Metodología para la localización de fallas en sistemas de distribución
Ilustraciones, graficas, tablas
- Autores:
-
Jagua Gualdron, Jorge Luis
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81834
- Palabra clave:
- 530 - Física::537 - Electricidad y electrónica
DISTRIBUCION DE ENERGIA ELECTRICA
LOCALIZACION DE FALLAS ELECTRICAS
Electric power distribution
Electric fault location
Localización de fallas
Sistemas de distribución
Metaheuristicas
Fault location
Waveform segmentation
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_2db4f46190df166b70feea6b553c841c |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81834 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Metodología para la localización de fallas en sistemas de distribución |
dc.title.translated.eng.fl_str_mv |
Fault location methodology in distribution systems |
title |
Metodología para la localización de fallas en sistemas de distribución |
spellingShingle |
Metodología para la localización de fallas en sistemas de distribución 530 - Física::537 - Electricidad y electrónica DISTRIBUCION DE ENERGIA ELECTRICA LOCALIZACION DE FALLAS ELECTRICAS Electric power distribution Electric fault location Localización de fallas Sistemas de distribución Metaheuristicas Fault location Waveform segmentation |
title_short |
Metodología para la localización de fallas en sistemas de distribución |
title_full |
Metodología para la localización de fallas en sistemas de distribución |
title_fullStr |
Metodología para la localización de fallas en sistemas de distribución |
title_full_unstemmed |
Metodología para la localización de fallas en sistemas de distribución |
title_sort |
Metodología para la localización de fallas en sistemas de distribución |
dc.creator.fl_str_mv |
Jagua Gualdron, Jorge Luis |
dc.contributor.advisor.none.fl_str_mv |
Diaz Morales, Hernando |
dc.contributor.author.none.fl_str_mv |
Jagua Gualdron, Jorge Luis |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Emc-Un |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::537 - Electricidad y electrónica |
topic |
530 - Física::537 - Electricidad y electrónica DISTRIBUCION DE ENERGIA ELECTRICA LOCALIZACION DE FALLAS ELECTRICAS Electric power distribution Electric fault location Localización de fallas Sistemas de distribución Metaheuristicas Fault location Waveform segmentation |
dc.subject.lemb.spa.fl_str_mv |
DISTRIBUCION DE ENERGIA ELECTRICA LOCALIZACION DE FALLAS ELECTRICAS |
dc.subject.lemb.eng.fl_str_mv |
Electric power distribution Electric fault location |
dc.subject.proposal.spa.fl_str_mv |
Localización de fallas Sistemas de distribución Metaheuristicas |
dc.subject.proposal.eng.fl_str_mv |
Fault location Waveform segmentation |
description |
Ilustraciones, graficas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-10T15:11:19Z |
dc.date.available.none.fl_str_mv |
2022-08-10T15:11:19Z |
dc.date.issued.none.fl_str_mv |
2022-06 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81834 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81834 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
J. Flórez, “Localización de faltas en sistemas de distribución de energía eléctrica usando métodos basados en el modelo y métodos basados en el conocimiento,” Universidad de Girona, vol. I Volumen, no. Localizacion de Fallas en sistemas de distribucion, 2007. E. P. Vázquez, “Sistema para Localización de Faltas en Líneas Subterráneas de Distribución Eléctrica de Media Tensión, mediante una Red Distribuida de Sensores de Corriente,” 2017. IEEE Standards, “IEEE Std C37.111-2013/ IEC 60255-24:2013. Measuring relays and protection equipment – Part 24: Common format for transient data exchange (COMTRADE) for power systems,” 61010-1 © Iec:2001, vol. 2014. 2014. G. Dileep, “A survey on smart grid technologies and applications,” Renewable Energy, vol. 146, 2020, doi: 10.1016/j.renene.2019.08.092. V. B. Núñez, S. Kulkarni, S. Santoso, and J. Melendez F., “Feature analysis and classification methodology for overhead distribution fault events,” 2010. doi: 10.1109/PES.2010.5589270. M. H. J. Bollen et al., “Bridging the gap between signal and power,” IEEE Signal Processing Magazine, vol. 26, no. 4, 2009, doi: 10.1109/msp.2009.932706. C. A. DUARTE GUALDRÓN, “TÉCNICAS DE PROCESAMIENTO DE SEÑALES PARA LA MONITORIZACIÓN DE LA CALIDAD DE LA ENERGÍA ELÉCTRICA,” 2004. M. Szmajda, K. Górecki, and J. Mroczka, “DFT algorithm analysis in low-cost power quality measurement systems based on a DSP processor,” 2007. doi: 10.1109/EPQU.2007.4424081. Y. Gu and M. H. J. Bollen, “Time-frequency and time-scale domain analysis of voltage disturbances,” IEEE Transactions on Power Delivery, vol. 15, no. 4, 2000, doi: 10.1109/61.891515. “Electrical power systems quality,” Choice Reviews Online, vol. 34, no. 01, 1996, doi: 10.5860/choice.34-0322. I. Y. H. Gu and E. Styvaktakis, “Bridge the gap: Signal processing for power quality applications,” Electric Power Systems Research, vol. 66, no. 1. 2003. doi: 10.1016/S0378-7796(03)00074-9. J. C. Goswami and A. K. Chan, Fundamentals of Wavelets. 2011. doi: 10.1002/9780470926994. S. Santoso, E. J. Powers, W. M. Grady, and P. Hofmann, “Power quality assessment via wavelet transform analysis,” IEEE Transactions on Power Delivery, vol. 11, no. 2, 1996, doi: 10.1109/61.489353. L. C. M. de Andrade, M. Oleskovicz, and R. A. S. Fernandes, “Power quality disturbances segmentation based on wavelet decomposition and adaptive thresholds,” 2014. doi: 10.1109/ICHQP.2014.6842906. C. Xiangxun, “Wavelet-based detection, localization, quantification and classification of short duration power quality disturbances,” in Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2002, vol. 2. doi: 10.1109/pesw.2002.985142. J. Blanco, “Diseño de una metodología para la valoración de eventos causados por fallas de red e insercción de bancos de condensadores en sistemas de distribución de energía eléctrica,” Bucaramanga, 2012. S. A. Deokar and L. M. Waghmare, “Integrated DWT-FFT approach for detection and classification of power quality disturbances,” International Journal of Electrical Power and Energy Systems, vol. 61, 2014, doi: 10.1016/j.ijepes.2014.04.015. J. Barros and E. Pérez, “Automatic detection and analysis of voltage events in power systems,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 5, 2006, doi: 10.1109/TIM.2006.881584. V. Barrera, “Automatic Diagnosis of Voltage Disturbances in Power Distribution Networks,” 2012. C. D. Le, I. Y. H. Gu, and M. H. J. Bollen, “Joint causal and anti-causal segmentation and location of transitions in power disturbances,” 2010. doi: 10.1109/PES.2010.5588103. G. Rilling, P. Flandrin, and P. Goncalves, “On empirical mode decomposition and its algorithms,” in IEEE-EURASIP workshop on nonlinear signal and image processing, 2003, vol. 3. H. Yong, L. Yongqiang, and H. Zhiping, “Detection and location of power quality disturbances based on mathematical morphology and Hilbert-Huang transform,” 2009. doi: 10.1109/ICEMI.2009.5274596. V. Ignatova, P. Granjon, and S. Bacha, “Space vector method for voltage dips and swells analysis,” IEEE Transactions on Power Delivery, vol. 24, no. 4, 2009, doi: 10.1109/TPWRD.2009.2028787. S. Arias-Guzman, A. J. Ustariz-Farfan, and E. Cano-Plata, “Segmentation and characterization of voltage sags in the analysis of industrial circuits,” 2016. doi: 10.1109/IAS.2016.7731944. T. W. Stringfield, D. J. Marihart, and R. F. Stevens, “Fault Location Methods for Overhead Lines,” Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 76, no. 3, 1957, doi: 10.1109/AIEEPAS.1957.4499601. S. Das, S. Kulkarni, N. Karnik, and S. Santoso, “Distribution fault location using short-circuit fault current profile approach,” 2011. doi: 10.1109/PES.2011.6039423. A. R. van C. Warrington, “Erratum: Protective Relays: Their Theory and Practice—Vol. 2,” Electronics and Power, vol. 24, no. 8, 1978, doi: 10.1049/ep.1978.0345. M. S. Sachdev, R. Das, and T. S. Sidhu, “Determining locations of faults in distribution systems,” in IEE Conference Publication, 1997, no. 434. doi: 10.1049/cp:19970060. R. H. Salim, M. Resener, A. D. Filomena, K. R. C. de Oliveira, and A. S. Bretas, “Extended fault-location formulation for power distribution systems,” IEEE Transactions on Power Delivery, vol. 24, no. 2, 2009, doi: 10.1109/TPWRD.2008.2002977. A. D. Filomena, M. Resener, R. H. Salim, and A. S. Bretas, “Fault location for underground distribution feeders: An extended impedance-based formulation with capacitive current compensation,” International Journal of Electrical Power and Energy Systems, vol. 31, no. 9, 2009, doi: 10.1016/j.ijepes.2009.03.026. Y. Gong and A. Guzman, “Integrated fault location system for power distribution feeders,” IEEE Transactions on Industry Applications, vol. 49, no. 3, 2013, doi: 10.1109/TIA.2013.2252596. H. Mokhlis, H. Y. Li, and A. R. Khalid, “The application of voltage sags pattern to locate a faulted section in distribution network,” International Review of Electrical Engineering, vol. 5, no. 1, 2010. S. Lotfifard, M. Kezunovic, and M. J. Mousavi, “A systematic approach for ranking distribution systems fault location algorithms and eliminating false estimates,” IEEE Transactions on Power Delivery, vol. 28, no. 1, 2013, doi: 10.1109/TPWRD.2012.2213616. J. Mora-Florez, V. Barrera-Núñez, and G. Carrillo-Caicedo, “Fault location in power distribution systems using a learning algorithm for multivariable data analysis,” IEEE Transactions on Power Delivery, vol. 22, no. 3, 2007, doi: 10.1109/TPWRD.2006.883021. S. J. Ahn, D. J. Won, I. Y. Chung, and S. il Moon, “Determination of the relative location of voltage sag source according to event cause,” in 2004 IEEE Power Engineering Society General Meeting, 2004, vol. 1. doi: 10.1109/pes.2004.1372880. K. N. Kim, J. W. Park, J. H. Lee, S. J. Ahn, and S. il Moon, “A method to determine the relative location of voltage sag source for PQ diagnosis,” in ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005, vol. 3. T. Tayjasanant, C. Li, and W. Xu, “A resistance sign-based method for voltage sag source detection,” IEEE Transactions on Power Delivery, vol. 20, no. 4, 2005, doi: 10.1109/TPWRD.2005.852341. A. A. Girgis, D. G. Hart, and W. L. Peterson, “A New Fault Location Technique for Two- and Three-Terminal Lines,” IEEE Transactions on Power Delivery, vol. 7, no. 1, 1992, doi: 10.1109/61.108895. D. Novosel, D. G. Hart, E. Udren, and J. Garitty, “Unsynchronized two-terminal fault location estimation,” IEEE Transactions on Power Delivery, vol. 11, no. 1, 1996, doi: 10.1109/61.484009. R. A. F. Pereira, L. G. W. da Silva, M. Kezunovic, and J. R. S. Mantovani, “Improved fault location on distribution feeders based on matching during-fault voltage sags,” IEEE Transactions on Power Delivery, vol. 24, no. 2, 2009, doi: 10.1109/TPWRD.2009.2014480. Q. Jiang, B. Wang, and X. Li, “An efficient PMU-based fault-location technique for multiterminal transmission lines,” IEEE Transactions on Power Delivery, vol. 29, no. 4, 2014, doi: 10.1109/TPWRD.2014.2298865. D. W. Allan and M. A. Weiss, “Accurate Time and Frequency Transfer During Common-View of a GPS Satellite,” 2008. doi: 10.1109/freq.1980.200424. M. A. Lombardi, L. M. Nelson, A. N. Novick, and V. S. Zhang, “Time and Frequency Measurements Using the Global Positioning System,” the International Journal of Metrology, vol. 8, no. 3, 2001. S. R. Nam, S. H. Kang, S. J. Ahn, and J. H. Choi, “Single line-to-ground fault location based on unsynchronized phasors in automated ungrounded distribution systems,” Electric Power Systems Research, vol. 86, 2012, doi: 10.1016/j.epsr.2011.12.010. F. M. Aboshady, D. W. P. Thomas, and M. Sumner, “Fast fault location scheme for distribution systems based on fault transients,” in IET Conference Publications, 2017, vol. 2017, no. CP727. doi: 10.1049/cp.2017.0327. F. M. Aboshady, M. Sumner, and D. W. P. Thomas, “A double end fault location technique for distribution systems based on fault-generated transients,” 2017. doi: 10.1109/ISIE.2017.8001219. C. Zhao, S. Tao, and X. Xiao, “Fault location estimation based on voltage sag information of PQMS,” Dianwang Jishu/Power System Technology, vol. 40, no. 2, 2016, doi: 10.13335/j.1000-3673.pst.2016.02.044. J. Blanco-Solano, J. F. Petit-Suarez, G. Ordonez-Plata, and N. Kagan, “Voltage sag state estimation using compressive sensing in power systems,” 2019. doi: 10.1109/PTC.2019.8810771. C. C. J. G. J. Mora, “Técnica de localización de faltas para un sistema de potencia radial, con cargas laterales desequilibradas y circuitos no homogéneos,” Revista Scientia et Técnica, vol. 28, pp. 56–62, Sep. 2005. R. N. Mahanty and P. B. Dutta Gupta, “Application of RBF neural network to fault classification and location in transmission lines,” in IEE Proceedings: Generation, Transmission and Distribution, 2004, vol. 151, no. 2. doi: 10.1049/ip-gtd:20040098. D. Thukaram, H. P. Khincha, and H. P. Vijaynarasimha, “Artificial neural network and support vector machine approach for locating faults in radial distribution systems,” IEEE Transactions on Power Delivery, vol. 20, no. 2 I, 2005, doi: 10.1109/TPWRD.2005.844307. A. ZAPATA-TAPASCO and S. a. M.-F. J. PEREZ-LONDONO, “Método basado en clasificadores k-NN parametrizados con algoritmos genéticos y la estimación de la reactancia para localización de fallas en sistemas de distribución,” Revista Facultad de Ingeniería Universidad de Antioquia, vol. 70, pp. 220–232, Mar. 2014. G. Manassero, S. G. di Santo, and L. Souto, “Heuristic Method for Fault Location in Distribution Feeders with the Presence of Distributed Generation,” IEEE Transactions on Smart Grid, vol. 8, no. 6, 2017, doi: 10.1109/TSG.2016.2598487. C. F. Chien, S. L. Chen, and Y. S. Lin, “Using Bayesian network for fault location on distribution feeder,” IEEE Transactions on Power Delivery, vol. 17, no. 3, 2002, doi: 10.1109/TPWRD.2002.1022804. Z. Q. Bo, G. Weller, and M. A. Redfern, “Accurate fault location technique for distribution system using fault-generated high-frequency transient voltage signals,” IEE Proceedings: Generation, Transmission and Distribution, vol. 146, no. 1, 1999, doi: 10.1049/ip-gtd:19990074. F. H. Magnago and A. Abur, “Fault location using wavelets,” IEEE Transactions on Power Delivery, vol. 13, no. 4, 1998, doi: 10.1109/61.714808. I. Niazy and J. Sadeh, “A new single ended fault location algorithm for combined transmission line considering fault clearing transients without using line parameters,” International Journal of Electrical Power and Energy Systems, vol. 44, no. 1, 2013, doi: 10.1016/j.ijepes.2012.08.007. W. Zhao, Y. H. Song, and W. R. Chen, “Improved GPS travelling wave fault locator for power cables by using wavelet analysis,” International Journal of Electrical Power and Energy Systems, vol. 23, no. 5, 2001, doi: 10.1016/S0142-0615(00)00064-8. L. Nastac and A. A. Thatte, “A heuristic approach for predicting fault locations in distribution power systems,” 2006. doi: 10.1109/NAPS.2006.360136. A. Mahmoudian and M. Niasati, “A novel approach for optimal allocation of fault current limiter in distribution system via combination of particle swarm optimization algorithm and genetic algorithm (PSOGA),” 2016. doi: 10.1109/EPDC.2016.7514786. W. Tao, G. Yang, and J. Zhang, “Fault section locating for distribution network with DG based on improved ant colony algorithm,” 2016. doi: 10.1109/IPEMC.2016.7512600. T. Jin, S. Lu, Y. Zhang, and R. C. Costa Flesch, “A novel fault section location method based on binary global-best harmony search algorithm for electric power distribution systems,” 2019. doi: 10.1109/ISGT-Asia.2019.8881615. S. Jamali, A. Bahmanyar, and H. Borhani-Bahabadi, “A fast and accurate fault location method for distribution networks with DG using genetic algorithms,” 2017. doi: 10.1109/SGC.2015.7857419. M. H. J. Bollen, I. Y. H. Gu, P. G. V. Axelberg, and E. Styvaktakis, “Classification of underlying causes of power quality disturbances: Deterministic versus statistical methods,” Eurasip Journal on Advances in Signal Processing, vol. 2007, 2007, doi: 10.1155/2007/79747. V. B. Núñez, I. Y. H. Gu, M. H. J. Bollen, and J. Meléndez, “Feature characterization of power quality events according to their underlying causes,” 2010. doi: 10.1109/ICHQP.2010.5625496. R. Hongdilokkul and C. Banmongkol, “Classification of transmission line faults with waveform characterization,” 2016. doi: 10.1109/ECTICon.2016.7561433. J. A. Wischkaemper, C. L. Benner, and B. D. Russell, “Electrical characterization of vegetation contacts with distribution conductors - Investigation of progressive fault behavior,” 2008. doi: 10.1109/TDC.2008.4517149. P. J. Diggle and J. Serra, “Image Analysis and Mathematical Morphology.,” Biometrics, vol. 39, no. 2, 1983, doi: 10.2307/2531038. R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image Analysis Using Mathematical Morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 4, 1987, doi: 10.1109/TPAMI.1987.4767941. P. P. Bedekar and P. N. Korde, “Optimum coordination of overcurrent relays using the modified Jaya algorithm,” 2017. doi: 10.1109/UPCON.2016.7894701. A. Wadood, S. G. Farkoush, T. Khurshaid, J. T. Yu, C. H. Kim, and S. B. Rhee, “Application of the JAYA Algorithm in Solving the Problem of the Optimal Coordination of Overcurrent Relays in Single- And Multi-Loop Distribution Systems,” Complexity, vol. 2019, 2019, doi: 10.1155/2019/5876318. P. A. Bangar and A. A. Kalage, “Optimum coordination of overcurrent and distance relays using JAYA optimization algorithm,” 2017. doi: 10.1109/ICNTE.2017.7947924. F. Berrouk, H. R. E. H. Bouchekara, A. E. Chaib, M. A. Abido, K. Bounaya, and M. S. Javaid, “A new multi-objective Jaya algorithm for solving the optimal power flow problem,” Journal of Electrical Systems, vol. 14, no. 3, 2018. W. Warid, H. Hizam, N. Mariun, and N. I. Abdul-Wahab, “Optimal power flow using the Jaya algorithm,” Energies, vol. 9, no. 9, 2016, doi: 10.3390/en9090678. R. Venkata Rao, “Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems,” International Journal of Industrial Engineering Computations, vol. 7, no. 1, 2016, doi: 10.5267/j.ijiec.2015.8.004. P. Phonrattanasak and N. Leeprechanon, “Optimal Location of Fast Charging Station on Residential Distribution Grid,” International Journal of Innovation, Management and Technology, vol. 3, no. 6, 2012. M. H. J. Bollen and L. D. Zhang, “Analysis of voltage tolerance of AC adjustable-speed drives for three-phase balanced and unbalanced sags,” IEEE Transactions on Industry Applications, vol. 36, no. 3, 2000, doi: 10.1109/28.845069. T. K. Ho, “The random subspace method for constructing decision forests,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, 1998, doi: 10.1109/34.709601. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 121 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81834/3/1098607872.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81834/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81834/5/1098607872.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
682082a0880534f9af2b759cc7704207 8153f7789df02f0a4c9e079953658ab2 6edd0740b6c18f1623786dc4400e40c5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089304866029568 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Diaz Morales, Hernandoe17259fdb16d0ab0dd198515b464272eJagua Gualdron, Jorge Luis5b1924eb3c8dcb39c19da54b1b3d0927Grupo de Investigación Emc-Un2022-08-10T15:11:19Z2022-08-10T15:11:19Z2022-06https://repositorio.unal.edu.co/handle/unal/81834Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, graficas, tablasUno de los eventos que requiere mayor atención por parte del operador de mantenimiento en una red de distribución es la ocurrencia de una falla en algún punto de esta red. Definir la ubicación de la falla es una de las actividades que requieren de atención inmediata para restablecer el servicio y evitar la disminución de índices de calidad del servicio. El trabajo de esta tesis propone una metodología para la localización de fallas enfocando el análisis a las etapas correspondientes al proceso asociado a la gestión del operador de mantenimiento durante una falla: segmentación y detección, localización, caracterización de la causa. Cada una de estas etapas se presenta de manera individual y se proponen métodos para resolver el problema. Inicialmente se analiza del proceso de identificación/segmentación en el cual se determinan los estados transitorios y de estado estable de la falla a partir de los valores instantáneos de tensión y de corriente validando la aplicación de esta propuesta con eventos con forma de onda rectangular y eventos de rápida y lenta transición. Posteriormente es analizado el problema de la localización de la falla a partir de la aplicación de un método de optimización metaheurístico el cual emplea los valores medidos de tensión y de corriente de la falla en estado estable para realizar una comparación con los valores calculados validando los resultados a partir de simulaciones de falla sobre una red distribución industrial con fuentes en diferentes puntos de la red. Finalmente se explora la caracterización de la causa raíz de las fallas buscando clasificar si los eventos de falla ocurren por contacto de árboles, animales o descargas de rayo. (Texto tomado de la fuente)One of the events that requires the most attention from the maintenance operator in a distribution network is the occurrence of a failure at some point in this network. Defining the location of the fault is one of the activities that requires immediate attention to restore the service and avoid a decrease in service quality indices. This thesis proposes a methodology for fault location, focusing the analysis on the stages corresponding to the process associated with the management of the maintenance operator during a fault: segmentation and detection, location, characterization of the cause. Each of these stages is presented individually and methods are proposed to solve the problem. Initially, the identification/segmentation process is analyzed in which the transient and stable states of the fault are determined from the instantaneous values of voltage and current, validating the application of this proposal with events with a rectangular waveform and events fast and slow transition. Subsequently, the problem of fault location is analyzed from the application of a metaheuristic optimization method which uses the measured values of voltage and current of the fault in stable state to make a comparison with the calculated values, validating the results. from fault simulations on an industrial distribution network with sources at different points of the network. Finally, the characterization of the root cause of the faults is explored, seeking to classify if the fault events occur due to contact with trees, animals, or lightning discharges.MaestríaMagíster en Ingeniería - Ingeniería de EléctricaSistemas de distribuciónxviii, 121 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de IngenieríaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::537 - Electricidad y electrónicaDISTRIBUCION DE ENERGIA ELECTRICALOCALIZACION DE FALLAS ELECTRICASElectric power distributionElectric fault locationLocalización de fallasSistemas de distribuciónMetaheuristicasFault locationWaveform segmentationMetodología para la localización de fallas en sistemas de distribuciónFault location methodology in distribution systemsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaJ. Flórez, “Localización de faltas en sistemas de distribución de energía eléctrica usando métodos basados en el modelo y métodos basados en el conocimiento,” Universidad de Girona, vol. I Volumen, no. Localizacion de Fallas en sistemas de distribucion, 2007.E. P. Vázquez, “Sistema para Localización de Faltas en Líneas Subterráneas de Distribución Eléctrica de Media Tensión, mediante una Red Distribuida de Sensores de Corriente,” 2017.IEEE Standards, “IEEE Std C37.111-2013/ IEC 60255-24:2013. Measuring relays and protection equipment – Part 24: Common format for transient data exchange (COMTRADE) for power systems,” 61010-1 © Iec:2001, vol. 2014. 2014.G. Dileep, “A survey on smart grid technologies and applications,” Renewable Energy, vol. 146, 2020, doi: 10.1016/j.renene.2019.08.092.V. B. Núñez, S. Kulkarni, S. Santoso, and J. Melendez F., “Feature analysis and classification methodology for overhead distribution fault events,” 2010. doi: 10.1109/PES.2010.5589270.M. H. J. Bollen et al., “Bridging the gap between signal and power,” IEEE Signal Processing Magazine, vol. 26, no. 4, 2009, doi: 10.1109/msp.2009.932706.C. A. DUARTE GUALDRÓN, “TÉCNICAS DE PROCESAMIENTO DE SEÑALES PARA LA MONITORIZACIÓN DE LA CALIDAD DE LA ENERGÍA ELÉCTRICA,” 2004.M. Szmajda, K. Górecki, and J. Mroczka, “DFT algorithm analysis in low-cost power quality measurement systems based on a DSP processor,” 2007. doi: 10.1109/EPQU.2007.4424081.Y. Gu and M. H. J. Bollen, “Time-frequency and time-scale domain analysis of voltage disturbances,” IEEE Transactions on Power Delivery, vol. 15, no. 4, 2000, doi: 10.1109/61.891515.“Electrical power systems quality,” Choice Reviews Online, vol. 34, no. 01, 1996, doi: 10.5860/choice.34-0322.I. Y. H. Gu and E. Styvaktakis, “Bridge the gap: Signal processing for power quality applications,” Electric Power Systems Research, vol. 66, no. 1. 2003. doi: 10.1016/S0378-7796(03)00074-9.J. C. Goswami and A. K. Chan, Fundamentals of Wavelets. 2011. doi: 10.1002/9780470926994.S. Santoso, E. J. Powers, W. M. Grady, and P. Hofmann, “Power quality assessment via wavelet transform analysis,” IEEE Transactions on Power Delivery, vol. 11, no. 2, 1996, doi: 10.1109/61.489353.L. C. M. de Andrade, M. Oleskovicz, and R. A. S. Fernandes, “Power quality disturbances segmentation based on wavelet decomposition and adaptive thresholds,” 2014. doi: 10.1109/ICHQP.2014.6842906.C. Xiangxun, “Wavelet-based detection, localization, quantification and classification of short duration power quality disturbances,” in Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2002, vol. 2. doi: 10.1109/pesw.2002.985142.J. Blanco, “Diseño de una metodología para la valoración de eventos causados por fallas de red e insercción de bancos de condensadores en sistemas de distribución de energía eléctrica,” Bucaramanga, 2012.S. A. Deokar and L. M. Waghmare, “Integrated DWT-FFT approach for detection and classification of power quality disturbances,” International Journal of Electrical Power and Energy Systems, vol. 61, 2014, doi: 10.1016/j.ijepes.2014.04.015.J. Barros and E. Pérez, “Automatic detection and analysis of voltage events in power systems,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 5, 2006, doi: 10.1109/TIM.2006.881584.V. Barrera, “Automatic Diagnosis of Voltage Disturbances in Power Distribution Networks,” 2012.C. D. Le, I. Y. H. Gu, and M. H. J. Bollen, “Joint causal and anti-causal segmentation and location of transitions in power disturbances,” 2010. doi: 10.1109/PES.2010.5588103.G. Rilling, P. Flandrin, and P. Goncalves, “On empirical mode decomposition and its algorithms,” in IEEE-EURASIP workshop on nonlinear signal and image processing, 2003, vol. 3.H. Yong, L. Yongqiang, and H. Zhiping, “Detection and location of power quality disturbances based on mathematical morphology and Hilbert-Huang transform,” 2009. doi: 10.1109/ICEMI.2009.5274596.V. Ignatova, P. Granjon, and S. Bacha, “Space vector method for voltage dips and swells analysis,” IEEE Transactions on Power Delivery, vol. 24, no. 4, 2009, doi: 10.1109/TPWRD.2009.2028787.S. Arias-Guzman, A. J. Ustariz-Farfan, and E. Cano-Plata, “Segmentation and characterization of voltage sags in the analysis of industrial circuits,” 2016. doi: 10.1109/IAS.2016.7731944.T. W. Stringfield, D. J. Marihart, and R. F. Stevens, “Fault Location Methods for Overhead Lines,” Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 76, no. 3, 1957, doi: 10.1109/AIEEPAS.1957.4499601.S. Das, S. Kulkarni, N. Karnik, and S. Santoso, “Distribution fault location using short-circuit fault current profile approach,” 2011. doi: 10.1109/PES.2011.6039423.A. R. van C. Warrington, “Erratum: Protective Relays: Their Theory and Practice—Vol. 2,” Electronics and Power, vol. 24, no. 8, 1978, doi: 10.1049/ep.1978.0345.M. S. Sachdev, R. Das, and T. S. Sidhu, “Determining locations of faults in distribution systems,” in IEE Conference Publication, 1997, no. 434. doi: 10.1049/cp:19970060.R. H. Salim, M. Resener, A. D. Filomena, K. R. C. de Oliveira, and A. S. Bretas, “Extended fault-location formulation for power distribution systems,” IEEE Transactions on Power Delivery, vol. 24, no. 2, 2009, doi: 10.1109/TPWRD.2008.2002977.A. D. Filomena, M. Resener, R. H. Salim, and A. S. Bretas, “Fault location for underground distribution feeders: An extended impedance-based formulation with capacitive current compensation,” International Journal of Electrical Power and Energy Systems, vol. 31, no. 9, 2009, doi: 10.1016/j.ijepes.2009.03.026.Y. Gong and A. Guzman, “Integrated fault location system for power distribution feeders,” IEEE Transactions on Industry Applications, vol. 49, no. 3, 2013, doi: 10.1109/TIA.2013.2252596.H. Mokhlis, H. Y. Li, and A. R. Khalid, “The application of voltage sags pattern to locate a faulted section in distribution network,” International Review of Electrical Engineering, vol. 5, no. 1, 2010.S. Lotfifard, M. Kezunovic, and M. J. Mousavi, “A systematic approach for ranking distribution systems fault location algorithms and eliminating false estimates,” IEEE Transactions on Power Delivery, vol. 28, no. 1, 2013, doi: 10.1109/TPWRD.2012.2213616.J. Mora-Florez, V. Barrera-Núñez, and G. Carrillo-Caicedo, “Fault location in power distribution systems using a learning algorithm for multivariable data analysis,” IEEE Transactions on Power Delivery, vol. 22, no. 3, 2007, doi: 10.1109/TPWRD.2006.883021.S. J. Ahn, D. J. Won, I. Y. Chung, and S. il Moon, “Determination of the relative location of voltage sag source according to event cause,” in 2004 IEEE Power Engineering Society General Meeting, 2004, vol. 1. doi: 10.1109/pes.2004.1372880.K. N. Kim, J. W. Park, J. H. Lee, S. J. Ahn, and S. il Moon, “A method to determine the relative location of voltage sag source for PQ diagnosis,” in ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005, vol. 3.T. Tayjasanant, C. Li, and W. Xu, “A resistance sign-based method for voltage sag source detection,” IEEE Transactions on Power Delivery, vol. 20, no. 4, 2005, doi: 10.1109/TPWRD.2005.852341.A. A. Girgis, D. G. Hart, and W. L. Peterson, “A New Fault Location Technique for Two- and Three-Terminal Lines,” IEEE Transactions on Power Delivery, vol. 7, no. 1, 1992, doi: 10.1109/61.108895.D. Novosel, D. G. Hart, E. Udren, and J. Garitty, “Unsynchronized two-terminal fault location estimation,” IEEE Transactions on Power Delivery, vol. 11, no. 1, 1996, doi: 10.1109/61.484009.R. A. F. Pereira, L. G. W. da Silva, M. Kezunovic, and J. R. S. Mantovani, “Improved fault location on distribution feeders based on matching during-fault voltage sags,” IEEE Transactions on Power Delivery, vol. 24, no. 2, 2009, doi: 10.1109/TPWRD.2009.2014480.Q. Jiang, B. Wang, and X. Li, “An efficient PMU-based fault-location technique for multiterminal transmission lines,” IEEE Transactions on Power Delivery, vol. 29, no. 4, 2014, doi: 10.1109/TPWRD.2014.2298865.D. W. Allan and M. A. Weiss, “Accurate Time and Frequency Transfer During Common-View of a GPS Satellite,” 2008. doi: 10.1109/freq.1980.200424.M. A. Lombardi, L. M. Nelson, A. N. Novick, and V. S. Zhang, “Time and Frequency Measurements Using the Global Positioning System,” the International Journal of Metrology, vol. 8, no. 3, 2001.S. R. Nam, S. H. Kang, S. J. Ahn, and J. H. Choi, “Single line-to-ground fault location based on unsynchronized phasors in automated ungrounded distribution systems,” Electric Power Systems Research, vol. 86, 2012, doi: 10.1016/j.epsr.2011.12.010.F. M. Aboshady, D. W. P. Thomas, and M. Sumner, “Fast fault location scheme for distribution systems based on fault transients,” in IET Conference Publications, 2017, vol. 2017, no. CP727. doi: 10.1049/cp.2017.0327.F. M. Aboshady, M. Sumner, and D. W. P. Thomas, “A double end fault location technique for distribution systems based on fault-generated transients,” 2017. doi: 10.1109/ISIE.2017.8001219.C. Zhao, S. Tao, and X. Xiao, “Fault location estimation based on voltage sag information of PQMS,” Dianwang Jishu/Power System Technology, vol. 40, no. 2, 2016, doi: 10.13335/j.1000-3673.pst.2016.02.044.J. Blanco-Solano, J. F. Petit-Suarez, G. Ordonez-Plata, and N. Kagan, “Voltage sag state estimation using compressive sensing in power systems,” 2019. doi: 10.1109/PTC.2019.8810771.C. C. J. G. J. Mora, “Técnica de localización de faltas para un sistema de potencia radial, con cargas laterales desequilibradas y circuitos no homogéneos,” Revista Scientia et Técnica, vol. 28, pp. 56–62, Sep. 2005.R. N. Mahanty and P. B. Dutta Gupta, “Application of RBF neural network to fault classification and location in transmission lines,” in IEE Proceedings: Generation, Transmission and Distribution, 2004, vol. 151, no. 2. doi: 10.1049/ip-gtd:20040098.D. Thukaram, H. P. Khincha, and H. P. Vijaynarasimha, “Artificial neural network and support vector machine approach for locating faults in radial distribution systems,” IEEE Transactions on Power Delivery, vol. 20, no. 2 I, 2005, doi: 10.1109/TPWRD.2005.844307.A. ZAPATA-TAPASCO and S. a. M.-F. J. PEREZ-LONDONO, “Método basado en clasificadores k-NN parametrizados con algoritmos genéticos y la estimación de la reactancia para localización de fallas en sistemas de distribución,” Revista Facultad de Ingeniería Universidad de Antioquia, vol. 70, pp. 220–232, Mar. 2014.G. Manassero, S. G. di Santo, and L. Souto, “Heuristic Method for Fault Location in Distribution Feeders with the Presence of Distributed Generation,” IEEE Transactions on Smart Grid, vol. 8, no. 6, 2017, doi: 10.1109/TSG.2016.2598487.C. F. Chien, S. L. Chen, and Y. S. Lin, “Using Bayesian network for fault location on distribution feeder,” IEEE Transactions on Power Delivery, vol. 17, no. 3, 2002, doi: 10.1109/TPWRD.2002.1022804.Z. Q. Bo, G. Weller, and M. A. Redfern, “Accurate fault location technique for distribution system using fault-generated high-frequency transient voltage signals,” IEE Proceedings: Generation, Transmission and Distribution, vol. 146, no. 1, 1999, doi: 10.1049/ip-gtd:19990074.F. H. Magnago and A. Abur, “Fault location using wavelets,” IEEE Transactions on Power Delivery, vol. 13, no. 4, 1998, doi: 10.1109/61.714808.I. Niazy and J. Sadeh, “A new single ended fault location algorithm for combined transmission line considering fault clearing transients without using line parameters,” International Journal of Electrical Power and Energy Systems, vol. 44, no. 1, 2013, doi: 10.1016/j.ijepes.2012.08.007.W. Zhao, Y. H. Song, and W. R. Chen, “Improved GPS travelling wave fault locator for power cables by using wavelet analysis,” International Journal of Electrical Power and Energy Systems, vol. 23, no. 5, 2001, doi: 10.1016/S0142-0615(00)00064-8.L. Nastac and A. A. Thatte, “A heuristic approach for predicting fault locations in distribution power systems,” 2006. doi: 10.1109/NAPS.2006.360136.A. Mahmoudian and M. Niasati, “A novel approach for optimal allocation of fault current limiter in distribution system via combination of particle swarm optimization algorithm and genetic algorithm (PSOGA),” 2016. doi: 10.1109/EPDC.2016.7514786.W. Tao, G. Yang, and J. Zhang, “Fault section locating for distribution network with DG based on improved ant colony algorithm,” 2016. doi: 10.1109/IPEMC.2016.7512600.T. Jin, S. Lu, Y. Zhang, and R. C. Costa Flesch, “A novel fault section location method based on binary global-best harmony search algorithm for electric power distribution systems,” 2019. doi: 10.1109/ISGT-Asia.2019.8881615.S. Jamali, A. Bahmanyar, and H. Borhani-Bahabadi, “A fast and accurate fault location method for distribution networks with DG using genetic algorithms,” 2017. doi: 10.1109/SGC.2015.7857419.M. H. J. Bollen, I. Y. H. Gu, P. G. V. Axelberg, and E. Styvaktakis, “Classification of underlying causes of power quality disturbances: Deterministic versus statistical methods,” Eurasip Journal on Advances in Signal Processing, vol. 2007, 2007, doi: 10.1155/2007/79747.V. B. Núñez, I. Y. H. Gu, M. H. J. Bollen, and J. Meléndez, “Feature characterization of power quality events according to their underlying causes,” 2010. doi: 10.1109/ICHQP.2010.5625496.R. Hongdilokkul and C. Banmongkol, “Classification of transmission line faults with waveform characterization,” 2016. doi: 10.1109/ECTICon.2016.7561433.J. A. Wischkaemper, C. L. Benner, and B. D. Russell, “Electrical characterization of vegetation contacts with distribution conductors - Investigation of progressive fault behavior,” 2008. doi: 10.1109/TDC.2008.4517149.P. J. Diggle and J. Serra, “Image Analysis and Mathematical Morphology.,” Biometrics, vol. 39, no. 2, 1983, doi: 10.2307/2531038.R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image Analysis Using Mathematical Morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 4, 1987, doi: 10.1109/TPAMI.1987.4767941.P. P. Bedekar and P. N. Korde, “Optimum coordination of overcurrent relays using the modified Jaya algorithm,” 2017. doi: 10.1109/UPCON.2016.7894701.A. Wadood, S. G. Farkoush, T. Khurshaid, J. T. Yu, C. H. Kim, and S. B. Rhee, “Application of the JAYA Algorithm in Solving the Problem of the Optimal Coordination of Overcurrent Relays in Single- And Multi-Loop Distribution Systems,” Complexity, vol. 2019, 2019, doi: 10.1155/2019/5876318.P. A. Bangar and A. A. Kalage, “Optimum coordination of overcurrent and distance relays using JAYA optimization algorithm,” 2017. doi: 10.1109/ICNTE.2017.7947924.F. Berrouk, H. R. E. H. Bouchekara, A. E. Chaib, M. A. Abido, K. Bounaya, and M. S. Javaid, “A new multi-objective Jaya algorithm for solving the optimal power flow problem,” Journal of Electrical Systems, vol. 14, no. 3, 2018.W. Warid, H. Hizam, N. Mariun, and N. I. Abdul-Wahab, “Optimal power flow using the Jaya algorithm,” Energies, vol. 9, no. 9, 2016, doi: 10.3390/en9090678.R. Venkata Rao, “Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems,” International Journal of Industrial Engineering Computations, vol. 7, no. 1, 2016, doi: 10.5267/j.ijiec.2015.8.004.P. Phonrattanasak and N. Leeprechanon, “Optimal Location of Fast Charging Station on Residential Distribution Grid,” International Journal of Innovation, Management and Technology, vol. 3, no. 6, 2012.M. H. J. Bollen and L. D. Zhang, “Analysis of voltage tolerance of AC adjustable-speed drives for three-phase balanced and unbalanced sags,” IEEE Transactions on Industry Applications, vol. 36, no. 3, 2000, doi: 10.1109/28.845069.T. K. Ho, “The random subspace method for constructing decision forests,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, 1998, doi: 10.1109/34.709601.EstudiantesInvestigadoresMaestrosORIGINAL1098607872.2022.pdf1098607872.2022.pdfTesis de Maestría en Ingeniería Eléctricaapplication/pdf4901586https://repositorio.unal.edu.co/bitstream/unal/81834/3/1098607872.2022.pdf682082a0880534f9af2b759cc7704207MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81834/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1098607872.2022.pdf.jpg1098607872.2022.pdf.jpgGenerated Thumbnailimage/jpeg4506https://repositorio.unal.edu.co/bitstream/unal/81834/5/1098607872.2022.pdf.jpg6edd0740b6c18f1623786dc4400e40c5MD55unal/81834oai:repositorio.unal.edu.co:unal/818342024-08-08 23:11:29.835Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |