Quinoline System. Tetrahedron Lett. 2009, 50 (48), 6661–6664. https://doi.org/10.1016/j.tetlet.2009.09.075.
Dagousset, G.; Drouet, F.; Masson, G.; Zhu, J. Chiral Brønsted Acid-Catalyzed Enantioselective Multicomponent Mannich Reaction: Synthesis of Anti-1,3-Diamines Using Enecarbamates as Nucleophiles. Org. Lett. 2009, 11 (23), 5546–5549. https://doi.org/10.1021/ol9023985
Terada, M.; Sorimachi, K. Enantioselective Friedel-Crafts Reaction of Electron-Rich Alkenes Catalyzed by Chiral Brønsted Acid. J. Am. Chem. Soc. 2007, 129 (2), 292–293. https://doi.org/10.1021/ja0678166.
Halimehjani, A. Z.; Dadras, A.; Ramezani, M.; Shamiri, E. V.; Hooshmand, S. E.; Hashemi, M. M. Synthesis of Dithiocarbamates by Markovnikov Addition Reaction in PEG and Their Application in Amidoalkylation of Naphthols and Indoles. J. Braz. Chem. Soc. 2015, 26 (7), 1500–1508. https://doi.org/10.5935/0103-5053.20150119.
Halimehjani, A.; Goudarzi, M.; Nosood, Y. Alkylation of Aromatic Amines by Tert-Enamides: Direct Access to Protected Aminals. Synth. Commun. 2017, 47 (21), 2022–2029. https://doi.org/10.1080/00397911.2017.1363241.
Tamaddon, F.; Khoobi, M.; Keshavarz, E. (P2O5/SiO2): A Useful Heterogeneous Alternative for the Ritter Reaction. Tetrahedron Lett. 2007, 48 (21), 3643–3646. https://doi.org/10.1016/J.TETLET.2007.03.134.
Reddy, P. N.; Reddy, B. V. S.; Padmaja, P. Current Organic Synthesis Current Organic Synthesis SCIENCE BENTHAM Send Orders for Reprints to Reprints@benthamscience.Ae Emerging Role of Green Oxidant I 2 /DMSO in Organic Synthesis. Curr. Org. Synth. 2018, 15, 815–838. https://doi.org/10.2174/1570179415666180530121312.
Becerra-Rivas, C.; Cuervo-Prado, P.; Orozco-Lopez, F. Efficient Catalyst-Free Tricomponent Synthesis of New Spiro[Cyclohexane-1,4′-Pyrazolo[3,4- e ][1, 4]Thiazepin]-7′(6′ H )-Ones. Synth. Commun. 2019, 49 (3), 367–376. https://doi.org/10.1080/00397911.2018.1554143.
Breugst, M.; von der Heiden, D. Mechanisms in Iodine Catalysis. Chem. - A Eur. J. 2018, 24 (37), 9187–9199. https://doi.org/10.1002/chem.201706136.
Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. AdmetSAR 2.0: Web-Service for Prediction and Optimization of Chemical ADMET Properties. Bioinformatics 2019, 35 (6), 1067–1069. https://doi.org/10.1093/BIOINFORMATICS/BTY70
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7. https://doi.org/10.1038/SREP42717.
Morris, G. M.; Ruth, H.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30 (16), 2785. https://doi.org/10.1002/JCC.21256.
Allen, W. J.; Balius, T. E.; Mukherjee, S.; Brozell, S. R.; Moustakas, D. T.; Lang, P. T.; Case, D. A.; Kuntz, I. D.; Rizzo, R. C. DOCK 6: Impact of New Features and Current Docking Performance. J. Comput. Chem. 2015, 36 (15), 1132–1156. https://doi.org/10.1002/JCC.23905.
LADIN, J. J. H.; Fabian Orozco López. DISEÑO, SÍNTESIS Y CARACTERIZACIÓN DE COMPUESTOS ESPIROTIAZAHETEROCÍCLICOS CON POTENCIAL ACTIVIDAD SOBRE SISTEMA NERVIOSO CENTRAL (SNC), Universidad Nacional de Colombia, 2019.
Bamoniri, A.; Mirjalili, B. B. F.; Jafari, A. A.; Abasaltian, F. Synthesis of 1,3,5-Tri-Substituted Pyrazoles Promoted by P2O5.SiO2. Iran. J. Catal. 2012, 2 (2), 75–78. https://doi.org/10.31857/s042485702109005x.
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
Derechos reservados al autor, 2022
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 143 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82230/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82230/2/1033757076.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82230/3/1033757076.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
ac9c8bc69302d26ea86130fb6f95eff3
74cb48a02a49e263ade7a74db7481b5d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089452120702976
spelling Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2022http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cuervo Prado, Paola Andrea572a1d198c5331868fc5b4426559c6e0Lozano Oviedo, John Jair115604e8b040cf937c4b9b8dd8535260Grupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach)2022-08-31T20:56:47Z2022-08-31T20:56:47Z2022-08-28https://repositorio.unal.edu.co/handle/unal/82230Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, gráficas, tablasEl presente estudio pretende aportar nuevas metodologías para la síntesis de núcleos pirazolopiridínicos, tetrahidropirazoloquinolinicos y tetrahidropirazoloisoquinolinicos, por medio de estrategias multicomponentes que involucran 5-aminopirazoles, cetonas cíclicas y olefinas ricas en electrones, empleando calentamiento convencional e inducido por microondas, en donde la exploración sintética condujo a una metodología novedosa que permite la obtención regioselectiva de las estructuras isómericas estudiadas. Por otra parte, esta investigación busca aportar moléculas bioactivas que puedan emplearse para el tratamiento de algunos trastornos del sistema nervioso central que involucran al receptor GABA-A, por lo tanto, se realizó una evaluación in silico de los prototipos propuestos que incluye una indagación de las propiedades farmacocinéticas, farmacodinámicas y afinidad por el receptor, exhibiendo un comportamiento promisorio como potenciales moduladores alostéricos del receptor GABA-A.The present study aims to provide new methodologies for the synthesis of pyrazolopyridine, tetrahydropyrazoloquinoline and tetrahydropyrazoloisoquinoline nuclei, through multicomponent strategies involving 5-aminopyrazoles, cyclic ketones and electron-rich olefins, using conventional and microwave-induced heating, where synthetic exploration led to a novel methodology that allows regioselective obtaining of the isomeric structures studied. On the other hand, this research seeks to provide bioactive molecules that can be used for the treatment of some disorders of the central nervous system that involve the GABA-A receptor, therefore, an in silico evaluation of the proposed prototypes was carried out, which includes an investigation of pharmacokinetic and pharmacodynamic properties and affinity for the receptor, exhibiting promising behavior as potential allosteric modulators of the GABA-A receptorMaestríaMagíster en Ciencias - Química143 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afinesCompuestos heterocíclicosQuímica orgánica-SíntesisHeterocyclic CompoundsOrganic compounds-Synthesisin silicopirazolopiridinasmicroondasreceptor GABA-Asíntesis5-aminopirazolesolefinas ricas en electrones5-aminopyrazolesPyrazolopyridineElectron-rich olefinsMulticomponentMicrowave reactionGABA-A receptorEvaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-AIn silico evaluation and microwave-assisted synthesis of heterocyclic compounds with pyrazolopyridinic nucleus as potential allosteric modulators of GABA-A receptorsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMOlsen, R. W.; Sieghart, W. International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric Acid A Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update. Pharmacol. Rev. 2008, 60 (3), 243–260. https://doi.org/10.1124/pr.108.00505.Medel, J.; Cortijo, L.; Gasca, E.; Tepetlan, P.; Pérez, A.; Ramos, F. Receptor GABAA: Implicaciones Farmacológicas a Nivel Central. Arch. neurociencias (México, D.F.) 2011, 16 (1), 40–45.Phulera, S.; Zhu, H.; Yu, J.; Claxton, D. P.; Yoder, N.; Yoshioka, C.; Gouaux, E. Cryo-EM Structure of the Benzodiazepine-Sensitive Α1β1γ2S Tri-Heteromeric GABAA Receptor in Complex with GABA. Elife 2018, 7. https://doi.org/10.7554/eLife.39383.Cedillo Ildefonso, B. Generalidades de La Neurobiología de La Ansiedad. Rev. Electrónica Psicol. Iztacala 2017, 20 (1), 239.Botto, A.; Acuña, J.; Jiménez, J. P. La Depresión Como Un Diagnóstico Complejo: Implicancias Para El Desarrollo de Recomendaciones Clínicas. Rev. Med. Chil. 2014, 142 (10), 1297–1305. https://doi.org/10.4067/S0034-98872014001000010.Sullivan, P. F.; Neale, M. C.; Kendler, K. S. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. Am. J. Psychiatry 2000, 157 (10), 1552–1562. https://doi.org/10.1176/APPI.AJP.157.10.1552.Caspi, A.; Sugden, K.; Moffitt, T. E.; Taylor, A.; Craig, I. W.; Harrington, H. L.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science (80-. ). 2003, 301 (5631), 386–389. https://doi.org/10.1126/SCIENCE.1083968.Diaz Villa, B. A.; González González, C. Actualidades En Neurobiología de La Depresión. Rev Lationam Psiquitría 2012, 11 (3), 106–115.Heim, C.; Nemeroff, C. B. The Role of Childhood Trauma in the Neurobiology of Mood and Anxiety Disorders: Preclinical and Clinical Studies. Biol. Psychiatry 2001, 49 (12), 1023–1039. https://doi.org/10.1016/S0006-3223(01)01157-X.Gavernet, L. Introducción a La Química Medicinal; Editorial de la Universidad Nacional de La Plata (EDULP): Ciudad de la plata, 2021. https://doi.org/10.35537/10915/114312.Medina-Franco, J. L.; Fernán-Dezde Gortari, E.; Jesús Naveja, J. Avances En El Diseño de Fármacos Asistido Por Computadora. Educ. Química 2015, 26 (3), 180–186. https://doi.org/10.1016/J.EQ.2015.05.002.Saldívar-González, F.; Prieto-Martínez, F. D.; Medina-Franco, J. L. Descubrimiento y Desarrollo de Fármacos: Un Enfoque Computacional. Educ. Química 2017, 28 (1), 51–58. https://doi.org/10.1016/J.EQ.2016.06.002.Rojas, W. M.; Oviedo, K. N. Acoplamiento Inverso Y Mapeo De Farmacóforo Como Herramientas Para Encontrar Nuevos Blancos Farmacológicos De Compuestos Naturales. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2012, 36 (140), 411–420.Claudio Viegas-Junior; Eliezer J. Barreiro; Carlos Alberto Manssour Fraga. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14 (17), 1829–1852. https://doi.org/10.2174/092986707781058805.Umar, T.; Shalini, S.; Raza, M. K.; Gusain, S.; Kumar, J.; Seth, P.; Tiwari, M.; Hoda, N. A Multifunctional Therapeutic Approach: Synthesis, Biological Evaluation, Crystal Structure and Molecular Docking of Diversified 1H-Pyrazolo[3,4-b]Pyridine Derivatives against Alzheimer’s Disease. Eur. J. Med. Chem. 2019, 175, 2–19. https://doi.org/10.1016/j.ejmech.2019.04.038.Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman. Review: Biologically Active Pyrazole Derivatives. New J. Chem. 2016, 41 (1), 16–41. https://doi.org/10.1039/c6nj03181a.Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules. MDPI AG 2018. https://doi.org/10.3390/molecules23010134.Tripathi, A. C.; Upadhyay, S.; Paliwal, S.; Saraf, S. K. Derivatives of 4,5-Dihydro (1H) Pyrazoles as Possible MAO-A Inhibitors in Depression and Anxiety Disorders: Synthesis, Biological Evaluation and Molecular Modeling Studies. Med. Chem. Res. 2018, 27 (5), 1485–1503. https://doi.org/10.1007/s00044-018-2167-z.Faisal, M.; Saeed, A.; Hussain, S.; Dar, P.; Larik, F. A. Recent Developments in Synthetic Chemistry and Biological Activities of Pyrazole Derivatives. J. Chem. Sci. 2019, 131 (8). https://doi.org/10.1007/s12039-019-1646-1.Yadav, J. S.; Purushothama Rao, P.; Sreenu, D.; Rao, R. S.; Naveen Kumar, V.; Nagaiah, K.; Prasad, A. R. Sulfamic Acid: An Efficient, Cost-Effective and Recyclable Solid Acid Catalyst for the Friedlander Quinoline Synthesis. Tetrahedron Lett. 2005, 46 (42), 7249–7253. https://doi.org/10.1016/j.tetlet.2005.08.042.Gervasini, G.; Carrillo, J.; Benitez, J. Importancia Del Citocromo P-450 En Terapéutica Farmacológica. 2022.Ritchie, T. J.; Ertl, P.; Lewis, R. The Graphical Representation of ADME-Related Molecule Properties for Medicinal Chemists. Drug Discov. Today 2011, 16 (1–2), 65–72. https://doi.org/10.1016/j.drudis.2010.11.002.Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I. H.; Frearson, J.; Wyatt, P. G. Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3 (3), 435–444. https://doi.org/10.1002/cmdc.200700139.Smith, G. B.; Olsen, R. W. Functional Domains of GABAA Receptors. Trends Pharmacol. Sci. 1995, 16 (5), 162–168. https://doi.org/10.1016/S0165-6147(00)89009-4.Nitro bioisosteres. | News | Cambridge MedChem Consulting https://www.cambridgemedchemconsulting.com/news/index_files/e257c4796cad57a277e5b735ea47bf96-136.html (accessed May 4, 2022).Hügel, H. Microwave Multicomponent Synthesis. Molecules 2009, 14 (12), 4936–4972. https://doi.org/10.3390/molecules14124936.Alegre, J. V.; Marqués, E.; Herrera, R. P. Introduction. In Multicomponent Reactions; John Wiley & Sons, Inc: Hoboken, NJ, 2015; pp 1–15. https://doi.org/10.1002/9781118863992.ch1.Sharma, A.; Appukkuttan, P.; Van der Eycken, E. Microwave-Assisted Synthesis of Medium-Sized Heterocycles. Chem. Commun. 2012, 48 (11), 1623–1637. https://doi.org/10.1039/c1cc15238f.Alcázar, J.; de M. Muñoz, J. Microwave-Assisted Continuous Flow Organic Synthesis (MACOS). In Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Vol. 2, pp 1173–1204. https://doi.org/10.1002/9783527651313.ch25.Perreux, L.; Loupy, A. Nonthermal Effects of Microwaves in Organic Synthesis. Microwaves Org. Synth. Second Ed. 2008, 1, 134–218. https://doi.org/10.1002/9783527619559.ch4.Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley Blackwell, 2006; Vol. 25. https://doi.org/10.1002/3527606556.Parada, C.; Morán, E. Microwave-Assisted Synthesis and Magnetic Study of Nanosized Ni/NiO Materials. Chem. Mater. 2006, 18 (11), 2719–2725. https://doi.org/10.1021/cm0511365.Leadbeater, N. E. Organic Synthesis Using Microwave Heating. In Comprehensive Organic Synthesis: Second Edition; Elsevier Ltd., 2014; Vol. 9, pp 234–286. https://doi.org/10.1016/B978-0-08-097742-3.00920-4.Kappe, C. O.; Pieber, B.; Dallinger, D. Microwave Effects in Organic Synthesis: Myth or Reality? Angew. Chemie Int. Ed. 2013, 52 (4), 1088–1094. https://doi.org/10.1002/anie.201204103.Perreux, L.; Loupy, A.; Petit, A. Nonthermal Effects of Microwaves in Organic Synthesis. In Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Vol. 1, pp 127–207. https://doi.org/10.1002/9783527651313.ch4.Corey, E. . (harvard university); Li, J. Name Reactions in Heterocyclic Chemistry; Li, J., Ed.; 2004.paquette, L. Fundamentos de Química Heterocíclica; Universidad estatal de Ohio, Ed.; Limusa Noriega, 2000.Lager, E.; Nilsson, J.; Østergaard Nielsen, E.; Nielsen, M.; Liljefors, T.; Sterner, O. Affinity of 3-Acyl Substituted 4-Quinolones at the Benzodiazepine Site of GABAA Receptors. Bioorg. Med. Chem. 2008, 16 (14), 6936–6948. https://doi.org/10.1016/j.bmc.2008.05.049.Shi, F.; Zhang, J.; Tu, S.; Jia, R.; Zhang, Y.; Jiang, B.; Jiang, H. An Efficient Synthesis of New Class of Pyrazolo[3,4- b ]Pyridine-6-One Derivatives by a Novel Cascade Reaction. J. Heterocycl. Chem. 2007, 44 (5), 1013–1017. https://doi.org/10.1002/jhet.5570440506.Chen, Z.; Shi, Y.; Shen, Q.; Xu, H.; Zhang, F. Facile and Efficient Synthesis of Pyrazoloisoquinoline and Pyrazolopyridine Derivatives Using Recoverable Carbonaceous Material as Solid Acid Catalyst. Tetrahedron Lett. 2015, 56 (33), 4749–4752. https://doi.org/10.1016/j.tetlet.2015.06.044.Shi, C.-L.; Chen, H.; Shi, D.-Q. An Efficient One-Pot Synthesis of Pyrazolo[3,4-b]Pyridinone Derivatives Catalyzed by L-Proline. J. Heterocycl. Chem. 2011, 48 (2), 351–354. https://doi.org/10.1002/jhet.573.Orlov, V. D.; Kiroga, K.; Kolos, N. N. Synthesis of Aromatic Pyrazolo[4,5-b]Pyridine Derivatives. Chem. Heterocycl. Compd. 1988 239 1987, 23 (9), 997–1001. https://doi.org/10.1007/BF00475369.Daniela Ahumada, C.; Segovia-Paccini, A.; Navas, G. R. S. Los 5-Aminopirazoles Como Bloque de Construcción de Compuestos Heterocíclicos Fusionados. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2019, 43 (168), 531–538. https://doi.org/10.18257/RACCEFYN.762.Gálvez, J.; Quiroga, J.; Insuasty, B.; Abonia, R. Microwave-Assisted and Iodine Mediated Synthesis of 5-n-Alkyl-Cycloalkane[d]-Pyrazolo[3,4-b]Pyridines from 5-Aminopyrazoles and Cyclic Ketones. Tetrahedron Lett. 2014, 55 (12), 1998–2002. https://doi.org/10.1016/j.tetlet.2014.02.015.Chu, X. Q.; Wang, S. Y.; Ji, S. J. Recyclable NaHSO<inf>4</Inf> Catalyzed Alkylation of Tert-Enamides with Indoles or Amines in Water: Facile Construction of Pharmaceutically Analogous Bis-Alkaloid Scaffolds. RSC Adv. 2013, 3 (22), 8380–8387. https://doi.org/10.1039/c3ra40833g.Ziyaei Halimehjani, A.; Goudarzi, M.; Lotfi Nosood, Y. Alkylation of Aromatic Amines by Tert-Enamides: Direct Access to Protected Aminals. Synth. Commun. 2017, 47 (21), 2022–2029. https://doi.org/10.1080/00397911.2017.1363241.Zaytsev, V. P.; Zubkov, F. I.; Toze, F. A. A.; Orlova, D. N.; Eliseeva, M. N.; Grudinin, D. G.; Nikitina, E. V.; Varlamov, A. V. 5-Amido- and 5-Amino-Substituted Epoxyisoindolo[2,1-a]Tetrahydroquinolines and 10-Carboxylic Acids: Their Synthesis and Reactivity. J. Heterocycl. Chem. 2013, 50 (SUPPL.1). https://doi.org/10.1002/jhet.1024.Khadem, S.; Udachin, K. A.; Enright, G. D.; Prakesch, M.; Arya, P. One-Pot Construction of Isoindolo[2,1-a]Quinoline System. Tetrahedron Lett. 2009, 50 (48), 6661–6664. https://doi.org/10.1016/j.tetlet.2009.09.075.Dagousset, G.; Drouet, F.; Masson, G.; Zhu, J. Chiral Brønsted Acid-Catalyzed Enantioselective Multicomponent Mannich Reaction: Synthesis of Anti-1,3-Diamines Using Enecarbamates as Nucleophiles. Org. Lett. 2009, 11 (23), 5546–5549. https://doi.org/10.1021/ol9023985Terada, M.; Sorimachi, K. Enantioselective Friedel-Crafts Reaction of Electron-Rich Alkenes Catalyzed by Chiral Brønsted Acid. J. Am. Chem. Soc. 2007, 129 (2), 292–293. https://doi.org/10.1021/ja0678166.Halimehjani, A. Z.; Dadras, A.; Ramezani, M.; Shamiri, E. V.; Hooshmand, S. E.; Hashemi, M. M. Synthesis of Dithiocarbamates by Markovnikov Addition Reaction in PEG and Their Application in Amidoalkylation of Naphthols and Indoles. J. Braz. Chem. Soc. 2015, 26 (7), 1500–1508. https://doi.org/10.5935/0103-5053.20150119.Halimehjani, A.; Goudarzi, M.; Nosood, Y. Alkylation of Aromatic Amines by Tert-Enamides: Direct Access to Protected Aminals. Synth. Commun. 2017, 47 (21), 2022–2029. https://doi.org/10.1080/00397911.2017.1363241.Tamaddon, F.; Khoobi, M.; Keshavarz, E. (P2O5/SiO2): A Useful Heterogeneous Alternative for the Ritter Reaction. Tetrahedron Lett. 2007, 48 (21), 3643–3646. https://doi.org/10.1016/J.TETLET.2007.03.134.Reddy, P. N.; Reddy, B. V. S.; Padmaja, P. Current Organic Synthesis Current Organic Synthesis SCIENCE BENTHAM Send Orders for Reprints to Reprints@benthamscience.Ae Emerging Role of Green Oxidant I 2 /DMSO in Organic Synthesis. Curr. Org. Synth. 2018, 15, 815–838. https://doi.org/10.2174/1570179415666180530121312.Becerra-Rivas, C.; Cuervo-Prado, P.; Orozco-Lopez, F. Efficient Catalyst-Free Tricomponent Synthesis of New Spiro[Cyclohexane-1,4′-Pyrazolo[3,4- e ][1, 4]Thiazepin]-7′(6′ H )-Ones. Synth. Commun. 2019, 49 (3), 367–376. https://doi.org/10.1080/00397911.2018.1554143.Breugst, M.; von der Heiden, D. Mechanisms in Iodine Catalysis. Chem. - A Eur. J. 2018, 24 (37), 9187–9199. https://doi.org/10.1002/chem.201706136.Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. AdmetSAR 2.0: Web-Service for Prediction and Optimization of Chemical ADMET Properties. Bioinformatics 2019, 35 (6), 1067–1069. https://doi.org/10.1093/BIOINFORMATICS/BTY70Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7. https://doi.org/10.1038/SREP42717.Morris, G. M.; Ruth, H.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30 (16), 2785. https://doi.org/10.1002/JCC.21256.Allen, W. J.; Balius, T. E.; Mukherjee, S.; Brozell, S. R.; Moustakas, D. T.; Lang, P. T.; Case, D. A.; Kuntz, I. D.; Rizzo, R. C. DOCK 6: Impact of New Features and Current Docking Performance. J. Comput. Chem. 2015, 36 (15), 1132–1156. https://doi.org/10.1002/JCC.23905.LADIN, J. J. H.; Fabian Orozco López. DISEÑO, SÍNTESIS Y CARACTERIZACIÓN DE COMPUESTOS ESPIROTIAZAHETEROCÍCLICOS CON POTENCIAL ACTIVIDAD SOBRE SISTEMA NERVIOSO CENTRAL (SNC), Universidad Nacional de Colombia, 2019.Bamoniri, A.; Mirjalili, B. B. F.; Jafari, A. A.; Abasaltian, F. Synthesis of 1,3,5-Tri-Substituted Pyrazoles Promoted by P2O5.SiO2. Iran. J. Catal. 2012, 2 (2), 75–78. https://doi.org/10.31857/s042485702109005x.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82230/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1033757076.2022.pdf1033757076.2022.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf5479693https://repositorio.unal.edu.co/bitstream/unal/82230/2/1033757076.2022.pdfac9c8bc69302d26ea86130fb6f95eff3MD52THUMBNAIL1033757076.2022.pdf.jpg1033757076.2022.pdf.jpgGenerated Thumbnailimage/jpeg5239https://repositorio.unal.edu.co/bitstream/unal/82230/3/1033757076.2022.pdf.jpg74cb48a02a49e263ade7a74db7481b5dMD53unal/82230oai:repositorio.unal.edu.co:unal/822302023-08-08 23:04:09.795Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=