Involutive and SAGBI bases for skew PBW extensions

ilustraciones, diagramas

Autores:
Suárez Gómez, Yésica Paola
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86385
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86385
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::512 - Álgebra
Subalgebra Analogue to Gröbner Bases for Ideals
SAGBI basis
Quantum algebra
Involutive basis
Skew PBW extension
Auslander-regular
Artin-Schelter regular
Skew Calabi-Yau
Base SAGBI
Base involutiva
Extensión PBW torcida
Álgebra cuántica
Regularidad de Auslander
Regularidad de Artin-Schelter
Calabi-Yau torcida
subálgebra
anillo de polinomios
álgebra no conmutativa
subalgebra
polynomial ring
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_2d6e4ef94b28b362ad05e0a205736a51
oai_identifier_str oai:repositorio.unal.edu.co:unal/86385
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Involutive and SAGBI bases for skew PBW extensions
dc.title.translated.spa.fl_str_mv bases involutivas y SAGBI para extensiones PBW torcidas
title Involutive and SAGBI bases for skew PBW extensions
spellingShingle Involutive and SAGBI bases for skew PBW extensions
510 - Matemáticas::512 - Álgebra
Subalgebra Analogue to Gröbner Bases for Ideals
SAGBI basis
Quantum algebra
Involutive basis
Skew PBW extension
Auslander-regular
Artin-Schelter regular
Skew Calabi-Yau
Base SAGBI
Base involutiva
Extensión PBW torcida
Álgebra cuántica
Regularidad de Auslander
Regularidad de Artin-Schelter
Calabi-Yau torcida
subálgebra
anillo de polinomios
álgebra no conmutativa
subalgebra
polynomial ring
title_short Involutive and SAGBI bases for skew PBW extensions
title_full Involutive and SAGBI bases for skew PBW extensions
title_fullStr Involutive and SAGBI bases for skew PBW extensions
title_full_unstemmed Involutive and SAGBI bases for skew PBW extensions
title_sort Involutive and SAGBI bases for skew PBW extensions
dc.creator.fl_str_mv Suárez Gómez, Yésica Paola
dc.contributor.advisor.spa.fl_str_mv Reyes, Armando
dc.contributor.author.spa.fl_str_mv Suárez Gómez, Yésica Paola
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::512 - Álgebra
topic 510 - Matemáticas::512 - Álgebra
Subalgebra Analogue to Gröbner Bases for Ideals
SAGBI basis
Quantum algebra
Involutive basis
Skew PBW extension
Auslander-regular
Artin-Schelter regular
Skew Calabi-Yau
Base SAGBI
Base involutiva
Extensión PBW torcida
Álgebra cuántica
Regularidad de Auslander
Regularidad de Artin-Schelter
Calabi-Yau torcida
subálgebra
anillo de polinomios
álgebra no conmutativa
subalgebra
polynomial ring
dc.subject.other.none.fl_str_mv Subalgebra Analogue to Gröbner Bases for Ideals
dc.subject.proposal.eng.fl_str_mv SAGBI basis
Quantum algebra
Involutive basis
Skew PBW extension
Auslander-regular
Artin-Schelter regular
Skew Calabi-Yau
dc.subject.proposal.spa.fl_str_mv Base SAGBI
Base involutiva
Extensión PBW torcida
Álgebra cuántica
Regularidad de Auslander
Regularidad de Artin-Schelter
Calabi-Yau torcida
dc.subject.wikidata.spa.fl_str_mv subálgebra
anillo de polinomios
álgebra no conmutativa
dc.subject.wikidata.eng.fl_str_mv subalgebra
polynomial ring
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-07-03T21:23:06Z
dc.date.available.none.fl_str_mv 2024-07-03T21:23:06Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86385
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86385
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv N. Andruskiewitsch, F. Dumas, and H. M. Peña. On the double of the Jordan plane. Ark. Mat., 60(2):213–229, 2022
W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases. Graduate Studies in Mathematics. American Mathematical Society, 1994.
J. P. Acosta and O. Lezama. Universal property of skew PBW extensions. Algebra Discrete Math., 20(1):1–12, 2015
J. Apel. Gröbnerbasen in Nichtkommutativen Algebren und ihre Anwendung. PhD thesis, Universität Leipzig, 1988
J. Apel. A Gröbner Approach to Involutive Bases. J. Symbolic Comput., 19(5):441–457, 1995
J. Apel. The Theory of Involutive Divisions and an Application to Hilbert Function Computations. J. Symbolic Comput., 25(6):683–704, 1998
V. A. Artamonov. Derivations of Skew PBW-Extensions. Commun. Math. Stat, 3(4):449–457, 2015
M. Artin and W. F. Schelter. Graded algebras of global dimension 3. Adv. Math., 66(2):171–216, 1987
M. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., 23(05):2450089, 2024
V. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):75–97, 1992.
V. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023.
G. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In S. Geun Hahn, H. Chul Myung, and E. Zelmanov, editors, Recent Progress in Algebra. An International Conference on Recent Progress in Algebra, August 11–15, KAIST, Taejon, South Korea, volume 224 of Contemporary Mathematics, pages 29–45. American Mathematical Society, Providence, Rhode Island, 1999.
R. Berger. The Quantum Poincaré-Birkhoff-Witt Theorem. Comm. Math. Phys., 143(2):215–234, 1992
A. Bell and K. Goodearl. Uniform rank over differential operator rings and Poincaré- Birkhoff-Witt extensions. Pacific J. Math., 131(1):13–37, 1988
K. Brown and K. R. Goodearl. Lectures on Algebraic Quantum Groups. Birkäuser- Verlag, 2002
J. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic Methods in Non- commutative Algebra: Applications to Quantum Groups. Dordrecht, Kluwer, 2003
J. Bell, A. Heinle, and V. Levandovskyy. On noncommutative finite factorization domains. Trans. Amer. Math. Soc., 369(4):2675–2695, 2017
G. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998
A. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin, Milwaukee, preprint, 1990
B. Buchberger. Ein Algorithms zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, Innsbruck, Austria, 1965
T. Becker and V. Weispfenning. Gröbner Bases. A Computational Approach to Com- mutative Algebra. 141. Graduate Texts in Mathematics, Springer-Verlag, 1993
A. Chacón. On the Noncommutative Geometry of Semi-graded Rings. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2022
J. Calmet, M. Hausdorf, and W. M. Seiler. A constructive introduction to involution. In Akerkar, R. ed., Proceedings of the International Symposium on Applications of Computer Algebra - ISACA 2000, pages 33–50. Allied Publishers, 2001
F. J. Castro-Jiménez and L. Narváez-Macarro. Homogenising Differential Operators. arXiv preprint arXiv:1211.1867, 1997
M. Collart, M. Kalkbrener, and D. Mall. Converting Bases with the Gröbner Walk. J. Symbolic Comput., 24(3–4):465–469, 1997
D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Fourth Edition. Undergraduate Texts in Mathematics. Springer Cham, 2015
P. M. Cohn. Free Rings and Their Relations. Second Edition. Academic Press, London, 1985
S. C. Coutinho. A Primer of Algebraic D -modules. Number 33. Cambridge University Press, 1995
T. Cassidy and B. Shelton. PBW-deformation theory and regular central extensions. J. Reine Angew. Math., 610:1–12, 2007
T. Cassidy and B. Shelton. Generalizing the notion of Koszul algebra. Math.Z., 260(1):93–14, 2008
A. Chirvasitu, S. P. Smith, and L. Z. Wong. Noncommutative geometry of homoge- nized quantum sl(2,c). Pacific J. Math., 292(2):305–354, 2018
T. Cassidy and M. Vancliff. Generalizations of graded Clifford algebras and of com- plete intersections. J. Lond. Math. Soc., 81(1):91–112, 2010
G. A. Evans. Noncommutative Involutive Bases. PhD thesis, University of Wales, 2005.
W. Fajardo. Extended modules over skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2018
W. Fajardo. A Computational Maple Library for Skew PBW Extensions. Fund. Inform., 167(3):159–191, 2019
W. Fajardo. Right Buchberger algorithm over bijective skew PBW extensions. Fund. Inform., 184(2):83–105, 2022
W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions. Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications. Springer, Cham, 2020
W. Fajardo, O. Lezama, C. Payares, A. Reyes, and C. Rodríguez. Introduction to Algebraic Analysis on Ore Extensions. In A. Martsinkovsky, editor, Functor Cat- egories, Model Theory, Algebraic Analysis and Constructive Methods FCMTCCT2 2022, Almería, Spain, July 11-15, Invited and Selected Contributions, volume 450 of Springer Proceedings in Mathematics & Statistics, pages 45–116. Springer, Cham, 2024
J. Gaddis. PBW deformations of Artin-Schelter regular algebras and their homoge- nizations. PhD thesis, The University of Wisconsin-Milwaukee, 2013
J. Gaddis. PBW deformations of Artin-Schelter regular algebras. J. Algebra Appl., 15(4):1650064, 2016
C. Gallego. Matrix methods for projective modules over σ-PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2015
C. Gallego. Filtered-graded transfer of noncommutative Gröbner bases. Rev. Colom- biana Mat., 50(1):41–54, 2016
C. Gallego. Matrix computations on projective modules using noncommutative Gröbner bases. Journal of Algebra, Number Theory: Advances and Applications, 15(2):101–139, 2016
K. Gatermann. Computer Algebra Methods for Equivariant Dynamical Systems, volume 1728 of Lect. Notes in Math. Springer, 2000
V. P. Gerdt and Y. A. Blinkov. Involutive bases of polynomial ideals. Math. Comput. Simulation, 45(5-6):519–542, 1998
V. P. Gerdt and Y. A. Blinkov. Minimal involutive bases. Math. Comput. Simulation, 45:543–560, 1998
V. P. Gerdt, Y. A. Blinkov, and D. A. Yanovich. Construction of Janet bases II: polyno- mial bases. In Ghanza, V. G., Mayr, E. W., Vorozhtsov, E. V. eds, Computer Algebra in Scientific Computing - CASC, pages 249–263. Springer, 2001
V. P. Gerdt. Completion of linear differential systems to involution. In Ghanza, V. G., Mayr, E. W., Vorozhtsov, E. V. eds, Computer Algebra in Scientific Computing - CASC, pages 115–137. Springer, 1999
K. R. Goodearl and R. B. Warfield Jr. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press. London, 2004
C. Gallego and O. Lezama. Gröbner Bases for Ideals of σ-PBW Extensions. Comm. Algebra, 39(1):50–75, 2011
C. Gallego and O. Lezama. Projective modules and Gröbner bases for skew PBW extensions. Dissertationes Math., 521:1–50, 2017
O. W. Greenberg and A. M. L. Messiah. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev., 138(5B):B1155–B1167, 1965
J. Gutiérrez and R. R. San Miguel. Reduced Gröbner Bases Under Composition. J. Symbolic Comput., 26(4):433–444, 1998
P. M. Gordan. Les Invariants Des Formes Binaires. J. Math. Pures Appl. (9), 5(6):141– 156, 1900
G. M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. Springer-Verlag Berlin Heidelberg, Second edition, 2008
H. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270, 1953
J. Gómez and H. Suárez. Double Ore extensions versus graded skew PBW extensions. Comm. Algebra, 8(1):185–197, 2020
B. Greenfeld, A. Smoktunowicz, and M. Ziembowski. Five solved problems on radicals of Ore extensions. Publ. Mat., 63(2):423–444, 2019
J. Gómez-Torrecillas. Basic Module Theory over Non-commutative Rings with Com- putational Aspects of Operator Algebras. In M. Barkatou, T. Cluzeau, G. Regensburger, and M. Rosenkranz, editors, Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012, volume 8372 of Lecture Notes in Computer Science, pages 23–82. Berlin, Heidelberg: Springer, 2014
J. Gómez-Torrecillas and F. J. Lobillo. Global homological dimension of multifiltered rings and quantized enveloping algebras. J. Algebra, 225(2):522–533, 2000
A. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. J. Algebra, 176(3):861–881, 1995
T. Hayashi. q-analogues of Clifford and Weyl algebras-Spinor and oscillator repre- sentations of quantum enveloping algebras. Comm. Math. Phys., 127(1):129–144, 1990
O. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, 2005
E. Hashemi, K. Khalilnezhad, and A. Alhevaz. (Σ, ∆)-compatible skew PBW extension ring. Kyungpook Math. J., 57(3):401–417, 2017
E. Hashemi, K. Khalilnezhad, and M. Ghadiri. Baer and quasi-Baer properties of skew PBW extensions. J. Algebr. Syst, 7(1):1–24, 2019
M. Havlícek, A. U. Klimyk, and S. Pošta. Central elements of the algebras U ′(som ) and U (iso_m ). Czech. J. Phys., 50(1):79–84, 2000
A. Hashemi, B. M.-Alizadeh, and M. Riahi. Invariant g^2v algorithm for computing SAGBI-Gröbner bases. Sci. China Math., 56(9):1781–1794, 2013
H. Hong. Groebner Bases Under Composition I. J. Symbolic Comput., 25(5):643–663, 1998
M. Hausdorff, W. M. Seiler, and R. Steinwandt. Involutive Bases in the Weyl Algebra. J. Symbolic Comput., 34(3):181–198, 2002
A. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A., 34(29):5815– 5834, 2001
M. Janet. Sur les systèmes d’équations aux dérivées partielles. J. Math. Pure Appl., 3:65–151, 1920
M. Janet. Les modules de formes algébriques et la théorie générale des systémes différentiels. Norm. Sup, 41:27–65, 1924
M. Janet. Lecons sur les Systémes d’Équations aux Dérivées Partielles. Cahiers Scien- tifiques, 1929
A. Jannussis, A. Leodaris, and R. Mignani. Non-Hermitian Realization of a Lie- deformed Heisenberg algebra. Phys. Lett. A, 197(3):187–191, 1995
D. A. Jordan. Finite-dimensional simple modules over certain iterated skew polyno- mial rings. J. Pure Appl. Algebra, 98(1):45–55, 1995
D. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000
D. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001
D. A. Jordan and I. E. Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb. Math. Soc., 39(3):461–472, 1996
K. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: S. Sil- vestrov and E. Paal and V. Abramov and A. Stolin (eds). Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009
N. Kanwal and J. A. Khan. Sagbi-Gröbner Bases Under Composition. J. Syst. Sci. Complex., 36:2214–2224, 2023
M. A. B. Khan, J. A. Khan, and M. A. Binyamin. SAGBI Bases in G-Algebras. Symmetry, 11(2):221–231, 2019
D. Kapur and K. Madlener. A Completion Procedure for Computing a Canonical Basis for a k-subalgebra. In Proceedings of the third conference on Computers and Mathematics, pages 1–11. Springer, 1989
E. Kirkman, I. M. Musson, and D. Passman. Noetherian Down-Up Algebras. Proc. Amer. Math. Soc., 127(11):3161–3167, 1999
M. Kreuzer and L. Robbiano. Computational Commutative Algebra, volume 2. Springer, 2005
A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner Bases in Algebras of Solvable Type. J. Symbolic Computation, 9(1):1–26, 1990
K. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A: Math. Gen., 30(9):3165–3173, 1997
R. S. Kulkarni. Irreducible Representations of Witten’s deformations of U (sl2). J. Algebra, 214(1):64–91, 1999
S. Kuroda. A new class of finitely generated polynomial subalgebras without finite SAGBI bases. Proc. Amer. Math. Soc., 151:533–545, 2023
D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of al- gebraic equations. In Hulzen, J. A. ed., Proceedings of EUROCAL, LNCS 162, pages 146–156. Springer, 1983
L. Le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994
L. Le Bruyn. Central singularities of quantum spaces. J. Algebra, 177(1):142–153, 1995
L. Le Bruyn and S. P. Smith. Homogenized sl(2). Proc. Amer. Math. Soc., 118(3):125– 130, 1993
L. Le Bruyn, S. P. Smith, and M. Van den Bergh. Central extensions of three dimen- sional Artin-Schelter algebras. Math. Z., 222(2):171–212, 1996
T. Levasseur. Some properties of non-commutative regular graded rings. Glasglow Math. J., 34(3):277–300, 1992
V. Levandovskyy. Non-Commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation. PhD thesis, Universität Kaiser- slautern, 2005
O. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semi-graded Rings. Commun. Math. Stat., 9(3):347–378, 2021
V. Levandovskyy and A. Heinle. A factorization algorithm for G-algebras and its applications. J. Symbolic Comput., 85:188–205, 2017
H. Li. Noncommutative Gröbner Bases and Filtered-Graded Transfer, volume 1795 of Lect. Notes in Math. Springer Berlin Heidelberg, 2002
E. Latorre. and O. Lezama. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput, 27(4):361–389, 2017
O. Lezama and V. Marín. Una aplicación de las bases SAGBI - Igualdad de Subálgebras (caso cuerpo). Revista Tumbaga, 1(4):31–41, 2009
H. Li and F. Van Oystaeyen. Dehomogenization of Gradings to Zariskian Filtrations and Aplications to Invertible Ideals. Proc. Amer. Math. Soc., 115(1):1–11, 1992
O. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014
M. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. Colombiana Mat., 54(1):39–63, 2020
O. Lezama and H. Venegas. Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry. Discuss. Math. Gen. Algebra Appl., 37(1):45–57, 2017
H. Li and F. van Oystaeyen. Zariskian Filtrations. K -Monographs in Mathematics. Springer Science, 1996
J. Liu and M. Wang. Further results on homogeneous Gröbner bases under composi- tion. J. Algebra, 315(1):134–143, 2007
J. L. Miller. Effective Algorithms for Intrinsically Computing SAGBI-Groebner Bases in a Polynomial Ring over a Field. London Mathematical Society Lecture Note Series, pages 421–433, 1998
C. Méray and C. Riquier. Sur la convergende des développements des intégrales ordinaires d’un systéme d’équations différentielles partielles. Ann. Sci. Ec. Norm. Sup., 7:23–88, 1890
J. C. McConnell and J. C. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies in Mathematics. American Mathematical Society, 2001.
P. Nordbeck. Canonical Subalgebraic Bases in Non-commutative Polynomial Rings. In Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, pages 140–146, 1998
P. Nordbeck. Canonical Bases for Algebraic Computations. PhD thesis, Lund Institute of Technology, Lund University, Sweeden, 2001
P. Nordbeck. Non-commutative Gröbner Bases Under Composition. Comm. Algebra, 29(11):4831–4851, 2001
P. Nordbeck. SAGBI Bases Under Composition. J. Symbolic Comput., 33(1):67–76, 2002
A. Niño and A. Reyes. Some ring theoretical properties of skew Poincaré-Birkhoff- Witt extensions. Bol. Mat., 24(2):131–148, 2017
A. Niño and A. Reyes. On centralizers and pseudo-multidegree functions for non- commutative rings having PBW bases. J. Algebra Appl., 2023
E. Noether and W. Schmeidler. Moduln in nichtkommutativen bereichen, insbeson- dere aus differential - und differenzenausdrücken. Math. Z., 8:1–35, 1920
O. Ore. Linear Equations in Non-commutative Fields. Ann. of Math. (2), 32(3):463– 477, 1931
O. Ore. Theory of Non-commutative Polynomials. Ann. of Math. (2), 34(3):480–508, 1933
T. Oaku, N. Takayama, and U. Walther. A localization algorithm for D-modules. J. Symbolic Comput., 29:721–728, 2000
C. Phan. The Yoneda Algebra of a Graded Ore Extension. Comm. Algebra, 40(3):834– 844, 2012
P. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002
L. Robbiano and A. M. Bigatti. Saturations of subalgebras, SAGBI bases, and U- invariants. J. Symbolic Comput., 109:259–282, 2022
I. T. Redman. The Non-Commutative Algebraic Geometry of some Skew Polynomial Algebras. PhD thesis, University of Wisconsin - Milwaukee, 1996
I. T. Redman. The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra, 27(11):5587–5602, 1999
A. Reyes. Jacobson’s conjecture and skew PBW extensions. Rev. Integr. Temas Mat., 32(2):139–152, 2014
A. Reyes. Armendariz modules over skew PBW extensions. Comm. Algebra, 47(3):1248–1270, 2019
G. S. Rinehart. Differential forms on general commutative algebras. Trans. Amer. Math. Soc., 108(2):195–222, 1963
C. Riquier. Les Systémes d’Équations aux Derivées Partielles. Gauthier-Villars, Paris, 1910
D. Rogalski. Noncommutative Projective Geometry. In G. Bellamy, D. Rogalski, and T. Schedler, editors, Noncommutative Algebraic Geometry, volume 64 of Math. Sci. Res. Inst. Publ., pages 13–70. Cambridge University Press, 2016
A. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quan- tized Algebras. Math. Appl. (Soviet Ser.), 330 Kluwer Academic Publishers, 1995
A. Reyes and C. Rodríguez. The McCoy Condition on Skew Poincaré-Birkhoff-Witt Extensions. Commun. Math. Stat., 9(1):1–21, 2021
L. Robbiano and M. Sweedler. Subalgebra bases. In W. Bruns and A. Simis (eds.), Commutative algebra, Proc. Workshop Salvador 1988, Lect. Notes in Math. 1430, pages 61–87. Springer, Berlin, 1990
A. Reyes and H. Suárez. A note on zip and reversible skew PBW extensions. Bol. Mat., 23(1):71–79, 2016
A. Reyes and H. Suárez. Some Remarks About the Cyclic Homology of Skew PBW extensions. Ciencia en Desarrollo, 7(2):99–107, 2016
A. Reyes and H. Suárez. Bases for Quantum Algebras and Skew Poincaré-Birkhoff- Witt Extensions. Momento, 54(1):54–75, 2017
A. Reyes and H. Suárez. Enveloping Algebra and Skew Calabi-Yau Algebras over Skew Poincaré-Birkhoff-Witt Extensions. Far East J. Math. Sci., 102(2):373–397, 2017
A. Reyes and H. Suárez. PBW Bases for Some 3-Dimensional Skew Polynomial Algebras. Far East J. Math. Sci., 101(6):1207–1228, 2017
A. Reyes and H. Suárez. A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argentina, 59(1):157–178, 2018
A. Reyes and Y. Suárez. On the ACCP in Skew Poincaré-Birkhoff-Witt Extensions. Beitr. Algebra. Geom., 59(4):625–643, 2018
A. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compati- ble rings. J. Algebra Appl., 19(12):2050225, 2020
A. Reyes and C. Sarmiento. On the differential smoothness of 3-dimensional skew polynomial algebras and diffusion algebras. Internat. J. Algebra Comput., 32(3):529– 559, 2022
D. Rogalski and J. J. Zhang. Regular algebras of dimension 4 with 3 generators. Contemp. Math. (AMS), 562(221–241), 2012
H. Suárez, F. Anaya, and A. Reyes. Propiedad χ en extensiones PBW torcidas gradu- adas. Ciencia en Desarrollo, 12(1):33–41, 2021
H. Suárez, D. Cáceres, and A. Reyes. Some special determinants in graded skew PBW extensions. Rev. Integr. Temas Mat., 39(1):91–107, 2021
W. M. Seiler. Involution - The Formal Theory of Differential Equations and Its Ap- plications in Computer Algebra and Numerical Analysis. PhD thesis, Habilitation Thesis, Universität Mannheim, 2001
W. M. Seiler. A combinatorial approach to involution and δ-regularity I: involutive bases in polynomial algebras of solvable type. AAECC, 20(3-4):207–259, 2009
W. M. Seiler. Involution. The Formal Theory of Differential Equations and its Applica- tions in Computer Algebra, volume 24. Algorithms and Computation in Mathematics (AACIM). Springer Berlin, Heidelberg, 2010.
Y. Shen and D. M. Lu. Nakayama automorphisms of PBW deformations and Hopf actions. Sci. China Math., 59(4):661–672, 2016
H. Suárez, O. Lezama, and A. Reyes. Some relations between N-Koszul, Artin-Schelter regular and Calabi-Yau algebras with skew PBW extensions. Revista Ciencia en Desarrollo, 6(2):205–213, 2015
H. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. Colombiana Mat., 51(2):221–239, 2017
S. P. Smith. A Class of Algebras Similar to the Enveloping of sl(2). Comm. Algebra, 322(1):285–314, 1991
H. Suárez and A. Reyes. A generalized Koszul property for skew PBW extensions. Far East J. Math. Sci., 101(2):301–320, 2017
H. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J. Math. (Springer)., 12(1):247–263, 2023
D. Shannon and M. Sweedler. Using Gröbner bases to determine algebra member- ship, split surjective algebra homomorphisms determine birational equivalence. J. Symbolic Comput., 6(2-3):267–273, 1988
M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations, volume 6 of Algorithms and Computation in Mathematics. Springer Berlin, Heidelberg, 2000
R. P. Stanley. Hilbert functions of graded algebras. Adv. Math., 28(1):57–83, 1978
H. Suárez. Koszulity for graded skew PBW extensions. Comm. Algebra, 45(10):4569–4580, 2017
H. Suárez. N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2017
B. Sturmfels and N. White. Computing combinatorial decomposition of rings. Com- binatorica, 11(3):275–293, 1991
J. M. Thomas. Differential systems, volume 21. American Mathematical Society, 1937
A. Tresse. Sur les invariants différentiels des groupes continus de transformations. Acta Math., 18(1):1–88, 1894
A. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In S. Silvestrov, A. Malyarenko, and M. Ranˇci ́c, editors, Algebraic Structures and Applications. SPAS 2017, volume 317 of Springer Proc. Math. Stat., pages 469–490. Springer, Cham, 2020
R. Twarok. Representations for Selected Types of Diffusion Systems. In: E. Kapuscik and A. Horzela (eds). Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland, World Scientific Publishing Co. Pte. Ltd., pp. 615–620, 2002
H. Venegas. Zariski cancellation problem for skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2020
V. Weispfenning. Constructing universal Gröbner bases. In L. Huguet and A. Poli, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1987., volume 356 of Lecture Notes in Computer Science, pages 13–70. Springer, Berlin, Heidelberg, 1989
E. Witten. Gauge theories, vertex models, and quantum groups. Nuclear Phys. B, 330(2-3):285–346, 1990
E. Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm. Math. Phys., 137(1):29–66, 1991
S. L. Woronowicz. Twisted SU (2)-Group. An Example of a Non-commutative Differ- ential Calculus. Publ. Res. Inst. Math. Sci., 23:117–181, 1987
W. T. Wu. On the construction of Gröbner basis of a polynomial ideal based on Riquier-Janet theory. J. Syst. Sci. Complex., 4(3):194–207, 1991
Q. Wu and C. Zhu. Poincaré-Birkhoff-Witt deformation of Koszul Calabi-Yau alge- bras. Algebr. Represent. Theor., 16(2):405–420, 2013
H. Yamane. A Poincaré-Birkhoff-Witt Theorem for Quantized Universal Enveloping Algebras of Type AN . Publ. RIMS Kyoto Univ., 25(3):503–520, 1989
Y. A. Zharkov and Y. A. Blinkov. Involution approach to solving systems of alge- braic equations. In Proceedings of International IMACS Symposium on Symbolic Computations, volume 93, pages 11–17, 1993
A. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991
J. J. Zhang and J. Zhang. Double Ore extensions. J. Pure Appl. Algebra, 212(12):2668– 2690, 2008
J. J. Zhang and J. Zhang. Double extension regular algebras of type (14641). J. Algebra, 322(2):373–409, 2009
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv iii, 111 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86385/2/1049621918.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/86385/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86385/3/1049621918.2023.pdf.jpg
bitstream.checksum.fl_str_mv 74239c8ac35d8bc8edd6ec61a4184883
eb34b1cf90b7e1103fc9dfd26be24b4a
eab6ce7714cc7479a070bdccfb72506b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090151263993856
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes, Armando94408df5dafcee9e59989990d5187f68Suárez Gómez, Yésica Paolad2cce79de2d407fbf892ac290fd4db552024-07-03T21:23:06Z2024-07-03T21:23:06Z2023https://repositorio.unal.edu.co/handle/unal/86385Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasIn this thesis, we study homological properties and SAGBI and Involutive bases of the noncommutative rings known as skew PBW extensions. First, we present some ring- theoretical notions of these extensions that are necessary throughout the thesis. With the aim of showing the generality of these objects in areas such as ring theory and noncommutative geometry, we include a non-exhaustive list of noncommutative algebras that are particular examples of these rings. Second, we characterize several homological properties of these ex- tensions. We provide a new and more general filtration to these extensions, and introduce the notion of σ-filtered skew PBW extension with the aim of studying its homological properties. We show that the homogenization of a σ-filtered skew PBW extension over a coefficient ring is a graded skew PBW extension over the homogenization of such a ring. By using this fact, we prove that if the homogenization of the coefficient ring is Auslander-regular, then the homogenization of the extension is a domain Noetherian, Artin-Schelter regular, Zariski and (ungraded) skew Calabi-Yau. Third, we present our proposal of SAGBI bases theory for skew PBW extensions over algebras. We consider the notion of reduction which is necessary in the characterization of these bases, and then establish an algorithm to find the normal form of an element. Then, we define what a SAGBI basis is, and formulate a criterion to determine when a subset of a skew PBW extension over a field is a SAGBI basis. In addition, we establish an algorithm to find a SAGBI basis from a subset contained in a subalgebra of a skew PBW extension. We illustrate our results with different examples of noncommutative algebras. We also investigate the problem of poly- nomial composition for SAGBI bases of subalgebras of skew PBW extensions. Finally, we present a theory of Involutive bases for skew PBW extensions over fields. We consider the notions of weak and strong Involutive bases, and then we define the involutive reduction process and involutive remainder that are necessary for the characterization of weak (strong) Involutive bases. Next, we introduce the notion of standard Involutive representation for elements of a subset of a skew PBW extension. Also, we give the definition of minimal Involutive basis and show the existence of a monic, involutively autoreduced, minimal Involutive basis. Finally, we establish different algorithms that compute involutive standard representations, principal involutive autoreduction, and an Involutive basis of a left ideal of a skew PBW extension. In this way, the existence of a finite Involutive basis for these ideals is proved by assuming that the involutive division is constructive Noetherian.En esta tesis, estudiamos propiedades homológicas y bases SAGBI e Involutivas de los anillos no conmutativos conocidos como extensiones PBW torcidas. Primero, presentamos algunas nociones teóricas de la teoría de anillos de estas extensiones que son necesarias a lo largo de la tesis. Con el propósito de mostrar la generalidad de estos objetos en áreas como la teoría de anillos y la geometría no conmutativa, incluimos una lista no exhaustiva de álgebras no conmutativas que son ejemplos particulares de estos anillos. Segundo, caracterizamos variadas propiedades homológicas de estas extensiones. Brindamos una nueva y más general filtración para estas extensiones, e introducimos la noción de extensión PBW torcida sigma-filtrada con el propósito de estudiar sus propiedades homológicas. Mostramos que la homogenización de una extensión PBW torcida sigma-filtrada sobre un anillo de coeficientes es una extensión PBW torcida graduada sobre la homogenización de dicho anillo. Utilizando este hecho, probamos que si la homogenización del anillo de coeficientes es Auslander-regular, entonces la homogenización de la extensión es un dominio noetheriano, Artin-Schelter regular, Zariski y Calabi-Yau torcida. Tercero, presentamos nuestra propuesta de teoría de bases SAGBI para extensiones PBW torcidas sobre álgebras. Consideramos la noción de reducción la cual es necesaria en la caracterización de estas bases, y luego establecemos un algoritmo para encontrar la forma normal de un elemento. Después, definimos lo que es una base SAGBI, y formulamos un criterio para determinar cuándo un subconjunto de una extensión PBW sobre un campo es una base SAGBI. De hecho, establecemos un algoritmo para encontrar una base SAGBI a partir de un subconjunto contenido en una subálgebra de una extensión PBW torcida. Ilustramos nuestros resultados con diferentes ejemplos de álgebras no conmutativas. También investigamos el problema de la composición polinomial para bases SAGBI de subálgebras de extensiones PBW torcidas. Finalmente, presentamos una teoría de bases Involutivas para extensiones PBW torcidas sobre campos. Consideramos las nociones de base Involutiva débil y fuerte, y luego definimos el proceso de reducción involutiva y el residuo involutivo que son necesarios para la caracterización de bases Involutivas débiles y fuertes. A continuación, presentamos la noción de representación involutiva estándar para elementos de un subconjunto de una extensión PBW torcida. Además, damos la definición de base Involutiva minimal y mostramos la existencia de una base Involutiva minimal, mónica, e involutivamente autorreducida. Finalmente, establecemos diferentes algoritmos que calculan representaciones estándar involutivas, autorreducción involutiva principal, y una base Involutiva de un ideal izquierdo de una extensión PBW torcida. De esta manera, la existencia de una base Involutiva finita para estos ideales se demuestra asumiendo que la división involutiva es noetheriana constructiva. (Texto tomado de la fuente).DoctoradoDoctor en Ciencias - Matemáticasiii, 111 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::512 - ÁlgebraSubalgebra Analogue to Gröbner Bases for IdealsSAGBI basisQuantum algebraInvolutive basisSkew PBW extensionAuslander-regularArtin-Schelter regularSkew Calabi-YauBase SAGBIBase involutivaExtensión PBW torcidaÁlgebra cuánticaRegularidad de AuslanderRegularidad de Artin-SchelterCalabi-Yau torcidasubálgebraanillo de polinomiosálgebra no conmutativasubalgebrapolynomial ringInvolutive and SAGBI bases for skew PBW extensionsbases involutivas y SAGBI para extensiones PBW torcidasTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDN. Andruskiewitsch, F. Dumas, and H. M. Peña. On the double of the Jordan plane. Ark. Mat., 60(2):213–229, 2022W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases. Graduate Studies in Mathematics. American Mathematical Society, 1994.J. P. Acosta and O. Lezama. Universal property of skew PBW extensions. Algebra Discrete Math., 20(1):1–12, 2015J. Apel. Gröbnerbasen in Nichtkommutativen Algebren und ihre Anwendung. PhD thesis, Universität Leipzig, 1988J. Apel. A Gröbner Approach to Involutive Bases. J. Symbolic Comput., 19(5):441–457, 1995J. Apel. The Theory of Involutive Divisions and an Application to Hilbert Function Computations. J. Symbolic Comput., 25(6):683–704, 1998V. A. Artamonov. Derivations of Skew PBW-Extensions. Commun. Math. Stat, 3(4):449–457, 2015M. Artin and W. F. Schelter. Graded algebras of global dimension 3. Adv. Math., 66(2):171–216, 1987M. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., 23(05):2450089, 2024V. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):75–97, 1992.V. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023.G. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In S. Geun Hahn, H. Chul Myung, and E. Zelmanov, editors, Recent Progress in Algebra. An International Conference on Recent Progress in Algebra, August 11–15, KAIST, Taejon, South Korea, volume 224 of Contemporary Mathematics, pages 29–45. American Mathematical Society, Providence, Rhode Island, 1999.R. Berger. The Quantum Poincaré-Birkhoff-Witt Theorem. Comm. Math. Phys., 143(2):215–234, 1992A. Bell and K. Goodearl. Uniform rank over differential operator rings and Poincaré- Birkhoff-Witt extensions. Pacific J. Math., 131(1):13–37, 1988K. Brown and K. R. Goodearl. Lectures on Algebraic Quantum Groups. Birkäuser- Verlag, 2002J. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic Methods in Non- commutative Algebra: Applications to Quantum Groups. Dordrecht, Kluwer, 2003J. Bell, A. Heinle, and V. Levandovskyy. On noncommutative finite factorization domains. Trans. Amer. Math. Soc., 369(4):2675–2695, 2017G. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998A. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin, Milwaukee, preprint, 1990B. Buchberger. Ein Algorithms zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, Innsbruck, Austria, 1965T. Becker and V. Weispfenning. Gröbner Bases. A Computational Approach to Com- mutative Algebra. 141. Graduate Texts in Mathematics, Springer-Verlag, 1993A. Chacón. On the Noncommutative Geometry of Semi-graded Rings. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2022J. Calmet, M. Hausdorf, and W. M. Seiler. A constructive introduction to involution. In Akerkar, R. ed., Proceedings of the International Symposium on Applications of Computer Algebra - ISACA 2000, pages 33–50. Allied Publishers, 2001F. J. Castro-Jiménez and L. Narváez-Macarro. Homogenising Differential Operators. arXiv preprint arXiv:1211.1867, 1997M. Collart, M. Kalkbrener, and D. Mall. Converting Bases with the Gröbner Walk. J. Symbolic Comput., 24(3–4):465–469, 1997D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Fourth Edition. Undergraduate Texts in Mathematics. Springer Cham, 2015P. M. Cohn. Free Rings and Their Relations. Second Edition. Academic Press, London, 1985S. C. Coutinho. A Primer of Algebraic D -modules. Number 33. Cambridge University Press, 1995T. Cassidy and B. Shelton. PBW-deformation theory and regular central extensions. J. Reine Angew. Math., 610:1–12, 2007T. Cassidy and B. Shelton. Generalizing the notion of Koszul algebra. Math.Z., 260(1):93–14, 2008A. Chirvasitu, S. P. Smith, and L. Z. Wong. Noncommutative geometry of homoge- nized quantum sl(2,c). Pacific J. Math., 292(2):305–354, 2018T. Cassidy and M. Vancliff. Generalizations of graded Clifford algebras and of com- plete intersections. J. Lond. Math. Soc., 81(1):91–112, 2010G. A. Evans. Noncommutative Involutive Bases. PhD thesis, University of Wales, 2005.W. Fajardo. Extended modules over skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2018W. Fajardo. A Computational Maple Library for Skew PBW Extensions. Fund. Inform., 167(3):159–191, 2019W. Fajardo. Right Buchberger algorithm over bijective skew PBW extensions. Fund. Inform., 184(2):83–105, 2022W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions. Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications. Springer, Cham, 2020W. Fajardo, O. Lezama, C. Payares, A. Reyes, and C. Rodríguez. Introduction to Algebraic Analysis on Ore Extensions. In A. Martsinkovsky, editor, Functor Cat- egories, Model Theory, Algebraic Analysis and Constructive Methods FCMTCCT2 2022, Almería, Spain, July 11-15, Invited and Selected Contributions, volume 450 of Springer Proceedings in Mathematics & Statistics, pages 45–116. Springer, Cham, 2024J. Gaddis. PBW deformations of Artin-Schelter regular algebras and their homoge- nizations. PhD thesis, The University of Wisconsin-Milwaukee, 2013J. Gaddis. PBW deformations of Artin-Schelter regular algebras. J. Algebra Appl., 15(4):1650064, 2016C. Gallego. Matrix methods for projective modules over σ-PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2015C. Gallego. Filtered-graded transfer of noncommutative Gröbner bases. Rev. Colom- biana Mat., 50(1):41–54, 2016C. Gallego. Matrix computations on projective modules using noncommutative Gröbner bases. Journal of Algebra, Number Theory: Advances and Applications, 15(2):101–139, 2016K. Gatermann. Computer Algebra Methods for Equivariant Dynamical Systems, volume 1728 of Lect. Notes in Math. Springer, 2000V. P. Gerdt and Y. A. Blinkov. Involutive bases of polynomial ideals. Math. Comput. Simulation, 45(5-6):519–542, 1998V. P. Gerdt and Y. A. Blinkov. Minimal involutive bases. Math. Comput. Simulation, 45:543–560, 1998V. P. Gerdt, Y. A. Blinkov, and D. A. Yanovich. Construction of Janet bases II: polyno- mial bases. In Ghanza, V. G., Mayr, E. W., Vorozhtsov, E. V. eds, Computer Algebra in Scientific Computing - CASC, pages 249–263. Springer, 2001V. P. Gerdt. Completion of linear differential systems to involution. In Ghanza, V. G., Mayr, E. W., Vorozhtsov, E. V. eds, Computer Algebra in Scientific Computing - CASC, pages 115–137. Springer, 1999K. R. Goodearl and R. B. Warfield Jr. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press. London, 2004C. Gallego and O. Lezama. Gröbner Bases for Ideals of σ-PBW Extensions. Comm. Algebra, 39(1):50–75, 2011C. Gallego and O. Lezama. Projective modules and Gröbner bases for skew PBW extensions. Dissertationes Math., 521:1–50, 2017O. W. Greenberg and A. M. L. Messiah. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev., 138(5B):B1155–B1167, 1965J. Gutiérrez and R. R. San Miguel. Reduced Gröbner Bases Under Composition. J. Symbolic Comput., 26(4):433–444, 1998P. M. Gordan. Les Invariants Des Formes Binaires. J. Math. Pures Appl. (9), 5(6):141– 156, 1900G. M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. Springer-Verlag Berlin Heidelberg, Second edition, 2008H. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270, 1953J. Gómez and H. Suárez. Double Ore extensions versus graded skew PBW extensions. Comm. Algebra, 8(1):185–197, 2020B. Greenfeld, A. Smoktunowicz, and M. Ziembowski. Five solved problems on radicals of Ore extensions. Publ. Mat., 63(2):423–444, 2019J. Gómez-Torrecillas. Basic Module Theory over Non-commutative Rings with Com- putational Aspects of Operator Algebras. In M. Barkatou, T. Cluzeau, G. Regensburger, and M. Rosenkranz, editors, Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012, volume 8372 of Lecture Notes in Computer Science, pages 23–82. Berlin, Heidelberg: Springer, 2014J. Gómez-Torrecillas and F. J. Lobillo. Global homological dimension of multifiltered rings and quantized enveloping algebras. J. Algebra, 225(2):522–533, 2000A. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. J. Algebra, 176(3):861–881, 1995T. Hayashi. q-analogues of Clifford and Weyl algebras-Spinor and oscillator repre- sentations of quantum enveloping algebras. Comm. Math. Phys., 127(1):129–144, 1990O. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, 2005E. Hashemi, K. Khalilnezhad, and A. Alhevaz. (Σ, ∆)-compatible skew PBW extension ring. Kyungpook Math. J., 57(3):401–417, 2017E. Hashemi, K. Khalilnezhad, and M. Ghadiri. Baer and quasi-Baer properties of skew PBW extensions. J. Algebr. Syst, 7(1):1–24, 2019M. Havlícek, A. U. Klimyk, and S. Pošta. Central elements of the algebras U ′(som ) and U (iso_m ). Czech. J. Phys., 50(1):79–84, 2000A. Hashemi, B. M.-Alizadeh, and M. Riahi. Invariant g^2v algorithm for computing SAGBI-Gröbner bases. Sci. China Math., 56(9):1781–1794, 2013H. Hong. Groebner Bases Under Composition I. J. Symbolic Comput., 25(5):643–663, 1998M. Hausdorff, W. M. Seiler, and R. Steinwandt. Involutive Bases in the Weyl Algebra. J. Symbolic Comput., 34(3):181–198, 2002A. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A., 34(29):5815– 5834, 2001M. Janet. Sur les systèmes d’équations aux dérivées partielles. J. Math. Pure Appl., 3:65–151, 1920M. Janet. Les modules de formes algébriques et la théorie générale des systémes différentiels. Norm. Sup, 41:27–65, 1924M. Janet. Lecons sur les Systémes d’Équations aux Dérivées Partielles. Cahiers Scien- tifiques, 1929A. Jannussis, A. Leodaris, and R. Mignani. Non-Hermitian Realization of a Lie- deformed Heisenberg algebra. Phys. Lett. A, 197(3):187–191, 1995D. A. Jordan. Finite-dimensional simple modules over certain iterated skew polyno- mial rings. J. Pure Appl. Algebra, 98(1):45–55, 1995D. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000D. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001D. A. Jordan and I. E. Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb. Math. Soc., 39(3):461–472, 1996K. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: S. Sil- vestrov and E. Paal and V. Abramov and A. Stolin (eds). Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009N. Kanwal and J. A. Khan. Sagbi-Gröbner Bases Under Composition. J. Syst. Sci. Complex., 36:2214–2224, 2023M. A. B. Khan, J. A. Khan, and M. A. Binyamin. SAGBI Bases in G-Algebras. Symmetry, 11(2):221–231, 2019D. Kapur and K. Madlener. A Completion Procedure for Computing a Canonical Basis for a k-subalgebra. In Proceedings of the third conference on Computers and Mathematics, pages 1–11. Springer, 1989E. Kirkman, I. M. Musson, and D. Passman. Noetherian Down-Up Algebras. Proc. Amer. Math. Soc., 127(11):3161–3167, 1999M. Kreuzer and L. Robbiano. Computational Commutative Algebra, volume 2. Springer, 2005A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner Bases in Algebras of Solvable Type. J. Symbolic Computation, 9(1):1–26, 1990K. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A: Math. Gen., 30(9):3165–3173, 1997R. S. Kulkarni. Irreducible Representations of Witten’s deformations of U (sl2). J. Algebra, 214(1):64–91, 1999S. Kuroda. A new class of finitely generated polynomial subalgebras without finite SAGBI bases. Proc. Amer. Math. Soc., 151:533–545, 2023D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of al- gebraic equations. In Hulzen, J. A. ed., Proceedings of EUROCAL, LNCS 162, pages 146–156. Springer, 1983L. Le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994L. Le Bruyn. Central singularities of quantum spaces. J. Algebra, 177(1):142–153, 1995L. Le Bruyn and S. P. Smith. Homogenized sl(2). Proc. Amer. Math. Soc., 118(3):125– 130, 1993L. Le Bruyn, S. P. Smith, and M. Van den Bergh. Central extensions of three dimen- sional Artin-Schelter algebras. Math. Z., 222(2):171–212, 1996T. Levasseur. Some properties of non-commutative regular graded rings. Glasglow Math. J., 34(3):277–300, 1992V. Levandovskyy. Non-Commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation. PhD thesis, Universität Kaiser- slautern, 2005O. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semi-graded Rings. Commun. Math. Stat., 9(3):347–378, 2021V. Levandovskyy and A. Heinle. A factorization algorithm for G-algebras and its applications. J. Symbolic Comput., 85:188–205, 2017H. Li. Noncommutative Gröbner Bases and Filtered-Graded Transfer, volume 1795 of Lect. Notes in Math. Springer Berlin Heidelberg, 2002E. Latorre. and O. Lezama. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput, 27(4):361–389, 2017O. Lezama and V. Marín. Una aplicación de las bases SAGBI - Igualdad de Subálgebras (caso cuerpo). Revista Tumbaga, 1(4):31–41, 2009H. Li and F. Van Oystaeyen. Dehomogenization of Gradings to Zariskian Filtrations and Aplications to Invertible Ideals. Proc. Amer. Math. Soc., 115(1):1–11, 1992O. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014M. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. Colombiana Mat., 54(1):39–63, 2020O. Lezama and H. Venegas. Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry. Discuss. Math. Gen. Algebra Appl., 37(1):45–57, 2017H. Li and F. van Oystaeyen. Zariskian Filtrations. K -Monographs in Mathematics. Springer Science, 1996J. Liu and M. Wang. Further results on homogeneous Gröbner bases under composi- tion. J. Algebra, 315(1):134–143, 2007J. L. Miller. Effective Algorithms for Intrinsically Computing SAGBI-Groebner Bases in a Polynomial Ring over a Field. London Mathematical Society Lecture Note Series, pages 421–433, 1998C. Méray and C. Riquier. Sur la convergende des développements des intégrales ordinaires d’un systéme d’équations différentielles partielles. Ann. Sci. Ec. Norm. Sup., 7:23–88, 1890J. C. McConnell and J. C. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies in Mathematics. American Mathematical Society, 2001.P. Nordbeck. Canonical Subalgebraic Bases in Non-commutative Polynomial Rings. In Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, pages 140–146, 1998P. Nordbeck. Canonical Bases for Algebraic Computations. PhD thesis, Lund Institute of Technology, Lund University, Sweeden, 2001P. Nordbeck. Non-commutative Gröbner Bases Under Composition. Comm. Algebra, 29(11):4831–4851, 2001P. Nordbeck. SAGBI Bases Under Composition. J. Symbolic Comput., 33(1):67–76, 2002A. Niño and A. Reyes. Some ring theoretical properties of skew Poincaré-Birkhoff- Witt extensions. Bol. Mat., 24(2):131–148, 2017A. Niño and A. Reyes. On centralizers and pseudo-multidegree functions for non- commutative rings having PBW bases. J. Algebra Appl., 2023E. Noether and W. Schmeidler. Moduln in nichtkommutativen bereichen, insbeson- dere aus differential - und differenzenausdrücken. Math. Z., 8:1–35, 1920O. Ore. Linear Equations in Non-commutative Fields. Ann. of Math. (2), 32(3):463– 477, 1931O. Ore. Theory of Non-commutative Polynomials. Ann. of Math. (2), 34(3):480–508, 1933T. Oaku, N. Takayama, and U. Walther. A localization algorithm for D-modules. J. Symbolic Comput., 29:721–728, 2000C. Phan. The Yoneda Algebra of a Graded Ore Extension. Comm. Algebra, 40(3):834– 844, 2012P. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002L. Robbiano and A. M. Bigatti. Saturations of subalgebras, SAGBI bases, and U- invariants. J. Symbolic Comput., 109:259–282, 2022I. T. Redman. The Non-Commutative Algebraic Geometry of some Skew Polynomial Algebras. PhD thesis, University of Wisconsin - Milwaukee, 1996I. T. Redman. The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra, 27(11):5587–5602, 1999A. Reyes. Jacobson’s conjecture and skew PBW extensions. Rev. Integr. Temas Mat., 32(2):139–152, 2014A. Reyes. Armendariz modules over skew PBW extensions. Comm. Algebra, 47(3):1248–1270, 2019G. S. Rinehart. Differential forms on general commutative algebras. Trans. Amer. Math. Soc., 108(2):195–222, 1963C. Riquier. Les Systémes d’Équations aux Derivées Partielles. Gauthier-Villars, Paris, 1910D. Rogalski. Noncommutative Projective Geometry. In G. Bellamy, D. Rogalski, and T. Schedler, editors, Noncommutative Algebraic Geometry, volume 64 of Math. Sci. Res. Inst. Publ., pages 13–70. Cambridge University Press, 2016A. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quan- tized Algebras. Math. Appl. (Soviet Ser.), 330 Kluwer Academic Publishers, 1995A. Reyes and C. Rodríguez. The McCoy Condition on Skew Poincaré-Birkhoff-Witt Extensions. Commun. Math. Stat., 9(1):1–21, 2021L. Robbiano and M. Sweedler. Subalgebra bases. In W. Bruns and A. Simis (eds.), Commutative algebra, Proc. Workshop Salvador 1988, Lect. Notes in Math. 1430, pages 61–87. Springer, Berlin, 1990A. Reyes and H. Suárez. A note on zip and reversible skew PBW extensions. Bol. Mat., 23(1):71–79, 2016A. Reyes and H. Suárez. Some Remarks About the Cyclic Homology of Skew PBW extensions. Ciencia en Desarrollo, 7(2):99–107, 2016A. Reyes and H. Suárez. Bases for Quantum Algebras and Skew Poincaré-Birkhoff- Witt Extensions. Momento, 54(1):54–75, 2017A. Reyes and H. Suárez. Enveloping Algebra and Skew Calabi-Yau Algebras over Skew Poincaré-Birkhoff-Witt Extensions. Far East J. Math. Sci., 102(2):373–397, 2017A. Reyes and H. Suárez. PBW Bases for Some 3-Dimensional Skew Polynomial Algebras. Far East J. Math. Sci., 101(6):1207–1228, 2017A. Reyes and H. Suárez. A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argentina, 59(1):157–178, 2018A. Reyes and Y. Suárez. On the ACCP in Skew Poincaré-Birkhoff-Witt Extensions. Beitr. Algebra. Geom., 59(4):625–643, 2018A. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compati- ble rings. J. Algebra Appl., 19(12):2050225, 2020A. Reyes and C. Sarmiento. On the differential smoothness of 3-dimensional skew polynomial algebras and diffusion algebras. Internat. J. Algebra Comput., 32(3):529– 559, 2022D. Rogalski and J. J. Zhang. Regular algebras of dimension 4 with 3 generators. Contemp. Math. (AMS), 562(221–241), 2012H. Suárez, F. Anaya, and A. Reyes. Propiedad χ en extensiones PBW torcidas gradu- adas. Ciencia en Desarrollo, 12(1):33–41, 2021H. Suárez, D. Cáceres, and A. Reyes. Some special determinants in graded skew PBW extensions. Rev. Integr. Temas Mat., 39(1):91–107, 2021W. M. Seiler. Involution - The Formal Theory of Differential Equations and Its Ap- plications in Computer Algebra and Numerical Analysis. PhD thesis, Habilitation Thesis, Universität Mannheim, 2001W. M. Seiler. A combinatorial approach to involution and δ-regularity I: involutive bases in polynomial algebras of solvable type. AAECC, 20(3-4):207–259, 2009W. M. Seiler. Involution. The Formal Theory of Differential Equations and its Applica- tions in Computer Algebra, volume 24. Algorithms and Computation in Mathematics (AACIM). Springer Berlin, Heidelberg, 2010.Y. Shen and D. M. Lu. Nakayama automorphisms of PBW deformations and Hopf actions. Sci. China Math., 59(4):661–672, 2016H. Suárez, O. Lezama, and A. Reyes. Some relations between N-Koszul, Artin-Schelter regular and Calabi-Yau algebras with skew PBW extensions. Revista Ciencia en Desarrollo, 6(2):205–213, 2015H. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. Colombiana Mat., 51(2):221–239, 2017S. P. Smith. A Class of Algebras Similar to the Enveloping of sl(2). Comm. Algebra, 322(1):285–314, 1991H. Suárez and A. Reyes. A generalized Koszul property for skew PBW extensions. Far East J. Math. Sci., 101(2):301–320, 2017H. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J. Math. (Springer)., 12(1):247–263, 2023D. Shannon and M. Sweedler. Using Gröbner bases to determine algebra member- ship, split surjective algebra homomorphisms determine birational equivalence. J. Symbolic Comput., 6(2-3):267–273, 1988M. Saito, B. Sturmfels, and N. Takayama. Gröbner Deformations of Hypergeometric Differential Equations, volume 6 of Algorithms and Computation in Mathematics. Springer Berlin, Heidelberg, 2000R. P. Stanley. Hilbert functions of graded algebras. Adv. Math., 28(1):57–83, 1978H. Suárez. Koszulity for graded skew PBW extensions. Comm. Algebra, 45(10):4569–4580, 2017H. Suárez. N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2017B. Sturmfels and N. White. Computing combinatorial decomposition of rings. Com- binatorica, 11(3):275–293, 1991J. M. Thomas. Differential systems, volume 21. American Mathematical Society, 1937A. Tresse. Sur les invariants différentiels des groupes continus de transformations. Acta Math., 18(1):1–88, 1894A. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In S. Silvestrov, A. Malyarenko, and M. Ranˇci ́c, editors, Algebraic Structures and Applications. SPAS 2017, volume 317 of Springer Proc. Math. Stat., pages 469–490. Springer, Cham, 2020R. Twarok. Representations for Selected Types of Diffusion Systems. In: E. Kapuscik and A. Horzela (eds). Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland, World Scientific Publishing Co. Pte. Ltd., pp. 615–620, 2002H. Venegas. Zariski cancellation problem for skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2020V. Weispfenning. Constructing universal Gröbner bases. In L. Huguet and A. Poli, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1987., volume 356 of Lecture Notes in Computer Science, pages 13–70. Springer, Berlin, Heidelberg, 1989E. Witten. Gauge theories, vertex models, and quantum groups. Nuclear Phys. B, 330(2-3):285–346, 1990E. Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm. Math. Phys., 137(1):29–66, 1991S. L. Woronowicz. Twisted SU (2)-Group. An Example of a Non-commutative Differ- ential Calculus. Publ. Res. Inst. Math. Sci., 23:117–181, 1987W. T. Wu. On the construction of Gröbner basis of a polynomial ideal based on Riquier-Janet theory. J. Syst. Sci. Complex., 4(3):194–207, 1991Q. Wu and C. Zhu. Poincaré-Birkhoff-Witt deformation of Koszul Calabi-Yau alge- bras. Algebr. Represent. Theor., 16(2):405–420, 2013H. Yamane. A Poincaré-Birkhoff-Witt Theorem for Quantized Universal Enveloping Algebras of Type AN . Publ. RIMS Kyoto Univ., 25(3):503–520, 1989Y. A. Zharkov and Y. A. Blinkov. Involution approach to solving systems of alge- braic equations. In Proceedings of International IMACS Symposium on Symbolic Computations, volume 93, pages 11–17, 1993A. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991J. J. Zhang and J. Zhang. Double Ore extensions. J. Pure Appl. Algebra, 212(12):2668– 2690, 2008J. J. Zhang and J. Zhang. Double extension regular algebras of type (14641). J. Algebra, 322(2):373–409, 2009EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1049621918.2023.pdf1049621918.2023.pdfTesis de Doctorado en Ciencias - Matemáticasapplication/pdf1175394https://repositorio.unal.edu.co/bitstream/unal/86385/2/1049621918.2023.pdf74239c8ac35d8bc8edd6ec61a4184883MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86385/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1049621918.2023.pdf.jpg1049621918.2023.pdf.jpgGenerated Thumbnailimage/jpeg4080https://repositorio.unal.edu.co/bitstream/unal/86385/3/1049621918.2023.pdf.jpgeab6ce7714cc7479a070bdccfb72506bMD53unal/86385oai:repositorio.unal.edu.co:unal/863852024-08-26 23:10:18.318Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=