Diseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámica

ilustraciones, diagramas

Autores:
Cano Zapata, Edgar Alejandro
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84239
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84239
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::547 - Química orgánica
Synthetic products
Productos sintéticos
Análisis de balance de flujos
Etilenglicol
Glicerol
Metanol
Modelo metabólico
Termodinámica
Flux balance analysis
Ethylene glycol
Glycerol
Methanol
Metabolic model
Thermodynamics
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_2d81b415b2520f9f2a05cf6efa0d5fe4
oai_identifier_str oai:repositorio.unal.edu.co:unal/84239
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Diseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámica
dc.title.translated.eng.fl_str_mv In silico design of a biological platform to produce Ethylene Glycol from crude Glycerol using tools of the metabolic engineering and thermodynamics
title Diseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámica
spellingShingle Diseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámica
540 - Química y ciencias afines::547 - Química orgánica
Synthetic products
Productos sintéticos
Análisis de balance de flujos
Etilenglicol
Glicerol
Metanol
Modelo metabólico
Termodinámica
Flux balance analysis
Ethylene glycol
Glycerol
Methanol
Metabolic model
Thermodynamics
title_short Diseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámica
title_full Diseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámica
title_fullStr Diseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámica
title_full_unstemmed Diseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámica
title_sort Diseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámica
dc.creator.fl_str_mv Cano Zapata, Edgar Alejandro
dc.contributor.advisor.none.fl_str_mv Suárez Méndez, Camilo Alberto
dc.contributor.author.none.fl_str_mv Cano Zapata, Edgar Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Bioprocesos y Flujos Reactivos
dc.contributor.orcid.spa.fl_str_mv Suárez Méndez, Camilo Alberto [0000-0002-5345-9662]
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::547 - Química orgánica
topic 540 - Química y ciencias afines::547 - Química orgánica
Synthetic products
Productos sintéticos
Análisis de balance de flujos
Etilenglicol
Glicerol
Metanol
Modelo metabólico
Termodinámica
Flux balance analysis
Ethylene glycol
Glycerol
Methanol
Metabolic model
Thermodynamics
dc.subject.lemb.eng.fl_str_mv Synthetic products
dc.subject.lemb.spa.fl_str_mv Productos sintéticos
dc.subject.proposal.spa.fl_str_mv Análisis de balance de flujos
Etilenglicol
Glicerol
Metanol
Modelo metabólico
Termodinámica
dc.subject.proposal.eng.fl_str_mv Flux balance analysis
Ethylene glycol
Glycerol
Methanol
Metabolic model
Thermodynamics
description ilustraciones, diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T14:45:23Z
dc.date.available.none.fl_str_mv 2023-07-21T14:45:23Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84239
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84239
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv J. B. Mariano and E. R. la Rovere, “Environmental impacts of the oil industry,” Encyclopedia of Life Support Systems (EOLSS), 2010, [Online]. Available: https://www.eolss.net/Eolss-SampleAllChapter.aspx
Acciona, “What is sustainability?” https://www.activesustainability.com/sustainabledevelopment/what-is sustainability/ (accessed Jul. 28, 2019).
University of Alberta, “What is sustainability?,” p. 3
J. Korhonen, A. Honkasalo, and J. Seppälä, “Circular Economy: The Concept and its Limitations,” Ecological Economics, vol. 143, pp. 37–46, 2018, doi: 10.1016/j.ecolecon.2017.06.041.
Acciona, “¿En qué consiste la economía circular? | Sostenibilidad para todos,” 16 January, 2017. https://www.sostenibilidad.com/desarrollo-sostenible/en-queconsiste-la-economia-circular/ (accessed Jul. 28, 2019).
Fundación para la Economía Circular, “Economía Circular.” https://economiacircular.org/wp/?page_id=62 (accessed Jul. 28, 2019).
I. Issa, S. Delbrück, and U. Hamm, “Bioeconomy from experts’ perspectives – Results of a global expert survey,” PLoS One, vol. 14, no. 5, pp. 1–22, 2019, doi: 10.1371/journal.pone.0215917.
Bioökonomie BW, “What is a bioeconomy?,” 2012. https://www.biooekonomiebw.de/en/bw/definition/ (accessed Jul. 29, 2019).
BIOSTEP, “What is bioeconomy ?,” 2013. http://www.bio-step.eu/background/whatis-bioeconomy/ (accessed Jul. 28, 2019).
F. Cherubini, “The biorefinery concept: Using biomass instead of oil for producing energy and chemicals,” Energy Convers Manag, vol. 51, no. 7, pp. 1412–1421, 2010, doi: 10.1016/j.enconman.2010.01.015.
G. A. Płaza and D. Wandzich, “Biorefineries – New Green Strategy For Development Of Smart And Innovative Industry,” Management Systems in Production Engineering, vol. 23, no. 3, pp. 150–155, Sep. 2016, doi: 10.2478/mspe-02-03-2016.
G. J. Suppes, “Glycerol Technology Options for Biodiesel Industry,” in The Biodiesel Handbook: Second Edition, Second Edi., AOCS Press, 2010, pp. 439–455. doi:10.1016/B978-1-893997-62-2.50016-4.
S. K. Yeong, Z. Idris, and H. A. Hassan, Palm Oleochemicals in Non-food Applications. AOCS Press, 2012. doi: 10.1016/B978-0-9818936-9-3.50023-X
D. Puerta, “Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica,” 2019.
S. Nomanbhay, R. Hussein, and M. Y. Ong, “Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: A review,” Green Chem Lett Rev, vol. 11, no. 2, pp. 135–157, 2018, doi: 10.1080/17518253.2018.1444795
A. Dias da Silva Ruy, A. Luíza Freitas Ferreira, A. Ésio Bresciani, R. Maria de Brito Alves, and L. Antônio Magalhães Pontes, “Market Prospecting and Assessment of the Economic Potential of Glycerol from Biodiesel,” in Biomass [Working Title], no. tourism, IntechOpen, 2020, p. 13. doi: 10.5772/intechopen.93965.
OCDE/FAO, OCDE-FAO Perspectivas Agrícolas 2017-2026. OECD, 2017. doi: 10.1787/agr_outlook-2017-es.
Fedebiocombustibles, “Información Estadística Sector Biocombustibles.” http://www.fedebiocombustibles.com/v3/estadistica-produccion-tituloBiodiesel.html (accessed Aug. 11, 2019).
C. Len and R. Luque, “Continuous flow transformations of glycerol to valuable products: an overview,” Sustainable Chemical Processes, vol. 2, no. 1, pp. 1–10, 2014, doi: 10.1186/2043-7129-2-1.
CORPODIB, “Programa estratégico para la biotransformación sostenible de glicerina cruda en 1,3-propanodiol y prospectiva para desarrollar una biorefinería en ECODIESEL COLOMBIA S.A,” vol. 3529. 2016
H. Yue, Y. Zhao, X. Ma, and J. Gong, “Ethylene glycol: Properties, synthesis, and applications,” Chem Soc Rev, vol. 41, no. 11, pp. 4218–4244, 2012, doi: 10.1039/c2cs15359a
B. Pereira, H. Zhang, M. de Mey, C. G. Lim, Z. J. Li, and G. Stephanopoulos, “Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol,” Biotechnol Bioeng, vol. 113, no. 2, pp. 376–383, 2016, doi: 10.1002/bit.25717.
T. U. Chae, S. Y. Choi, J. Y. Ryu, and S. Y. Lee, “Production of ethylene glycol from xylose by metabolically engineered Escherichia coli,” AIChE Journal, vol. 64, no. 12, pp. 4193–4200, 2018, doi: 10.1002/aic.16339.
L. Salusjärvi, S. Havukainen, O. Koivistoinen, and M. Toivari, “Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives,” Appl Microbiol Biotechnol, vol. 103, no. 6, pp. 2525–2535, 2019, doi: 10.1007/s00253- 019-09640-2.
H. Liu, K. R. M. Ramos, K. N. G. Valdehuesa, G. M. Nisola, W. K. Lee, and W. J. Chung, “Biosynthesis of ethylene glycol in Escherichia coli,” Appl Microbiol Biotechnol, vol. 97, no. 8, pp. 3409–3417, 2013, doi: 10.1007/s00253-012-4618-7.
L. Salusjärvi et al., “Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae,” Appl Microbiol Biotechnol, vol. 101, no. 22, pp. 8151– 8163, 2017, doi: 10.1007/s00253-017-8547-3.
S. Kandasamy, S. P. Samudrala, and S. Bhattacharya, “The route towards sustainable production of ethylene glycol from a renewable resource, biodiesel waste: A review,” Catal Sci Technol, vol. 9, no. 3, pp. 567–577, 2019, doi: 10.1039/c8cy02035c.
B. Pereira et al., “Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate,” Metab Eng, vol. 34, pp. 80– 87, 2016, doi: 10.1016/j.ymben.2015.12.004.
Chemical Engineering, “Ethylene Glycol Production - Chemical Engineering,” Ethylene Glycol Production, 2015. https://www.chemengonline.com/ethylene-glycolproductio /?printmode=1%0Ahttp://www.chemengonline.com/ethylene-glycolproduction/?printmode=1 (accessed Aug. 14, 2019).
J. Sun and H. Liu, “Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts,” Green Chemistry, vol. 13, no. 1, pp. 135–142, 2011, doi: 10.1039/c0gc00571a.
J. Pang, M. Zheng, A. Wang, and T. Zhang, “Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol,” Ind Eng Chem Res, vol. 50, pp. 6601– 6608, 2011.
N. Ji et al., “Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts,” Catal Today, vol. 147, no. 2, pp. 77–85, 2009, doi: 10.1016/j.cattod.2009.03.012.
V. Siracusa and I. Blanco, “Bio-polyethylene (Bio-PE), Bio-polypropylene (Bio-PP) and Bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications,” Polymers (Basel), vol. 12, no. 8, 2020, doi: 10.3390/APP10155029.
C. Wittmann and J. C. Liao, Industrial Biotechnology. Weinheim, Germany: Wiley;VCH Verlag GmbH & Co. KGaA, 2017. doi: 10.1002/9783527807833.
D. Kuhn, L. M. Blank, A. Schmid, and B. Bühler, “Systems biotechnology - Rational whole-cell biocatalyst and bioprocess design,” Eng Life Sci, vol. 10, no. 5, pp. 384– 397, 2010, doi: 10.1002/elsc.201000009.
B. Palsson, “The challenges of in silico biology,” Nat Biotechnol, vol. 18, no. 11, pp. 1147–1150, 2000, doi: 10.1038/81125.
U. von Stockar, Biothermodynamics. CRC Press, 2013.
R. Mahadevan, A. P. Burgard, I. Famili, S. van Dien, and C. H. Schilling, “Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals,” Biotechnology and Bioprocess Engineering, vol. 10, no. 5, pp. 408–417, Oct. 2005, doi: 10.1007/BF02989823
P. Tufvesson, J. Lima-Ramos, N. al Haque, K. v. Gernaey, and J. M. Woodley, “Advances in the process development of biocatalytic processes,” Org Process Res Dev, vol. 17, no. 10, pp. 1233–1238, 2013, doi: 10.1021/op4001675.
J. J. Heijnen and R. Kleerebezem, “Bioenergetics of Microbial Growth,” Encyclopedia of Industrial Biotechnology, pp. 1–24, 2010, doi: 10.1002/9780470054581.eib084.
L. Tijhuis, M. van Loosdrecht, and J. Heijnen, “A thermodynamically based correlation for maintenance Gibbs energy requirements in …,” Biotechnol Bioeng, vol. 42, no. 4, pp. 509–519, 1993, [Online]. Available: http://www3.interscience.wiley.com/journal/107623668/abstract%5Cnpapers2://pub lication/uuid/FA5791A7-1589-4B3D-97D2-6E9DCC92FD90
M. E. Poccia, A. J. Beccaria, and R. G. Dondo, “Modeling the microbial growth of two escherichia coli strains in a multi-substrate environment,” Brazilian Journal of Chemical Engineering, vol. 31, no. 2, pp. 347–354, 2014, doi: 10.1590/0104- 6632.20140312s00002587.
A. Narang, “The steady states of microbial growth on mixtures of substitutable substrates in a chemostat,” J Theor Biol, vol. 190, no. 3, pp. 241–261, 1998, doi: 10.1006/jtbi.1997.0552.
K. Kovarova, “Growth Kinetics of Escherichia coli: Effect of Temperature, Mixed Substrate Utilization and Adaptation to Carbon-Limited Growth.,” Swiss Federal Institute of technology, Zürich., 1996.
T. Egli, C. Bosshard, and G. Hamer, “Simultaneous utilization of methanol–glucose mixtures by Hansenula polymorpha in chemostat: Influence of dilution rate and mixture composition on utilization pattern,” Biotechnol Bioeng, vol. 28, no. 11, pp. 1735–1741, 1986, doi: 10.1002/bit.260281118.
T. Egli, U. Lendenmann, and M. Snozzi, “Kinetics of microbial growth with mixtures of carbon sources,” Antonie Van Leeuwenhoek, vol. 63, no. 3–4, pp. 289–298, 1993, doi: 10.1007/BF00871224
W. Harder and L. Dijkhuizen, “Strategies of mixed substrate utilization in microorganisms.,” Philos Trans R Soc Lond B Biol Sci, vol. 297, no. 1088, pp. 459– 480, 1982, doi: 10.1098/rstb.1982.0055.
A. Narang, A. Konopka, and D. Ramkrishna, “The dynamics of microbial growth on mixtures of substrates in batch reactors,” J Theor Biol, vol. 184, no. 3, pp. 301–317, 1997, doi: 10.1006/jtbi.1996.0275.
T. Egli, C. Bosshard, and G. Hamer, “Simultaneous utilization of methanol–glucose mixtures by Hansenula polymorpha in chemostat: Influence of dilution rate and mixture composition on utilization pattern,” Biotechnol Bioeng, vol. 28, no. 11, pp. 1735–1741, 1986, doi: 10.1002/bit.260281118.
W. Babel and R. H. Muller, “Mixed substrate utilization in micro-organisms: Biochemical aspects and energetics,” J Gen Microbiol, vol. 131, no. 1, pp. 39–45, 1985, doi: 10.1099/00221287-131-1-39.
P. J. F. Gommers, B. J. van Schie, J. P. van Dijken, and J. G. Kuenen, “Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization,” Biotechnol Bioeng, vol. 33, no. 6, pp. 799–799, 1989, doi: 10.1002/bit.260330620.
L. Dijkhuizen and W. Harder, “Regulation of Autotrophic and Heterotrophic Metabolism in Pseudumunas uxalaticus 0x1. Growth on Fructose and on Mixtures of Fructose and Formate in Batch and Continuous Cultures,” Arch Microbiol, vol. 123, no. 1, p. [1] L. Dijkhuizen and W. Harder, “Regulation of au, 1979.
L. Dijkhuizen and W. Harder, “Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of oxalate and formate in continuous culture,” Arch Microbiol, vol. 123, no. 1, pp. 55–63, Oct. 1979, doi: 10.1007/BF00403502
L. Dijkhuizen and W. Harder, “Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of acetate and formate in continuous culture,” Arch Microbiol, vol. 123, no. 1, pp. 47–53, 1979, doi: 10.1007/BF00403501.
X. Wang, K. Xia, X. Yang, and C. Tang, “Growth strategy of microbes on mixed carbon sources,” Nat Commun, vol. 10, no. 1, pp. 1–7, 2019, doi: 10.1038/s41467- 019-09261-3.
A. Litsios, Á. D. Ortega, E. C. Wit, and M. Heinemann, “Metabolic-flux dependent regulation of microbial physiology,” Curr Opin Microbiol, vol. 42, pp. 71–78, 2018, doi: 10.1016/j.mib.2017.10.029.
K. Zhuang, G. N. Vemuri, and R. Mahadevan, “Economics of membrane occupancy and respiro‐fermentation,” Mol Syst Biol, vol. 7, no. 1, p. 500, Jan. 2011, doi: 10.1038/msb.2011.34.
M. Szenk, K. A. Dill, and A. M. R. de Graff, “Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis,” Cell Syst, vol. 5, no. 2, pp. 95–104, Aug. 2017, doi: 10.1016/j.cels.2017.06.005.
X. Yang et al., “Physical bioenergetics: Energy fluxes, budgets, and constraints in cells,” Proceedings of the National Academy of Sciences, vol. 118, no. 26, Jun. 2021, doi: 10.1073/pnas.2026786118.
B. Niebel, S. Leupold, and M. Heinemann, “An upper limit on Gibbs energy dissipation governs cellular metabolism,” Nat Metab, vol. 1, no. 1, pp. 125–132, 2019, doi: 10.1038/s42255-018-0006-7.
C. Wittmann and S. Y. Lee, Systems Metabolic Engineering. Dordrecht: Springer Netherlands, 2012. doi: 10.1007/978-94-007-4534-6
R. Kulkarni, “Metabolic engineering: Biological art of producing useful chemicals,”Resonance, vol. 21, no. 3, pp. 233–237, 2016, doi: 10.1007/s12045-016-0318-4.
Y. T. Yang, G. N. Bennett, and K. Y. San, “Genetic and metabolic engineering,” Electronic Journal of Biotechnology, vol. 1, no. 3, pp. 49–60, 1998.
W. Niu, J. Guo, and S. van Dien, Metabolic Engineering for Bioprocess Commercialization. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-41966-4.
M. Kanehisa, “KEGG: Kyoto Encyclopedia of Genes and Genomes,” Nucleic Acids Research, 2000. https://www.kegg.jp/
Technische Universitat Braunschweig, “Enzyme Database - BRENDA,” Bglucosidase information, 2018. https://www.brenda-enzymes.org/
R. Caspi et al., “The MetaCyc database of metabolic pathways and enzymes - a 2019 update,” Nucleic Acids Res, vol. 48, no. D1, pp. D445–D453, Jan. 2020, doi: 10.1093/nar/gkz862.
E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehraach, Systems Biology in Practice. 2005.
E. Noor, A. Bar-Even, A. Flamholz, E. Reznik, W. Liebermeister, and R. Milo, “Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism,” PLoS Comput Biol, vol. 10, no. 2, 2014, doi: 10.1371/journal.pcbi.1003483.
H. Liu, K. R. M. Ramos, K. N. G. Valdehuesa, G. M. Nisola, W. K. Lee, and W. J. Chung, “Biosynthesis of ethylene glycol in Escherichia coli,” Appl Microbiol Biotechnol, vol. 97, no. 8, pp. 3409–3417, 2013, doi: 10.1007/s00253-012-4618-7.
Z. Chen, J. Huang, Y. Wu, and D. Liu, “Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose,” Metab Eng, vol. 33, pp. 12–18, 2016, doi: 10.1016/j.ymben.2015.10.013.
B. Uranukul, B. M. Woolston, G. R. Fink, and G. Stephanopoulos, “Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes,” Metab Eng, vol. 51, pp. 20–31, 2019, doi: 10.1016/j.ymben.2018.09.012.
J. M. Monk et al., “iML1515, a knowledgebase that computes Escherichia coli traits,” Nat Biotechnol, vol. 35, no. 10, pp. 8–12, 2017.
N. C. Duarte, M. J. Herrgård, and B. Ø. Palsson, “Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model,” Genome Res, vol. 14, no. 7, pp. 1298–1309, Jul. 2004, doi: 10.1101/gr.2250904.
M. Tomàs-Gamisans, P. Ferrer, and J. Albiol, “Fine-tuning the P. pastoris iMT1026 genome-scale metabolic model for improved prediction of growth on methanol or glycerol as sole carbon sources,” Microb Biotechnol, vol. 11, no. 1, pp. 224–237, 2018, doi: 10.1111/1751-7915.12871.
P. D. Karp et al., “The BioCyc collection of microbial genomes and metabolic pathways,” Brief Bioinform, vol. 20, no. 4, pp. 1085–1093, Jul. 2019, doi: 10.1093/bib/bbx085
I. M. Keseler et al., “The EcoCyc Database in 2021,” Front Microbiol, vol. 12, Jul. 2021, doi: 10.3389/fmicb.2021.711077.
Z. A. King et al., “BiGG Models: A platform for integrating, standardizing and sharing genome-scale models,” Nucleic Acids Res, vol. 44, no. D1, pp. D515–D522, Jan. 2016, doi: 10.1093/nar/gkv1049.
UniProt consortium, “UniProt.” https://www.uniprot.org/
M. E. Beber et al., “eQuilibrator 3.0: a database solution for thermodynamic constant estimation,” Nucleic Acids Res, vol. 50, no. D1, pp. D603–D609, Jan. 2022, doi: 10.1093/nar/gkab1106.
L. Heirendt et al., “Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0,” Nat Protoc, vol. 14, no. 3, pp. 639–702, Mar. 2019, doi: 10.1038/s41596-018-0098-2.
E. Noor, H. S. Haraldsdóttir, R. Milo, and R. M. T. Fleming, “Consistent Estimation of Gibbs Energy Using Component Contributions,” PLoS Comput Biol, vol. 9, no. 7, p. e1003098, Jul. 2013, doi: 10.1371/journal.pcbi.1003098
F. Meyer, P. Keller, J. Hartl, O. G. Gröninger, P. Kiefer, and J. A. Vorholt, “Methanolessential growth of Escherichia coli,” Nat Commun, vol. 9, no. 1, p. 1508, Dec. 2018, doi: 10.1038/s41467-018-03937-y
C. T. Chen et al., “Synthetic methanol auxotrophy of Escherichia coli for methanoldependent growth and production,” Metab Eng, vol. 49, no. June, pp. 257–266, 2018, doi: 10.1016/j.ymben.2018.08.010
B. M. Woolston, J. R. King, M. Reiter, B. van Hove, and G. Stephanopoulos, “Improving formaldehyde consumption drives methanol assimilation in engineered E. coli,” Nat Commun, vol. 9, no. 1, 2018, doi: 10.1038/s41467-018-04795-4.
Z. Dai et al., “Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae,” Bioresour Technol, 2017, doi: 10.1016/j.biortech.2017.05.100.
H. O. Kammen and R. Koo, “Phosphopentomutases,” Journal of Biological Chemistry, vol. 244, no. 18, pp. 4888–4893, 1969, doi: 10.1016/s0021- 9258(18)94286-9.
K. Hammer-Jespersen and A. Munch-Petersem, “Phosphodeoxyribomutase from Escharichia coli.,” Eur J Biochem, vol. 17, pp. 9–25, 2019.
R. K. Murray, D. A. Bender, K. M. Botham, P. J. Kennelly, V. W. Rodwell, and P. A. Weil, Harper. Bioquímica ilustrada. Mc Graw Hill Education, 2010.
A. Kümmel, S. Panke, and M. Heinemann, “Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data,” Mol Syst Biol, vol. 2, pp. 1–10, 2006, doi: 10.1038/msb4100074.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiv, 104 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84239/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84239/2/1152703489.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/84239/3/1152703489.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
ff23e92b3033116caef9058c38f0e8f4
a792d517a6a9bf016a43459396f719bc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089470234853376
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Suárez Méndez, Camilo Alberto997598635d63c1552bb6d43d1091be66Cano Zapata, Edgar Alejandro55e19f70ca507c7e00aa3e0f339dba49Bioprocesos y Flujos ReactivosSuárez Méndez, Camilo Alberto [0000-0002-5345-9662]2023-07-21T14:45:23Z2023-07-21T14:45:23Z2022https://repositorio.unal.edu.co/handle/unal/84239Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl objetivo del presente estudio es diseñar una plataforma biológica in silico para la producción de etilenglicol a partir de glicerol crudo a través de un análisis termodinámico, el cual permitirá establecer la máxima producción teórica que sería posible obtener, y herramientas de la ingeniería metabólica, las cuales permiten evaluar e implementar las diferentes rutas metabólicas y genes heterólogos relacionados para llevar a cabo este proceso. Inicialmente se construyeron modelos de caja negra que representaran la producción biológica de etilenglicol a partir de las principales fuentes de carbono que se encuentran en el glicerol crudo, glicerol y metanol. Estos modelos se construyeron primero para cada sustrato por separado, considerando diferentes aceptores de electrones incluido el etilenglicol. Debido a que se tiene un interés en realizar este proceso utilizando ambos sustratos al mismo tiempo, se resalta la importancia de implementar una metodología que permita construir modelos de caja negra para múltiples sustratos. Más adelante, se construyeron diferentes modelos metabólicos para tres diferentes microorganismos (E. coli, S. cerevisiae, P. pastoris) con el fin de representar la producción de etilenglicol a través de diferentes rutas de biosíntesis (SDP y P1PDP), y las diferentes rutas de asimilación de glicerol y metanol. Estos modelos se utilizaron para estudiar el rendimiento por mol de carbono utilizado y la cantidad de intermediarios energéticos (ATP, NADH, NADPH) generados por mol de etilenglicol producido a partir de diferentes proporciones de glicerol y metanol. Finalmente, se selecciona uno de estos modelos para estudiar el efecto de la velocidad de crecimiento en la síntesis de etilenglicol, y cómo las condiciones intracelulares afectan la viabilidad termodinámica de las rutas de biosíntesis consideradas. En el presente estudio se observó cómo el etilenglicol no resulta adecuado cómo aceptor de electrones en el catabolismo debido la baja cantidad de energía libre obtenida a partir de cada sustrato. Por lo tanto, se consideró el uso de otros aceptores de electrones y se plantean otras reacciones catabólicas alternas que permitan la producción de etilenglicol a partir de un consumo parcial de oxígeno para la obtención de energía. Posteriormente, se presenta una propuesta preliminar para la construcción de un modelo de caja negra para un proceso con múltiples sustratos partiendo de una metodología ya propuesta para un único sustrato. En esta se resalta la presencia de nuevos parámetros que consideran el efecto de la presencia de múltiples sustratos en los diferentes procesos celulares. Estos, sin embargo, quedan pendientes por determinar dado a que no se logró establecer una correlación matemática que permitiera calcularlos. Por otra parte, se observó a partir del análisis de los modelos metabólicos cómo el modelo para E. coli proporciona el mejor escenario para la obtención de etilenglicol dado el mayor rendimiento obtenido y a la cantidad de intermediarios energéticos generados durante el proceso. Para este modelo, se encontró cómo la producción de etilenglicol se da principalmente a bajas velocidades de crecimiento de la biomasa, demostrando que ambos procesos compiten directamente por el flujo de carbono que entra al metabolismo. Finalmente, se encontró que algunas reacciones dentro de las rutas de síntesis de etilenglicol son sensibles a las variaciones de concentración intracelulares, lo que provocaría la generación de cuellos de botella en el proceso disminuyendo el rendimiento en la producción de etilenglicol. Mediante estos análisis se pudo validar que la producción biológica de etilenglicol es posible a partir de las principales fuentes de carbono del glicerol crudo. Para llevar a cabo este proceso, se deben cumplir determinadas condiciones a nivel del metabolismo para dirigir el flujo de carbono hacia el producto de interés y hacer el factible el proceso. Sin embargo, es necesario seguir realizando estudios posteriores para determinar a profundidad las modificaciones a nivel genético que permitan acoplar la producción de biomasa con la síntesis de etilenglicol, implementar otras rutas de síntesis alternas, y finalizar la construcción del modelo de caja negra para múltiples sustratos para evaluar con más detalle que tiene la presencia de cada uno de estos en los diferentes procesos celulares de interés. (Texto tomado de la fuente)This study aims at designing an in silico biological platform to produce ethylene glycol from crude glycerol through a thermodynamic analysis to determine the maximum theoretical yield, and the use of metabolic engineering approaches to assess and implementing different metabolic pathways and the associated heterologous genes to carry out this process. Initially, black-box models were constructed to represent the biological production of ethylene glycol from primary carbon sources present in crude glycerol, glycerol, and methanol. These models were first built separately for each substrate while considering different electron acceptors including ethylene glycol. The significance of establishing a methodology that permits the construction of black box models for multiple substrates is highlighted because there is an interest in carrying out this procedure using both substrates at the same time. To depict the formation of ethylene glycol through several biosynthetic routes (SDP and P1PDP), as well as the various routes of glycerol and methanol assimilation, several metabolic models were created for three distinct microorganisms (E. coli, S. cerevisiae, and P. pastoris). Here, a study was performed by using these models to estimate the yield per mole of carbon consumed and the quantity of energy intermediates (ATP, NADH, and NADPH) generated per mole of produced ethylene glycol under different glycerol to methanol ratios. Finally, one of these models is chosen to investigate the impact of growth rate on the production of ethylene glycol. Likewise, the impact of intracellular conditions on the thermodynamic feasibility was assessed for the biosynthetic pathways under consideration. In the present study, it was observed how ethylene glycol is not suitable as an electron acceptor for catabolism due to the low amount of free energy obtained. Therefore, the use of alternative electron acceptors was considered, and alternative catabolic reactions allowing the production of ethylene glycol from a partial consumption of oxygen for energy production are proposed. Following that, a preliminary proposal is suggested for the construction of a black-box model for a process using multiple substrates based on a sound methodology already proposed for a single substrate. Emphasis is made on the use of new parameters considering the effect of each substrate on the different cellular processes. However, these parameters have yet to be determined because a mathematical correlation to calculate them could not yet be developed here. The analysis of the metabolic models, on the other hand, revealed that the model for E. coli provides the best scenario for obtaining ethylene glycol due to a higher yield obtained and the amount of energy intermediates generated during the process. It was found that ethylene glycol production occurred primarily at low biomass growth rates in this model, demonstrating that both processes compete directly for the carbon flow into the metabolism. Finally, it was found that some reactions within the pathways for ethylene glycol synthesis are sensitive to intracellular concentration variations, resulting in the development of bottlenecks in the process as well as a reduction in the ethylene glycol production yield. These analyses showed that biological production of ethylene glycol is possible from the main carbon sources derived from crude glycerol. Certain conditions must be met at the metabolic level to redirect the carbon flow to the product of interest, and to make the process feasible. However, more research is still needed to determine in depth the required genetic modifications to couple biomass production with ethylene glycol synthesis, to implement other alternative synthesis routes, and to complete the construction of the blackbox model for multiple substrates in order to evaluate in greater detail the effects of each of these substrates on the various cellular processes of interest.MaestríaDiseño Racional e Intensificación de BioprocesosÁrea curricular de Ingeniería Química e Ingeniería de Petróleosxxiv, 104 páginasapplication/pdfspa540 - Química y ciencias afines::547 - Química orgánicaSynthetic productsProductos sintéticosAnálisis de balance de flujosEtilenglicolGlicerolMetanolModelo metabólicoTermodinámicaFlux balance analysisEthylene glycolGlycerolMethanolMetabolic modelThermodynamicsDiseño in silico de una plataforma biológica para la producción de etilenglicol a partir de glicerol crudo mediante herramientas de ingeniería metabólica y principios de la termodinámicaIn silico design of a biological platform to produce Ethylene Glycol from crude Glycerol using tools of the metabolic engineering and thermodynamicsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede MedellínRedColLaReferenciaJ. B. Mariano and E. R. la Rovere, “Environmental impacts of the oil industry,” Encyclopedia of Life Support Systems (EOLSS), 2010, [Online]. Available: https://www.eolss.net/Eolss-SampleAllChapter.aspxAcciona, “What is sustainability?” https://www.activesustainability.com/sustainabledevelopment/what-is sustainability/ (accessed Jul. 28, 2019).University of Alberta, “What is sustainability?,” p. 3J. Korhonen, A. Honkasalo, and J. Seppälä, “Circular Economy: The Concept and its Limitations,” Ecological Economics, vol. 143, pp. 37–46, 2018, doi: 10.1016/j.ecolecon.2017.06.041.Acciona, “¿En qué consiste la economía circular? | Sostenibilidad para todos,” 16 January, 2017. https://www.sostenibilidad.com/desarrollo-sostenible/en-queconsiste-la-economia-circular/ (accessed Jul. 28, 2019).Fundación para la Economía Circular, “Economía Circular.” https://economiacircular.org/wp/?page_id=62 (accessed Jul. 28, 2019).I. Issa, S. Delbrück, and U. Hamm, “Bioeconomy from experts’ perspectives – Results of a global expert survey,” PLoS One, vol. 14, no. 5, pp. 1–22, 2019, doi: 10.1371/journal.pone.0215917.Bioökonomie BW, “What is a bioeconomy?,” 2012. https://www.biooekonomiebw.de/en/bw/definition/ (accessed Jul. 29, 2019).BIOSTEP, “What is bioeconomy ?,” 2013. http://www.bio-step.eu/background/whatis-bioeconomy/ (accessed Jul. 28, 2019).F. Cherubini, “The biorefinery concept: Using biomass instead of oil for producing energy and chemicals,” Energy Convers Manag, vol. 51, no. 7, pp. 1412–1421, 2010, doi: 10.1016/j.enconman.2010.01.015.G. A. Płaza and D. Wandzich, “Biorefineries – New Green Strategy For Development Of Smart And Innovative Industry,” Management Systems in Production Engineering, vol. 23, no. 3, pp. 150–155, Sep. 2016, doi: 10.2478/mspe-02-03-2016.G. J. Suppes, “Glycerol Technology Options for Biodiesel Industry,” in The Biodiesel Handbook: Second Edition, Second Edi., AOCS Press, 2010, pp. 439–455. doi:10.1016/B978-1-893997-62-2.50016-4.S. K. Yeong, Z. Idris, and H. A. Hassan, Palm Oleochemicals in Non-food Applications. AOCS Press, 2012. doi: 10.1016/B978-0-9818936-9-3.50023-XD. Puerta, “Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica,” 2019.S. Nomanbhay, R. Hussein, and M. Y. Ong, “Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: A review,” Green Chem Lett Rev, vol. 11, no. 2, pp. 135–157, 2018, doi: 10.1080/17518253.2018.1444795A. Dias da Silva Ruy, A. Luíza Freitas Ferreira, A. Ésio Bresciani, R. Maria de Brito Alves, and L. Antônio Magalhães Pontes, “Market Prospecting and Assessment of the Economic Potential of Glycerol from Biodiesel,” in Biomass [Working Title], no. tourism, IntechOpen, 2020, p. 13. doi: 10.5772/intechopen.93965.OCDE/FAO, OCDE-FAO Perspectivas Agrícolas 2017-2026. OECD, 2017. doi: 10.1787/agr_outlook-2017-es.Fedebiocombustibles, “Información Estadística Sector Biocombustibles.” http://www.fedebiocombustibles.com/v3/estadistica-produccion-tituloBiodiesel.html (accessed Aug. 11, 2019).C. Len and R. Luque, “Continuous flow transformations of glycerol to valuable products: an overview,” Sustainable Chemical Processes, vol. 2, no. 1, pp. 1–10, 2014, doi: 10.1186/2043-7129-2-1.CORPODIB, “Programa estratégico para la biotransformación sostenible de glicerina cruda en 1,3-propanodiol y prospectiva para desarrollar una biorefinería en ECODIESEL COLOMBIA S.A,” vol. 3529. 2016H. Yue, Y. Zhao, X. Ma, and J. Gong, “Ethylene glycol: Properties, synthesis, and applications,” Chem Soc Rev, vol. 41, no. 11, pp. 4218–4244, 2012, doi: 10.1039/c2cs15359aB. Pereira, H. Zhang, M. de Mey, C. G. Lim, Z. J. Li, and G. Stephanopoulos, “Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol,” Biotechnol Bioeng, vol. 113, no. 2, pp. 376–383, 2016, doi: 10.1002/bit.25717.T. U. Chae, S. Y. Choi, J. Y. Ryu, and S. Y. Lee, “Production of ethylene glycol from xylose by metabolically engineered Escherichia coli,” AIChE Journal, vol. 64, no. 12, pp. 4193–4200, 2018, doi: 10.1002/aic.16339.L. Salusjärvi, S. Havukainen, O. Koivistoinen, and M. Toivari, “Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives,” Appl Microbiol Biotechnol, vol. 103, no. 6, pp. 2525–2535, 2019, doi: 10.1007/s00253- 019-09640-2.H. Liu, K. R. M. Ramos, K. N. G. Valdehuesa, G. M. Nisola, W. K. Lee, and W. J. Chung, “Biosynthesis of ethylene glycol in Escherichia coli,” Appl Microbiol Biotechnol, vol. 97, no. 8, pp. 3409–3417, 2013, doi: 10.1007/s00253-012-4618-7.L. Salusjärvi et al., “Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae,” Appl Microbiol Biotechnol, vol. 101, no. 22, pp. 8151– 8163, 2017, doi: 10.1007/s00253-017-8547-3.S. Kandasamy, S. P. Samudrala, and S. Bhattacharya, “The route towards sustainable production of ethylene glycol from a renewable resource, biodiesel waste: A review,” Catal Sci Technol, vol. 9, no. 3, pp. 567–577, 2019, doi: 10.1039/c8cy02035c.B. Pereira et al., “Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate,” Metab Eng, vol. 34, pp. 80– 87, 2016, doi: 10.1016/j.ymben.2015.12.004.Chemical Engineering, “Ethylene Glycol Production - Chemical Engineering,” Ethylene Glycol Production, 2015. https://www.chemengonline.com/ethylene-glycolproductio /?printmode=1%0Ahttp://www.chemengonline.com/ethylene-glycolproduction/?printmode=1 (accessed Aug. 14, 2019).J. Sun and H. Liu, “Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts,” Green Chemistry, vol. 13, no. 1, pp. 135–142, 2011, doi: 10.1039/c0gc00571a.J. Pang, M. Zheng, A. Wang, and T. Zhang, “Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol,” Ind Eng Chem Res, vol. 50, pp. 6601– 6608, 2011.N. Ji et al., “Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts,” Catal Today, vol. 147, no. 2, pp. 77–85, 2009, doi: 10.1016/j.cattod.2009.03.012.V. Siracusa and I. Blanco, “Bio-polyethylene (Bio-PE), Bio-polypropylene (Bio-PP) and Bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications,” Polymers (Basel), vol. 12, no. 8, 2020, doi: 10.3390/APP10155029.C. Wittmann and J. C. Liao, Industrial Biotechnology. Weinheim, Germany: Wiley;VCH Verlag GmbH & Co. KGaA, 2017. doi: 10.1002/9783527807833.D. Kuhn, L. M. Blank, A. Schmid, and B. Bühler, “Systems biotechnology - Rational whole-cell biocatalyst and bioprocess design,” Eng Life Sci, vol. 10, no. 5, pp. 384– 397, 2010, doi: 10.1002/elsc.201000009.B. Palsson, “The challenges of in silico biology,” Nat Biotechnol, vol. 18, no. 11, pp. 1147–1150, 2000, doi: 10.1038/81125.U. von Stockar, Biothermodynamics. CRC Press, 2013.R. Mahadevan, A. P. Burgard, I. Famili, S. van Dien, and C. H. Schilling, “Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals,” Biotechnology and Bioprocess Engineering, vol. 10, no. 5, pp. 408–417, Oct. 2005, doi: 10.1007/BF02989823P. Tufvesson, J. Lima-Ramos, N. al Haque, K. v. Gernaey, and J. M. Woodley, “Advances in the process development of biocatalytic processes,” Org Process Res Dev, vol. 17, no. 10, pp. 1233–1238, 2013, doi: 10.1021/op4001675.J. J. Heijnen and R. Kleerebezem, “Bioenergetics of Microbial Growth,” Encyclopedia of Industrial Biotechnology, pp. 1–24, 2010, doi: 10.1002/9780470054581.eib084.L. Tijhuis, M. van Loosdrecht, and J. Heijnen, “A thermodynamically based correlation for maintenance Gibbs energy requirements in …,” Biotechnol Bioeng, vol. 42, no. 4, pp. 509–519, 1993, [Online]. Available: http://www3.interscience.wiley.com/journal/107623668/abstract%5Cnpapers2://pub lication/uuid/FA5791A7-1589-4B3D-97D2-6E9DCC92FD90M. E. Poccia, A. J. Beccaria, and R. G. Dondo, “Modeling the microbial growth of two escherichia coli strains in a multi-substrate environment,” Brazilian Journal of Chemical Engineering, vol. 31, no. 2, pp. 347–354, 2014, doi: 10.1590/0104- 6632.20140312s00002587.A. Narang, “The steady states of microbial growth on mixtures of substitutable substrates in a chemostat,” J Theor Biol, vol. 190, no. 3, pp. 241–261, 1998, doi: 10.1006/jtbi.1997.0552.K. Kovarova, “Growth Kinetics of Escherichia coli: Effect of Temperature, Mixed Substrate Utilization and Adaptation to Carbon-Limited Growth.,” Swiss Federal Institute of technology, Zürich., 1996.T. Egli, C. Bosshard, and G. Hamer, “Simultaneous utilization of methanol–glucose mixtures by Hansenula polymorpha in chemostat: Influence of dilution rate and mixture composition on utilization pattern,” Biotechnol Bioeng, vol. 28, no. 11, pp. 1735–1741, 1986, doi: 10.1002/bit.260281118.T. Egli, U. Lendenmann, and M. Snozzi, “Kinetics of microbial growth with mixtures of carbon sources,” Antonie Van Leeuwenhoek, vol. 63, no. 3–4, pp. 289–298, 1993, doi: 10.1007/BF00871224W. Harder and L. Dijkhuizen, “Strategies of mixed substrate utilization in microorganisms.,” Philos Trans R Soc Lond B Biol Sci, vol. 297, no. 1088, pp. 459– 480, 1982, doi: 10.1098/rstb.1982.0055.A. Narang, A. Konopka, and D. Ramkrishna, “The dynamics of microbial growth on mixtures of substrates in batch reactors,” J Theor Biol, vol. 184, no. 3, pp. 301–317, 1997, doi: 10.1006/jtbi.1996.0275.T. Egli, C. Bosshard, and G. Hamer, “Simultaneous utilization of methanol–glucose mixtures by Hansenula polymorpha in chemostat: Influence of dilution rate and mixture composition on utilization pattern,” Biotechnol Bioeng, vol. 28, no. 11, pp. 1735–1741, 1986, doi: 10.1002/bit.260281118.W. Babel and R. H. Muller, “Mixed substrate utilization in micro-organisms: Biochemical aspects and energetics,” J Gen Microbiol, vol. 131, no. 1, pp. 39–45, 1985, doi: 10.1099/00221287-131-1-39.P. J. F. Gommers, B. J. van Schie, J. P. van Dijken, and J. G. Kuenen, “Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization,” Biotechnol Bioeng, vol. 33, no. 6, pp. 799–799, 1989, doi: 10.1002/bit.260330620.L. Dijkhuizen and W. Harder, “Regulation of Autotrophic and Heterotrophic Metabolism in Pseudumunas uxalaticus 0x1. Growth on Fructose and on Mixtures of Fructose and Formate in Batch and Continuous Cultures,” Arch Microbiol, vol. 123, no. 1, p. [1] L. Dijkhuizen and W. Harder, “Regulation of au, 1979.L. Dijkhuizen and W. Harder, “Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of oxalate and formate in continuous culture,” Arch Microbiol, vol. 123, no. 1, pp. 55–63, Oct. 1979, doi: 10.1007/BF00403502L. Dijkhuizen and W. Harder, “Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of acetate and formate in continuous culture,” Arch Microbiol, vol. 123, no. 1, pp. 47–53, 1979, doi: 10.1007/BF00403501.X. Wang, K. Xia, X. Yang, and C. Tang, “Growth strategy of microbes on mixed carbon sources,” Nat Commun, vol. 10, no. 1, pp. 1–7, 2019, doi: 10.1038/s41467- 019-09261-3.A. Litsios, Á. D. Ortega, E. C. Wit, and M. Heinemann, “Metabolic-flux dependent regulation of microbial physiology,” Curr Opin Microbiol, vol. 42, pp. 71–78, 2018, doi: 10.1016/j.mib.2017.10.029.K. Zhuang, G. N. Vemuri, and R. Mahadevan, “Economics of membrane occupancy and respiro‐fermentation,” Mol Syst Biol, vol. 7, no. 1, p. 500, Jan. 2011, doi: 10.1038/msb.2011.34.M. Szenk, K. A. Dill, and A. M. R. de Graff, “Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis,” Cell Syst, vol. 5, no. 2, pp. 95–104, Aug. 2017, doi: 10.1016/j.cels.2017.06.005.X. Yang et al., “Physical bioenergetics: Energy fluxes, budgets, and constraints in cells,” Proceedings of the National Academy of Sciences, vol. 118, no. 26, Jun. 2021, doi: 10.1073/pnas.2026786118.B. Niebel, S. Leupold, and M. Heinemann, “An upper limit on Gibbs energy dissipation governs cellular metabolism,” Nat Metab, vol. 1, no. 1, pp. 125–132, 2019, doi: 10.1038/s42255-018-0006-7.C. Wittmann and S. Y. Lee, Systems Metabolic Engineering. Dordrecht: Springer Netherlands, 2012. doi: 10.1007/978-94-007-4534-6R. Kulkarni, “Metabolic engineering: Biological art of producing useful chemicals,”Resonance, vol. 21, no. 3, pp. 233–237, 2016, doi: 10.1007/s12045-016-0318-4.Y. T. Yang, G. N. Bennett, and K. Y. San, “Genetic and metabolic engineering,” Electronic Journal of Biotechnology, vol. 1, no. 3, pp. 49–60, 1998.W. Niu, J. Guo, and S. van Dien, Metabolic Engineering for Bioprocess Commercialization. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-41966-4.M. Kanehisa, “KEGG: Kyoto Encyclopedia of Genes and Genomes,” Nucleic Acids Research, 2000. https://www.kegg.jp/Technische Universitat Braunschweig, “Enzyme Database - BRENDA,” Bglucosidase information, 2018. https://www.brenda-enzymes.org/R. Caspi et al., “The MetaCyc database of metabolic pathways and enzymes - a 2019 update,” Nucleic Acids Res, vol. 48, no. D1, pp. D445–D453, Jan. 2020, doi: 10.1093/nar/gkz862.E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehraach, Systems Biology in Practice. 2005.E. Noor, A. Bar-Even, A. Flamholz, E. Reznik, W. Liebermeister, and R. Milo, “Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism,” PLoS Comput Biol, vol. 10, no. 2, 2014, doi: 10.1371/journal.pcbi.1003483.H. Liu, K. R. M. Ramos, K. N. G. Valdehuesa, G. M. Nisola, W. K. Lee, and W. J. Chung, “Biosynthesis of ethylene glycol in Escherichia coli,” Appl Microbiol Biotechnol, vol. 97, no. 8, pp. 3409–3417, 2013, doi: 10.1007/s00253-012-4618-7.Z. Chen, J. Huang, Y. Wu, and D. Liu, “Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose,” Metab Eng, vol. 33, pp. 12–18, 2016, doi: 10.1016/j.ymben.2015.10.013.B. Uranukul, B. M. Woolston, G. R. Fink, and G. Stephanopoulos, “Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes,” Metab Eng, vol. 51, pp. 20–31, 2019, doi: 10.1016/j.ymben.2018.09.012.J. M. Monk et al., “iML1515, a knowledgebase that computes Escherichia coli traits,” Nat Biotechnol, vol. 35, no. 10, pp. 8–12, 2017.N. C. Duarte, M. J. Herrgård, and B. Ø. Palsson, “Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model,” Genome Res, vol. 14, no. 7, pp. 1298–1309, Jul. 2004, doi: 10.1101/gr.2250904.M. Tomàs-Gamisans, P. Ferrer, and J. Albiol, “Fine-tuning the P. pastoris iMT1026 genome-scale metabolic model for improved prediction of growth on methanol or glycerol as sole carbon sources,” Microb Biotechnol, vol. 11, no. 1, pp. 224–237, 2018, doi: 10.1111/1751-7915.12871.P. D. Karp et al., “The BioCyc collection of microbial genomes and metabolic pathways,” Brief Bioinform, vol. 20, no. 4, pp. 1085–1093, Jul. 2019, doi: 10.1093/bib/bbx085I. M. Keseler et al., “The EcoCyc Database in 2021,” Front Microbiol, vol. 12, Jul. 2021, doi: 10.3389/fmicb.2021.711077.Z. A. King et al., “BiGG Models: A platform for integrating, standardizing and sharing genome-scale models,” Nucleic Acids Res, vol. 44, no. D1, pp. D515–D522, Jan. 2016, doi: 10.1093/nar/gkv1049.UniProt consortium, “UniProt.” https://www.uniprot.org/M. E. Beber et al., “eQuilibrator 3.0: a database solution for thermodynamic constant estimation,” Nucleic Acids Res, vol. 50, no. D1, pp. D603–D609, Jan. 2022, doi: 10.1093/nar/gkab1106.L. Heirendt et al., “Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0,” Nat Protoc, vol. 14, no. 3, pp. 639–702, Mar. 2019, doi: 10.1038/s41596-018-0098-2.E. Noor, H. S. Haraldsdóttir, R. Milo, and R. M. T. Fleming, “Consistent Estimation of Gibbs Energy Using Component Contributions,” PLoS Comput Biol, vol. 9, no. 7, p. e1003098, Jul. 2013, doi: 10.1371/journal.pcbi.1003098F. Meyer, P. Keller, J. Hartl, O. G. Gröninger, P. Kiefer, and J. A. Vorholt, “Methanolessential growth of Escherichia coli,” Nat Commun, vol. 9, no. 1, p. 1508, Dec. 2018, doi: 10.1038/s41467-018-03937-yC. T. Chen et al., “Synthetic methanol auxotrophy of Escherichia coli for methanoldependent growth and production,” Metab Eng, vol. 49, no. June, pp. 257–266, 2018, doi: 10.1016/j.ymben.2018.08.010B. M. Woolston, J. R. King, M. Reiter, B. van Hove, and G. Stephanopoulos, “Improving formaldehyde consumption drives methanol assimilation in engineered E. coli,” Nat Commun, vol. 9, no. 1, 2018, doi: 10.1038/s41467-018-04795-4.Z. Dai et al., “Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae,” Bioresour Technol, 2017, doi: 10.1016/j.biortech.2017.05.100.H. O. Kammen and R. Koo, “Phosphopentomutases,” Journal of Biological Chemistry, vol. 244, no. 18, pp. 4888–4893, 1969, doi: 10.1016/s0021- 9258(18)94286-9.K. Hammer-Jespersen and A. Munch-Petersem, “Phosphodeoxyribomutase from Escharichia coli.,” Eur J Biochem, vol. 17, pp. 9–25, 2019.R. K. Murray, D. A. Bender, K. M. Botham, P. J. Kennelly, V. W. Rodwell, and P. A. Weil, Harper. Bioquímica ilustrada. Mc Graw Hill Education, 2010.A. Kümmel, S. Panke, and M. Heinemann, “Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data,” Mol Syst Biol, vol. 2, pp. 1–10, 2006, doi: 10.1038/msb4100074.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84239/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1152703489.2022.pdf1152703489.2022.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf1896206https://repositorio.unal.edu.co/bitstream/unal/84239/2/1152703489.2022.pdfff23e92b3033116caef9058c38f0e8f4MD52THUMBNAIL1152703489.2022.pdf.jpg1152703489.2022.pdf.jpgGenerated Thumbnailimage/jpeg6036https://repositorio.unal.edu.co/bitstream/unal/84239/3/1152703489.2022.pdf.jpga792d517a6a9bf016a43459396f719bcMD53unal/84239oai:repositorio.unal.edu.co:unal/842392024-08-14 23:41:34.912Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=