Desarrollo de herramientas metrológicas para la medición de aniones y cationes en suelos

ilustraciones, diagramas, fotografías, gráficas, tablas

Autores:
Abella Gamba, Johanna Paola
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85244
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85244
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::543 - Química analítica
Metrología
Cationes
metrology
cations
Suelos
Material de referencia
Comparabilidad
Correlaciones
Elementos disponibles
Soils
Reference material
Comparability
Correlations
Soil available elements
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_2c0c1ccf1249e4e451ae06a53e0eabdb
oai_identifier_str oai:repositorio.unal.edu.co:unal/85244
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de herramientas metrológicas para la medición de aniones y cationes en suelos
dc.title.translated.eng.fl_str_mv Development of metrological tools for the measurement of anions and cations in soils
title Desarrollo de herramientas metrológicas para la medición de aniones y cationes en suelos
spellingShingle Desarrollo de herramientas metrológicas para la medición de aniones y cationes en suelos
540 - Química y ciencias afines::543 - Química analítica
Metrología
Cationes
metrology
cations
Suelos
Material de referencia
Comparabilidad
Correlaciones
Elementos disponibles
Soils
Reference material
Comparability
Correlations
Soil available elements
title_short Desarrollo de herramientas metrológicas para la medición de aniones y cationes en suelos
title_full Desarrollo de herramientas metrológicas para la medición de aniones y cationes en suelos
title_fullStr Desarrollo de herramientas metrológicas para la medición de aniones y cationes en suelos
title_full_unstemmed Desarrollo de herramientas metrológicas para la medición de aniones y cationes en suelos
title_sort Desarrollo de herramientas metrológicas para la medición de aniones y cationes en suelos
dc.creator.fl_str_mv Abella Gamba, Johanna Paola
dc.contributor.advisor.none.fl_str_mv Martínez Cordón, María José
dc.contributor.author.none.fl_str_mv Abella Gamba, Johanna Paola
dc.contributor.researcher.none.fl_str_mv Ahumada Forigua, Diego Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Metrología Química y Bioanálisis del Instituto Nacional de Metrología de Colombia
Residualidad y Destino Ambiental de Plaguicidas en Sistemas Agricolas
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::543 - Química analítica
topic 540 - Química y ciencias afines::543 - Química analítica
Metrología
Cationes
metrology
cations
Suelos
Material de referencia
Comparabilidad
Correlaciones
Elementos disponibles
Soils
Reference material
Comparability
Correlations
Soil available elements
dc.subject.agrovoc.spa.fl_str_mv Metrología
Cationes
dc.subject.agrovoc.eng.fl_str_mv metrology
cations
dc.subject.proposal.spa.fl_str_mv Suelos
Material de referencia
Comparabilidad
Correlaciones
Elementos disponibles
dc.subject.proposal.eng.fl_str_mv Soils
Reference material
Comparability
Correlations
Soil available elements
description ilustraciones, diagramas, fotografías, gráficas, tablas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-12T16:25:52Z
dc.date.available.none.fl_str_mv 2024-01-12T16:25:52Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85244
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85244
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] N. Unidas, “La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe,” 2030. [Online]. Available: www.issuu.com/publicacionescepal/stacks
[2] FAO, “Estrategias en Materia de Fertilizantes,” p. 122, 2000, [Online]. Available: http://www.fao.org/tempref/agl/agll/docs/fertstrs.pdf
[3] A. A. Correndo, M. Boxler, and F. O. García, “Análisis económico del manejo de la fertilización con enfoque en el largo plazo,” Ciencia del Suelo, vol. 33, no. 2, pp. 197–212, 2015.
[4] P. Quevauviller, “Operationally-defined extraction procedures for soil and sediment analysis. Part 3: New CRMs for trace-element extractable contents,” TrAC - Trends in Analytical Chemistry, vol. 21, no. 11, pp. 774–785, 2002, doi: 10.1016/S0165-9936(02)01105-6.
[5] S. A. Ben Mussa, H. S. Elferjani, F. A. Haroun, and F. F. Abdelnabi, “Determination of available nitrate, phosphate and sulfate in soil samples,” Int J Pharmtech Res, vol. 1, no. 3, pp. 598–604, 2009.
[6] K. T. Osman, Soils: Principles, properties and management. Springer Science + Business, 2013. doi: 10.1007/978-94-007-5663-2.
[7] D. A. Horneck, D. M. Sullivan, J. S. Owen, and J. M. Hart, “Soil Test Interpretation Guide,” 2011. [Online]. Available: http://extension.oregonstate.
[8] C. Dimkpa, P. Bindraban, J. E. McLean, L. Gatere, U. Singh, and D. Hellums, Methods for Rapid Testing of Plant and Soil Nutrients. USA: Springer International Publishing, 2017. doi: 10.1007/978-3-319-58679-3_1.
[9] S. Sadeghian Khalajabadi, “Fertilizad del suelo y nutricion del cafe en Colombia,” Cenicafé, vol. 32, 2008.
[10] C. Dimkpa, P. Bindraban, J. E. McLean, L. Gatere, U. Singh, and D. Hellums, “Methods for Rapid Testing of Plant and Soil Nutrients,” USA: Springer International Publishing, 2017, pp. 1–43. doi: 10.1007/978-3-319-58679-3_1.
[11] M. R. Motsara and R. N. Roy, Guide to laboratory establishment for plant nutrient analysis. Rome, Italy: Food and Agriculture Organization of the United Nations, 2008.
[12] J. B. Jones, “Universal Soil Extractants: Their Composition and Use,” Commun Soil Sci Plant Anal, vol. 21, no. 13–16, pp. 1091–1101, 1990, doi: 10.1080/00103629009368292.
[13] “ISO 17034:2016 - General requirements for the competence of reference material producers.” https://www.iso.org/standard/29357.html (accessed Jul. 19, 2023).
[14] T. Document et al., “DRAFT ISO GUIDE ISO / GUIDE 35 Reference materials — Guidance for the characterization and the assessment of the homogeneity and stability of the material,” vol. 2015, 2016.
[15] R. J. C. Brown and H. Andres, “How should metrology bodies treat method-defined measurands?,” Accreditation and Quality Assurance, vol. 25, no. 2, pp. 161–166, Apr. 2020, doi: 10.1007/s00769-020-01424-w.
[16] H. Andres et al., “Report from the CCQM Task Group on Method-defined measurands,” 2019. Accessed: Jul. 19, 2023. [Online]. Available: https://www.bipm.org/documents/20126/28432509/working-document-ID-11268/6eae4b21-bb0a-db3e-372a-86398d0f107a
[17] V. J. Barwick, Ed., Eurachem Guide: Terminology in Analytical Measurement - Introduction to VIM 3, Second edition. 2023. [Online]. Available: www.eurachem.org.
[18] Eurolab España. and PP Morillas y colaboradores, Eds., Guía Eurachem: La Adecuación al Uso de los Métodos Analíticos - Una guía de laboratorio para la validación de métodos y temes relacionados, Primera edición. 2016. Accessed: Jan. 19, 2023. [Online]. Available: www.eurachem.org
[19] Eurachem Method Validation Working Group, The fitness for purpose of analytical methods : a laboratory guide to method validation and related topics. 2014. Accessed: Jul. 19, 2023. [Online]. Available: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf
[20] D. Ahumada, C. Paredes, J. Abella, and I. González, Validación de Métodos en Análisis Químico Cuantitativo. Instituto Nacional de Metrología, 2023. Accessed: Feb. 21, 2023. [Online]. Available: https://inm.gov.co/web/wp-content/uploads/2023/05/Guia_ValidacionMetodosAnalisisQuimicoCuantitativo-16.pdf
[21] JCGM, “International Vocabulary of Metrology Fourth edition,” Joint Committee for Guides in Metrology, no. January, pp. 1–55, 2021.
[22] H. Kipphardt, R. Matschat, and U. Panne, “Metrology in chemistry - A rocky road,” Microchimica Acta, vol. 162, no. 1–2, pp. 35–41, 2008, doi: 10.1007/s00604-007-0909-6.
[23] G. Dube, “Metrology in chemistry - A public task,” Accreditation and Quality Assurance, vol. 6, no. 1, pp. 3–7, 2001, doi: 10.1007/PL00010431.
[24] R. Kaarls, “Metrology in chemistry: Rapid developments in the global metrological infrastructure, the CIPM MRA and its economic and social impact,” Accreditation and Quality Assurance, vol. 11, no. 4, pp. 162–171, 2006, doi: 10.1007/s00769-006-0104-1.
[25] “Decreto_Ley_4175_de_2011 por el cual se escinden unas funciones de la Superintendencia de Industria, y Comercio, se crea el Instituto Nacional de Metrología y se establece su objetivo y estructura.” 2011. Accessed: Jul. 19, 2023. [Online]. Available: https://www.suin-juriscol.gov.co/viewDocument.asp?id=1543264
[26] L. R. O. Geaquinto, V. Souza, E. C. P. Rego, M. L. Silva, and L. B. L. Balottin, “The importance of metrological tools to implementation of alternative method OECD TG 428,” Toxicology in Vitro, vol. 84, no. June, 2022, doi: 10.1016/j.tiv.2022.105425.
[27] A. Durazzo, E. B. Souto, G. Lombardi-Boccia, A. Santini, and M. Lucarini, “Metrology, agriculture and food: Literature quantitative analysis,” Agriculture (Switzerland), vol. 11, no. 9, Sep. 2021, doi: 10.3390/agriculture11090889.
[28] C. R. Beauchamp et al., “Metrological tools for the reference materials and reference instruments of the NIST material measurement laboratory,” Gaithersburg, MD, Jul. 2020. doi: 10.6028/NIST.SP.260-136-2020.
[29] M. Thompson, S. L. R. Ellison, and R. Wood, “The International Harmonized Protocol for the proficiency testing of analytical chemistry laboratories: (IUPAC technical report),” Pure and Applied Chemistry, vol. 78, no. 1, pp. 145–196, 2006, doi: 10.1351/pac200678010145.
[30] D. Tholen, “Metrology in service of society: The role of proficiency testing,” Accreditation and Quality Assurance, vol. 16, no. 12, pp. 603–605, 2011, doi: 10.1007/s00769-011-0836-4.
[31] W. G. Miller, G. R. D. Jones, G. L. Horowitz, and C. Weykamp, “Proficiency testing/external quality assessment: Current challenges and future directions,” Clin Chem, vol. 57, no. 12, pp. 1670–1680, 2011, doi: 10.1373/clinchem.2011.168641.
[32] M. Ramsey and S. Ellison, “Quality in Measurement and Testing,” … of Metrology and Testing, pp. 39–141, 2011, Accessed: Jan. 22, 2015. [Online]. Available: http://link.springer.com/chapter/10.1007/978-3-642-16641-9_3
[33] S. A. Wise, “What is novel about certified reference materials?,” Anal Bioanal Chem, vol. 410, no. 8, pp. 2045–2049, 2018, doi: 10.1007/s00216-018-0916-y.
[34] Fda, Cfsan, Ors, DBC, and CHCB, “Elemental Analysis Manual - Section 3.5 Version 3.0 (December 2021).” [Online]. Available: https://www.fda.gov/food/laboratory-methods-food/elemental-analysis-manual-eam-food-and-related-products
[35] ISO, “UNE-EN ISO 17034 Requisitos generales para la competencia de los productores de materiales de referencia,” 2017, [Online]. Available: www.une.org
[36] H. Emons, A. Fajgelj, A. M. H. van der Veen, and R. Watters, “New definitions on reference materials,” Accreditation and Quality Assurance, vol. 10, no. 10, pp. 576–578, Feb. 2006, doi: 10.1007/s00769-006-0089-9.
[37] P. de Bièvre, “On the difference between a ‘reference material’ and a ‘material reference,’” Accreditation and Quality Assurance, vol. 16, no. 8. pp. 391–392, Aug. 2011. doi: 10.1007/s00769-011-0800-3.
[38] H. W. Vesper, W. G. Miller, and G. L. Myers, “Reference materials and commutability.,” Clin Biochem Rev, vol. 28, no. 4, pp. 139–47, 2007, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/18392124%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2282402
[39] M. Ochsenkuhn-petropoulou and M. Koenig, “Elements in Soil UME EnvCRM 03,” pp. 1–84, 2018.
[40] K. Kupiec, P. Konieczka, and J. Namieśnik, “Prospects for the production, research and utilization of reference materials,” Crit Rev Anal Chem, vol. 39, no. 4, pp. 311–322, Oct. 2009, doi: 10.1080/10408340903253182.
[41] A. Botha, S. Ellison, T. Linsinger, and A. van der Veen, “Outline for the revision of ISO Guide 35,” Accreditation and Quality Assurance, vol. 18, no. 2, pp. 115–118, Dec. 2012, doi: 10.1007/s00769-012-0940-0.
[42] S. L. R. Ellison and A. Botha, “Principles for the assessment of homogeneity and stability in the new ISO Guide 35:2017,” Accreditation and Quality Assurance, vol. 23, no. 1, pp. 47–51, Feb. 2018, doi: 10.1007/s00769-017-1293-5. [43]
[43] S. L. R. Ellison, “Homogeneity studies and ISO Guide 35:2006,” Accreditation and Quality Assurance, vol. 20, no. 6, pp. 519–528, Dec. 2015, doi: 10.1007/s00769-015-1162-z.
[44] S. A. Abdul-Wahab, C. S. Bakheit, and S. M. Al-Alawi, “Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations,” Environmental Modelling and Software, vol. 20, no. 10, pp. 1263–1271, 2005, doi: 10.1016/j.envsoft.2004.09.001.
[45] D. Montgomery, E. Peck, and G. Vining, “Introducción al análisis de regresión lineal,” 2006. https://www.academia.edu/34899097/Montgomery_y_Runger_Probabilidad_y_Estadistica_Aplicada_a_La_Ingenieria (accessed Jul. 19, 2023).
[46] N. R. Draper and J. A. John, “Influential observations and outliers in regression,” Technometrics, vol. 23, no. 1, pp. 21–26, 1981, doi: 10.1080/00401706.1981.10486232.
[47] M. Ringnér, “What is principal component analysis?,” 2008. [Online]. Available: http://www.nature.com/naturebiotechnology
[48] S. M. Holland, “PRINCIPAL COMPONENTS A N ALYSI S (PCA),” 2019. Accessed: Jul. 19, 2023. [Online]. Available: http://strata.uga.edu/software/pdf/pcaTutorial.pdf
[49] J. Jones, “Soil test methods: Past, present, and future use of soil extractants,” Commun Soil Sci Plant Anal, vol. 29, no. 11–14, pp. 1543–1552, 1998, doi: 10.1080/00103629809370048.
[50] ICONTEC, “NTC-5526 Calidad del suelo. Determinación de micronutrientes disponibles: Cobre, zinc hierro y manganeso,” 2007.
[51] A. Mehlich, “New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and Zinc1,” Commun Soil Sci Plant Anal, vol. 9, no. 6, pp. 477–492, 1978, doi: 10.1080/00103627809366824.
[52] A. Mehlich, Communications in Soil Science and Plant Analysis Mehlich 3 soil test extractant : A modification of Mehlich 2 extractant,”, pp. 37–41, 1984, doi: 10.1167/iovs.11-7364.
[53] J. J. Wang, D. L. Harrell, R. E. Henderson, and P. F. Bell, “Comparison of Soil-Test Extractants for Phosphorus, Potassium, Calcium, Magnesium, Sodium, Zinc, Copper, Manganese, and Iron in Louisiana Soils,” Commun Soil Sci Plant Anal, vol. 35, no. 1–2, pp. 145–160, 2004, doi: 10.1081/CSS-120027640.
[54] E. A. Hanlon and G. V. Johnson, “Bray/kurtz, mehlich III, AB/D and ammonium acetate extractions of p, k and mg in four oklahoma soils,” Commun Soil Sci Plant Anal, vol. 15, no. 3, pp. 277–294, 1984, doi: 10.1080/00103628409367475.
[55] A. K. Alva, “Comparison of Mehlich 3, Mehlich 1, Ammonium Bicarbonate-DTPA, 1.0m Ammonium Acetate, and 0.2m Ammonium Chloride for extraction of Calcium, Magnesium, Phosphorus, and Potassium for a wide range of soils,” Commun Soil Sci Plant Anal, vol. 24, no. 7–8, pp. 603–612, 1993, doi: 10.1080/00103629309368826.
[56] J. Matula and J. Matula, “A relationship between multi-nutrient soil tests (Mehlich 3, ammonium acetate, and water extraction) and bioavailability of nutrients from soils for barley,” Plant Soil Environ, vol. 55, no. 4, pp. 173–180, 2009, doi: 10.17221/29/2009-pse.
[57] G. J. Michaelson, C. L. Ping, and G. A. Mitchell, “Correlation of Mehlich 3, Bray 1, and ammonium acetate extractable P, K, Ca, and Mg for alaska agricultural soils,” Commun Soil Sci Plant Anal, vol. 18, no. 9, pp. 1003–1015, 1987, doi: 10.1080/00103628709367877.
[58] L. M. Shuman and R. R. Duncan, “Soil Exchangeable Cations and Aluminum Measured by Ammonium Chloride, Potassium Chloride, and Ammonium Acetate,” Commun Soil Sci Plant Anal, vol. 21, no. 13–16, pp. 1217–1228, 1990, doi: 10.1080/00103629009368300.
[59] P. N. Soltanpour and A. P. Schwab, “A new soil test for simultaneous extraction of macroand micro-nutrients in alkaline soils,” Commun Soil Sci Plant Anal, vol. 8, no. 3, pp. 195–207, 1977, doi: 10.1080/00103627709366714.
[60] A. Schöning and G. W. Brümmer, “Extraction of mobile element fractions in forest soils using ammonium nitrate and ammonium chloride,” Journal of Plant Nutrition and Soil Science, vol. 171, no. 3, pp. 392–398, 2008, doi: 10.1002/jpln.200625169.
[61] V. J. G. Houba, E. J. M. Temminghoff, G. A. Gaikhorst, and W. van Vark, “Soil analysis procedures using 0.01 M calcium chloride as extraction reagent,” Commun Soil Sci Plant Anal, vol. 31, no. 9–10, pp. 1299–1396, 2000, doi: 10.1080/00103620009370514.
[62] J. Sarkadi and J. Loch, “Experiences with 0.01m calcium chloride as an extraction reagent for use as a soil testing procedure in hungary,” Commun Soil Sci Plant Anal, vol. 25, no. 9–10, pp. 1771–1777, 1994, doi: 10.1080/00103629409369151.
[63] G. C. J. Irving and M. J. McLaughlin, “A Rapid and Simple Field Test for Phosphorus in Olsen and Bray No. 1 Extracts of Soil1,” Commun Soil Sci Plant Anal, vol. 21, no. 19–20, pp. 2245–2255, 1990, doi: 10.1080/00103629009368377.
[64] A. M. Wolf and D. E. Baker, “Comparisons of soil test phosphorus by olsen, bray pl, mehlich i and mehlich iii methods,” Commun Soil Sci Plant Anal, vol. 16, no. 5, pp. 467–484, 1985, doi: 10.1080/00103628509367620.
[65] M. D. A. Bolland and R. J. Gilkes, “Evaluation of the Bray 1, calcium acetate lactate (CAL), Truog and Colwell soil tests as predictors of triticale grain production on soil fertilized with superphosphate and rock phosphate,” Fertilizer Research, vol. 31, no. 3, pp. 363–372, 1992, doi: 10.1007/BF01051288.
[66] L. D. Hylander, T. Makino, and N. Ae, “Bray-2 phosphorus as influenced by soil fineness and filtration time,” Commun Soil Sci Plant Anal, vol. 30, no. 7–8, pp. 947–955, 1999, doi: 10.1080/00103629909370259.
[67] M. Do Carmo Horta and J. Torrent, “Phosphorus desorption kinetics in relation to phosphorus forms and sorption properties of Portuguese acid soils,” Soil Sci, vol. 172, no. 8, pp. 631–638, 2007, doi: 10.1097/ss.0b013e3180577270.
[68] L. Arce, A. Ríos, and M. Valcárcel, “Direct multiparametric determination of anions in soil samples by integrating on-line automated extraction/filtering with capillary electrophoresis,” Fresenius J Anal Chem, vol. 360, no. 6, pp. 697–701, 1998, doi: 10.1007/s002160050784.
[69] F. J. Sikora, P. S. Howe, L. E. Hill, D. C. Reid, and D. E. Harover, “Comparison of colorimetric and ICP determination of phosphorus in Mehlich3 soil extracts,” Commun Soil Sci Plant Anal, vol. 36, no. 7–8, pp. 875–887, 2005, doi: 10.1081/CSS-200049468.
[70] O. O. Adesanwo, D. V. Ige, L. Thibault, D. Flaten, and W. Akinremi, “Comparison of Colorimetric and ICP Methods of Phosphorus Determination in Soil Extracts,” Commun Soil Sci Plant Anal, vol. 44, no. 21, pp. 3061–3075, 2013, doi: 10.1080/00103624.2013.832771.
[71] R. N. Sah and P. H. Brown, “Boron determination - A review of analytical methods,” Microchemical Journal, vol. 56, no. 3, pp. 285–304, 1997, doi: 10.1006/mchj.1997.1428.
[72] A. P. Mallarino, “Field Calibration for Corn of the Mehlich-3 Soil Phosphorus Test with Colorimetric and Inductively Coupled Plasma Emission Spectroscopy Determination Methods,” Soil Science Society of America Journal, vol. 67, no. 6, pp. 1928–1934, 2003, doi: 10.2136/sssaj2003.1928.
[73] J. J. Pittman, H. Zhang, J. L. Schroder, and M. E. Payton, “Differences of phosphorus in Mehlich 3 extracts determined by colorimetric and spectroscopic methods,” Commun Soil Sci Plant Anal, vol. 36, no. 11–12, pp. 1641–1659, 2005, doi: 10.1081/CSS-200059112.
[74] R. McDowell, A. Sharpley, P. Brookes, and P. Poulton, “Relationship between soil test phosphorus and phosphorus release to solution,” Soil Sci, vol. 166, no. 2, pp. 137–149, 2001, doi: 10.1097/00010694-200102000-00007.
[75] O. M. Kachurina, H. Zhang, W. R. Raun, and E. G. Krenzer, “Simultaneous determination of soil aluminum, ammonium- and nitrate- nitrogen using 1 M potassium chloride,” Commun Soil Sci Plant Anal, vol. 31, no. 7–8, pp. 893–903, 2000, doi: 10.1080/00103620009370485.
[76] D. A. Tel and C. Heseltine, “The Analyses of Kcl Soil Extracts For Nitrate, Nitrite And Ammonium Using a Traacs 800 Analyzer,” Commun Soil Sci Plant Anal, vol. 21, no. 13–16, pp. 1681–1688, 1990, doi: 10.1080/00103629009368331.
[77] K. Malekani and M. S. Cresser, “Comparison of three methods for determining boron in soils, plants, and water samples,” Commun Soil Sci Plant Anal, vol. 29, no. 3–4, pp. 285–304, 1998, doi: 10.1080/00103629809369946.
[78] C. A. De Abreu, M. F. De Abreu, B. van Raij, O. C. Bataglia, and J. C. De Andrade, “Extraction of boron from soil by microwave heating for icp-aes determination,” Commun Soil Sci Plant Anal, vol. 25, no. 19–20, pp. 3321–3333, 1994, doi: 10.1080/00103629409369267.
[79] E. D. Rhine, R. L. Mulvaney, E. J. Pratt, and G. K. Sims, “Improving the Berthelot Reaction for Determining Ammonium in Soil Extracts and Water,” Soil Science Society of America Journal, vol. 62, no. 2, p. 473, 1998, doi: 10.2136/sssaj1998.03615995006200020026x.
[80] D. Bartelett and J. R. Neller, “Turbidimetric determination of sulfate sulfur in soil extracts,” University of Florida Agricultural Experiment Station, pp. 201–204, 1960.
[81] D. ; G. B. Russi F.H.; Prystupa, P.; Rubio, G., “Comparación de mediciones turbidimétricas de sulfatos utilizando distintos extractantes y tratamientos del extracto,” XXII Congreso Argentino de la Ciencia del suelo. El Suelo: pilar de la agroindustria en la pampa argentina, p. 29, 2010.
[82] H. A. Ajwa and M. A. Tabatabai, “Comparison of Some Methods for Determination of Sulfate in Soils,” Commun Soil Sci Plant Anal, vol. 24, no. 15–16, pp. 1817–1832, Sep. 1993, doi: 10.1080/00103629309368920.
[83] J. Coutinho, “Automated method for sulphate determination in soil-plant extracts and waters,” Commun Soil Sci Plant Anal, vol. 27, no. 3–4, pp. 727–740, 1996, doi: 10.1080/00103629609369590.
[84] R. J. Wright and T. Stuczynski, “Atomic Absorption and Flame Emission Spectrometry Chapter 4,” 1996.
[85] M. Tüzen, “Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry,” Microchemical Journal, vol. 74, no. 3, pp. 289–297, 2003, doi: 10.1016/S0026-265X(03)00035-3.
[86] Y. Zhang, J. N. Moore, and W. T. Frankenberger, “Speciation of soluble selenium in agricultural drainage waters and aqueous soil-sediment extracts using hydride generation atomic absorption spectrometry,” Environ Sci Technol, vol. 33, no. 10, pp. 1652–1656, 1999, doi: 10.1021/es9808649.
[87] L. Elçi, Z. Arslan, and J. F. Tyson, “Flow injection solid phase extraction with Chromosorb 102: determination of lead in soil and waters by flame atomic absorption spectrometry,” Spectrochim Acta Part B At Spectrosc, vol. 55, no. 7, pp. 1109–1116, 2000, doi: 10.1016/S0584-8547(00)00195-6.
[88] K. W. Jackson and A. P. Newman, “Determination of lead in soil by graphite furnace atomic-absorption spectrometry with the direct introduction of slurries,” Analyst, vol. 108, no. 1283, pp. 261–264, 1983, doi: 10.1039/an9830800261.
[89] D. J. David, “The determination of exchangeable sodium, potassium, calcium and magnesium in soils by atomic-absorption spectrophotometry,” Analyst, vol. 85, no. 1012, pp. 495–503, 1960, doi: 10.1039/AN9608500495.
[90] D. J. Eckert and M. E. Watson, “Integrating the Mehlich-3 extractant into existing soil test interpretation schemes,” Commun Soil Sci Plant Anal, vol. 27, no. 5–8, pp. 1237–1249, 1996, doi: 10.1080/00103629609369629.
[91] B. J. A. Haring, W. van Delft, and C. M. Bom, “Determination of arsenic and antimony in water and soil by hydride generation and atomic absorption spectroscopy,” Fresenius’ Zeitschrift für Analytische Chemie, vol. 310, no. 3–4, pp. 217–223, 1982, doi: 10.1007/BF00484035.
[92] K. S. Patel, P. C. Sharma, and P. Hoffmann, “Graphite furnace-atomic absorption spectrophotometric determination of palladium in soil,” Fresenius J Anal Chem, vol. 367, no. 8, pp. 738–741, 2000, doi: 10.1007/s002160000483.
[93] M. D. Ho and G. J. Evans, “Operational Speciation of Cadmium, Copper, Lead and Zinc in the NIST Standard Reference Materials 2710 and 2711 (Montana Soil) by the BCR Sequential Extraction Procedure and Flame Atomic Absorption Spectrometry,” Analytical Communications, vol. 34, no. 11, pp. 363–364, 1997, doi: 10.1039/a706954e.
[94] Ş. Tokalioǧlu and Ş. Kartal, “Relationship Between Vegetable Metal and Soil-Extractable Metal Contents by the BCR Sequential Extraction Procedure: Chemometrical Interpretation of the Data,” Int J Environ Anal Chem, vol. 83, no. 11, pp. 935–952, 2003, doi: 10.1080/03067310310001608740.
[95] T. L. Yuan and H. L. Breland, “Evaluation of Atomic Absoprtion Methods for Determinations of Aluminium, Iron, and Silicon in Clay and Soil Extracts,” Journal Series Paper No. 3094, pp. 868–872, 1969.
[96] V. Andreu and E. Gimeno-García, “Total content and extractable fraction of cadmium, cobalt, copper, nickel, lead, and zinc in calcareous orchard soils,” Commun Soil Sci Plant Anal, vol. 27, no. 13–14, pp. 2633–2648, 1996, doi: 10.1080/00103629609369728.
[97] S. G. Dolar and D. R. Keeney, “Availability of Cu, Zn and Mn in soils: I.—Influence of soil pH, organic matter, and extractable phosphorus,” J Sci Food Agric, vol. 22, no. 6, pp. 273–278, 1971, doi: 10.1002/jsfa.2740220602.
[98] B. E. Yusiharni, H. Ziadi, and R. J. Gilkes, “A laboratory and glasshouse evaluation of chicken litter ash, wood ash, and iron smelting slag as liming agents and P fertilisers,” Australian Journal of Soil Research, vol. 45, no. 5, pp. 374–389, 2007, doi: 10.1071/SR06136.
[99] W. L. Lindsay and W. A. Norvell, “Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper,” Soil Science Society of America Journal, vol. 42, no. 3, pp. 421–428, 1978, doi: 10.2136/sssaj1978.03615995004200030009x.
[100] R. Garcia and E. Millán, “Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain),” Chemosphere, vol. 37, no. 8, pp. 1615–1625, 1998, doi: 10.1016/S0045-6535(98)00152-0.
[101] B. D. Tembo, K. Sichilongo, and J. Cernak, “Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia,” Chemosphere, vol. 63, no. 3, pp. 497–501, 2006, doi: 10.1016/j.chemosphere.2005.08.002.
[102] C. Mico, L. Recatala, M. Peris, and Juan. Sanchez, “A comparison of two digestion methods for the analysis of heavy metals by flame atomic absorption spectroscopy.,” Spectroscopy Europe, vol. 19, no. 1, pp. 23–26, 2007.
[103] M. Ghaedi, M. R. Fathi, A. Shokrollahi, and F. Shajarat, “Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy,” Anal Lett, vol. 39, no. 6, pp. 1171–1185, 2006, doi: 10.1080/00032710600622167.
[104] C. Monterroso and F. Macías, “Evaluation of the Test-Mineral Method for Studying Minesoil Geochemistry,” Soil Science Society of America Journal, vol. 62, no. 6, pp. 1741–1748, 1998, doi: 10.2136/sssaj1998.03615995006200060036x.
[105] P. N. Soltanpour, F. Collins, and R. O. Miller, “Inductively Coupled Plasma Emission Spectrometry and Inductively Coupled,” Methods of soil analysis. Part 3 - chemical methods., no. 5, pp. 91–139, 1996.
[106] H. Kawaguchi, “Inductively coupled plasma mass spectrometry. A review.,” Analytical Sciences, vol. 4, no. 4, pp. 339–345, 1988, doi: 10.2116/analsci.4.339.
[107] J. Feuerstein, S. F. Boulyga, P. Galler, G. Stingeder, and T. Prohaska, “Determination of 90Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS),” J Environ Radioact, vol. 99, no. 11, pp. 1764–1769, 2008, doi: 10.1016/j.jenvrad.2008.07.002.
[108] L. Arroyo, T. Trejos, T. Hosick, S. Machemer, J. R. Almirall, and P. R. Gardinali, “Analysis of soils and sediments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): An innovative tool for environmental forensics,” Environ Forensics, vol. 11, no. 4, pp. 315–327, 2010, doi: 10.1080/15275922.2010.494949.
[109] S. F. Boulyga and J. S. Becker, “Determination of uranium isotopic composition and236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry,” Fresenius J Anal Chem, vol. 370, no. 5, pp. 612–617, 2001, doi: 10.1007/s002160100838.
[110] M. Hollenbach, J. Grohs, S. Mamich, M. Kroft, and E. R. Denoyer, “Determination of Technetium-99, Thorium-230 and Uranium-234 in Soils,” vol. 9, no. September, 1994.
[111] J. B. Jones, “Elemental analysis of soil extracts and plant tissue ash by plasma emission spectroscopy,” Commun Soil Sci Plant Anal, vol. 8, no. 4, pp. 349–365, 1977, doi: 10.1080/00103627709366727.
[112] H. Performance and C. Electrophoresis, “Capillary Electrophoresis Capillary electrophoresis,” Food Toxicants Analysis: Techniques, Strategies and Developments, vol. 1997, no. 2, pp. 561–597, 2014, doi: 10.1021/acs.analchem.5b04125.
[113] B. Westergaard, H. C. B. Hansen, and O. K. Borggaard, “Determination of anions in soil solutions by capillary zone electrophoresis.”
[114] A. Göttlein, “Determination of free Al3+ in soil solutions by capillary electrophoresis,” Eur J Soil Sci, vol. 49, no. 1, pp. 107–112, 1998, doi: 10.1046/j.1365-2389.1998.00133.x.
[115] G. Dinelli, A. Vicari, and V. Brandolini, “Detection and quantitation of sulfonylurea herbicides in soil at the ppb level by capillary electrophoresis,” J Chromatogr A, vol. 700, no. 1–2, pp. 201–207, 1995, doi: 10.1016/0021-9673(95)00099-9.
[116] H. J. Menne, K. Janowitz, and B. M. Berger, “Comparison of capillary electrophoresis and liquid chromatography for determination of sulfonylurea herbicides in soil,” J AOAC Int, vol. 82, no. 6, pp. 1534–1541, 1999, doi: 10.1093/jaoac/82.6.1534.
[117] J. Hernández-Borges, F. J. García-Montelongo, A. Cifuentes, and M. Á. Rodríguez-Delgado, “Analysis of triazolopyrimidine herbicides in soils using field-enhanced sample injection-coelectroosmotic capillary electrophoresis combined with solid-phase extraction,” J Chromatogr A, vol. 1100, no. 2, pp. 236–242, 2005, doi: 10.1016/j.chroma.2005.09.053.
[118] C. Casiot, M. C. B. Alonso, J. Boisson, O. F. X. Donard, and M. Potin-Gautier, “Simultaneous speciation of arsenic, selenium, antimony and tellurium species in waters and soil extracts by capillary electrophoresis and UV detection,” Analyst, vol. 123, no. 12, pp. 2887–2893, 1998, doi: 10.1039/a805954c.
[119] R. Naidu, J. Smith, R. G. Mclaren, D. P. Stevens, M. E. Sumner, and P. E. Jackson, “Application of Capillary Electrophoresis to Anion Speciation in Soil Water Extracts: II. Arsenic,” Soil Sci. Soc. Am. J., vol. 64, pp. 122–128, 2000.
[120] B. L. Chu, B. Y. Guo, Z. Peng, Z. Wang, G. Guo, and J. M. Lin, “Studies on degradation of imazalil enantiomers in soil using capillary electrophoresis,” J Sep Sci, vol. 30, no. 6, pp. 923–929, 2007, doi: 10.1002/jssc.200600447.
[121] C. R. Warren, “Rapid and sensitive quantification of amino acids in soil extracts by capillary electrophoresis with laser-induced fluorescence,” Soil Biol Biochem, vol. 40, no. 4, pp. 916–923, 2008, doi: 10.1016/j.soilbio.2007.11.011.
[122] R. Jagadish and V. A. Shanmugaselvan, “Quantification of Inorganic Anions in Tea (Camellia Sinensis (L) O. Kuntze) Tissues and Soil Using Ion Chromatography Coupled with Conductivity Detector,” Commun Soil Sci Plant Anal, vol. 49, no. 8, pp. 875–888, 2018, doi: 10.1080/00103624.2018.1448404.
[123] M. B. Turrión, J. F. Gallardo, and M. I. González, “Extraction of soil-available phosphate, nitrate, and sulphate ions using ion exchange membranes and determination by ion exchange chromatography,” Commun Soil Sci Plant Anal, vol. 30, no. 7–8, pp. 1137–1152, 1999, doi: 10.1080/00103629909370274.
[124] A. C. Scheinost, R. Kretzschmar, S. Pfister, and D. R. Roberts, “Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil,” Environ Sci Technol, vol. 36, no. 23, pp. 5021–5028, Dec. 2002, doi: 10.1021/es025669f.
[125] I. J. Pickering, N. E. Brown, and T. K. Tokunaga, “Quantitative Speciation of Selenium in Soils Usiny X-ray Absorption Spectroscopy,” Environ Sci Technol, vol. 29, no. 9, pp. 2456–2459, 1995.
[126] S. Gaudino et al., “The role of different soil sample digestion methods on trace elements analysis: A comparison of ICP-MS and INAA measurement results,” Accreditation and Quality Assurance, vol. 12, no. 2, pp. 84–93, Feb. 2007, doi: 10.1007/s00769-006-0238-1.
[127] Soil Analysis: Recent Trends and Applications. Springer Singapore, 2020. doi: 10.1007/978-981-15-2039-6.
[128] LGC, “Analytical reference materials, standards and high purity solvents,” Lgcstandards.Com, p. 75, 2011, [Online]. Available: www.lgcstandards.com
[129] “EPTIS | Home.” https://www.eptis.org/ (accessed Jul. 19, 2023).
[130] “WEPAL-QUASIMEME - WEPAL.” https://www.wepal.nl/en/wepal.htm (accessed Jul. 19, 2023).
[131] “Directorio Oficial de Acreditados - DOA | ONAC.” https://onac.org.co/directorio-de-acreditados/ (accessed Jul. 19, 2023).
[132] “Sociedad Colombiana de la Ciencia del Suelo.” https://sccsuelos.org/ (accessed Jul. 19, 2023).
[133] S. W. Culman et al., “Calibration of Mehlich-3 with Bray P1 and Ammonium Acetate in the Tri-State Region of Ohio, Indiana and Michigan,” Commun Soil Sci Plant Anal, vol. 51, no. 1, pp. 86–97, 2019, doi: 10.1080/00103624.2019.1695825.
[134] J. Zbiral, “Determination of phosphorus in calcareous soils by Mehlich 3, Mehlich 2, CAL, and Egner extractants,” Commun Soil Sci Plant Anal, vol. 31, no. 19–20, pp. 3037–3048, 2000, doi: 10.1080/00103620009370648.
[135] A. D. C. Chilimba, S. K. Mughogho, and J. Wendt, “Mehlich 3 or Modified Olsen for soil testing in Malawi,” Commun Soil Sci Plant Anal, vol. 30, no. 7–8, pp. 1231–1250, 1999, doi: 10.1080/00103629909370280.
[136] W. Hao et al., “Rapid classification of soils from different mining areas by laser-induced breakdown spectroscopy (LIBS) coupled with a PCA-based convolutional neural network,” J Anal At Spectrom, vol. 36, no. 11, pp. 2509–2518, Nov. 2021, doi: 10.1039/D1JA00078K.
[137] Z. O. Alibrahim and C. D. Williams, “Assessment of bioavailability of some potential toxic metals in mining-affected soils using EDTA extraction and principle component analysis (PCA) approach, Derbyshire, UK,” Interdisciplinary Journal of Chemistry, vol. 1, no. 2, 2016, doi: 10.15761/IJC.1000110.
[138] X. Wang, T. Guo, Y. Wang, Y. Xing, Y. Wang, and X. He, “Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA,” Agric Water Manag, vol. 237, Jul. 2020, doi: 10.1016/j.agwat.2020.106180.
[139] S. Rodrigues et al., “The influence of anthropogenic and natural geochemical factors on urban soil quality variability: A comparison between Glasgow, UK and Aveiro, Portugal,” Environ Chem Lett, vol. 7, no. 2, pp. 141–148, 2009, doi: 10.1007/s10311-008-0149-y.
[140] M. Ferde et al., “SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • Chemical characterization of the soils from black pepper (Piper nigrum L.) cultivation using principal component analysis (PCA) and Kohonen self-organizing map (KSOM)”, doi: 10.1007/s11368-021-02966-3/Published.
[141] Comité 013 Calidad del suelo - ICONTEC.” https://econecta.icontec.org/cmtvw.aspx?ID=F3B2CDAC9DA30AD6 (accessed Jul. 19, 2023).
[142] I. R. B. Olivares, G. B. Souza, A. R. A. Nogueira, G. T. K. Toledo, and D. C. Marcki, “Trends in developments of certified reference materials for chemical analysis - Focus on food, water, soil, and sediment matrices,” TrAC - Trends in Analytical Chemistry, vol. 100. Elsevier B.V., pp. 53–64, Mar. 01, 2018. doi: 10.1016/j.trac.2017.12.013.
[143] I. Kuselman and A. Fajgelj, “IUPAC/CITAC Guide: Selection and use of proficiency testing schemes for a limited number of participants-chemical analytical laboratories (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 82, no. 5, pp. 1099–1135, 2010, doi: 10.1351/PAC-REP-09-08-15.
[144] “Reference materials-Guidance for the characterization and the assessment of the homogeneity and stability of the material,” 2015, [Online]. Available: www.iso.org
[145] D. A. Ahumada-Forigua, L. L. Soto-Morales, L. V. Morales-Erazo, and J. P. Abella-Gamba, “Development of a certified reference material for elemental analysis of drinking water,” Revista Colombiana de Química, vol. 48, no. 3, pp. 36–44, Sep. 2019, doi: 10.15446/rev.colomb.quim.v48n3.78660.
[146] R. Sánchez, J. Snell, A. Held, and H. Emons, “Development and validation of a method for mercury determination in seawater for the process control of a candidate certified reference material,” Anal Bioanal Chem, vol. 407, no. 21, pp. 6569–6574, 2015, doi: 10.1007/s00216-015-8833-9.
[147] T. P. J. Linsinger et al., “Homogeneity and stability of reference materials,” Springer-Verlag, 2001.
[148] L. Deprez et al., “Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material,” Biomol Detect Quantif, vol. 9, pp. 29–39, 2016, doi: 10.1016/j.bdq.2016.08.002.
[149] “Norma Técnica Colombiana NTC 5402: Calidad del suelo. Determinación del ... - Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) - Google Libros.” https://books.google.com.co/books/about/Norma_T%C3%A9cnica_Colombiana_NTC_5402.html?id=tpodtAEACAAJ&redir_esc=y (accessed Jul. 19, 2023).
[150] “Calidad del suelo. determinación de fósforo disponible.” https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-de-fosforo-disponible-ntc5350-2020.html (accessed Jul. 19, 2023).
[151] “Calidad del suelo. Determinación de la humedad y del factor de corrección (Pw), expresados en base seca” https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-de-la-humedad-y-del-factor-de-correccion-pw-expresados-en-base-seca-ntc6230-2017.html (accessed Jul. 19, 2023).
[152] Y. Zhu et al., “Applications and uncertainty estimation of single level standard addition method ICP-MS for elemental analysis in various matrix,” Analytical Sciences, vol. 34, no. 6, pp. 701–710, 2018, doi: 10.2116/analsci.18SBP09.
[153] C. Uribe and E. Cosio, “Combination of single-point standard addition calibration and natural internal standardization for quantification of terpenes in Pisco samples,” Lwt, vol. 147, no. April, p. 111551, 2021, doi: 10.1016/j.lwt.2021.111551.
[154] A. Hineman and C. Stephan, “Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality,” J Anal At Spectrom, vol. 29, no. 7, pp. 1252–1257, 2014, doi: 10.1039/c4ja00097h.
[155] F. Vanhaecke, H. Vanhoe, R. Dams, and C. Vandecasteele, “The use of internal standards in ICP-MS,” Talanta, vol. 39, no. 7, pp. 737–742, 1992, doi: 10.1016/0039-9140(92)80088-U.
[156] C. Xie, J. Xu, J. Tang, S. A. Baig, and X. Xu, “Comparison of Phosphorus Determination Methods by Ion Chromatography and Molybdenum Blue Methods,” Commun Soil Sci Plant Anal, vol. 44, no. 17, pp. 2535–2545, Sep. 2013, doi: 10.1080/00103624.2013.811518.
[157] P. Masson, C. Morel, E. Martin, A. Oberson, and D. Friesen, “Comparison of soluble P in soil water extracts determined by ion chromatography, colorimetric, and inductively coupled plasma techniques in PPB range,” Commun Soil Sci Plant Anal, vol. 32, no. 13–14, pp. 2241–2253, 2001, doi: 10.1081/CSS-120000280.
[158] P. N. Soltanpour, A. Khan, and W. L. Lindsay’, “Factors Affecting Dtpa-Extractable Zn, Fe, Mn, and Cu from Soils1,” Commun Soil Sci Plant Anal, vol. 7, no. 9, pp. 797–821, 1976, doi: 10.1080/00103627609366689.
[159] M. Thompson and S. L. R. Ellison, “A review of interference effects and their correction in chemical analysis with special reference to uncertainty,” Accreditation and Quality Assurance, vol. 10, no. 3, pp. 82–97, 2005, doi: 10.1007/s00769-004-0871-5.
[160] WEPAL, “WAGENINGEN EVALUATING PROGRAMS Certificate of Analysis (WEPAL) - ISE sample 919,” 2019.
[161] WEPAL, “WAGENINGEN EVALUATING PROGRAMS Certificate of Analysis (WEPAL) - ISE sample 890,” pp. 1–12, 2019.
[162] WEPAL, “WAGENINGEN EVALUATING PROGRAMS Certificate of Analysis (WEPAL) - ISE sample 850,” pp. 1–12, 2019.
[163] C. Voica, A. Dehelean, A. Iordache, and I. Geana, “Method validation for determination of metals in soils by ICP-MS,” Rom Rep Phys, vol. 64, no. 1, pp. 221–231, 2012.
[164] W. Horwitz and R. Albert, “The Horwitz ratio (HorRat): A useful index of method performance with respect to precision,” J AOAC Int, vol. 89, no. 4, pp. 1095–1109, 2006, doi: 10.1093/jaoac/89.4.1095.
[165] A. Gustavo González and M. Ángeles Herrador, “A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles,” TrAC - Trends in Analytical Chemistry, vol. 26, no. 3, pp. 227–238, 2007, doi: 10.1016/j.trac.2007.01.009.
[166] “CITAC / EURACHEM GUIDE Guide to Quality in Analytical Chemistry An Aid to Accreditation,” 2002. [Online]. Available: http://www.european-accreditation.org/publication/citac-eurachem-ta
[167] JCGM, “Evaluation of measurement data-Guide to the expression of uncertainty in measurement Évaluation des données de mesure-Guide pour l’expression de l’incertitude de mesure,” 2008. [Online]. Available: www.bipm.org
[168] FAO 2009, “La agricultura mundial en la perspectiva del año 2050,” Fao, p. 4, 2009, [Online]. Available: http://www.fao.org/fileadmin/templates/wsfs/docs/I
[169] K. Montiel and M. Ibrahim, “Manejo integrado de suelos para una agricultura resiliente al cambio climático.” [Online]. Available: http://www.iica.int
[170] V. E. Vallejo-Quintero, “Importancia y utilidad de la evaluación de la calidad de suelos mediante el componente microbiano: experiencias en sistemas silvopastoriles,” Colombia Forestal, vol. 16, no. 1, pp. 83–99, 2013, Accessed: Jul. 19, 2023. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-07392013000100006&lng=en&nrm=iso&tlng=es
[171] G. De Dios, E. Ortega-jimenez, A. Guerrero, C. J. López, and E. Ortega, “Importancia de la fertilización en praderas tropicales,” Agroproductividad, vol. 11, no. 5, pp. 130–133, May 2019.
[172] B. King, “The selection and use of reference materials - a basic guide for laboratories and accreditation bodies,” Accreditation and Quality Assurance, vol. 8, no. 9, pp. 429–433, Sep. 2003, doi: 10.1007/s00769-003-0601-4.
[173] E. V. Vanchikova et al., “Comparative assessment of the methods for exchangeable acidity measuring,” Eurasian Soil Science, vol. 49, no. 5, pp. 512–518, 2016, doi: 10.1134/S1064229316050136.
[174] LGC, “Reference Materials Catalogue,” 2022. [Online]. Available: https://ec.europa.eu/jrc
[175] P. M. Chetty and D. Van Dijk, “The establishment and use of a reference material as a control sample,” Commun Soil Sci Plant Anal, vol. 33, no. 15–18, pp. 2653–2659, 2002, doi: 10.1081/CSS-120014470.
[176] “North American Proficiency Testing | NAPT.” https://www.naptprogram.org/ (accessed Jul. 19, 2023).
[177] “Nutrients in Soil | CRM, PT, QR, Soil | ERA.” https://www.eraqc.com/nutrients-in-soil-soil-era000128 (accessed Jul. 19, 2023).
[178] A. A. Veroniki et al., “Methods to estimate the between-study variance and its uncertainty in meta-analysis,” Res Synth Methods, vol. 7, no. 1, pp. 55–79, Mar. 2016, doi: 10.1002/jrsm.1164.
[179] R. DerSimonian and N. Laird, “Meta-analysis in clinical trials revisited,” Contemp Clin Trials, vol. 45, pp. 139–145, Jun. 2015, doi: 10.1016/j.cct.2015.09.002.
[180] S. Ariel, R. Ovelar, and H. Causarano, “Heterogeneidad del suelo en un campo experimental y su efecto sobre el sesamo (Sesamum indicum l.),” Investigación Agraria, vol. 4, no. 1, pp. 13–16.
[181] R. Fernández and N. Trillo, “La textura del suelo como fuente de heterogeneidad; sus efectos sobre la oferta de agua para las plantas,” pp. 171–192, 2017, Accessed: Jul. 19, 2023. [Online]. Available: https://www.researchgate.net/publication/319872937_La_textura_del_suelo_como_fuente_de_heterogeneidad_sus_efectos_sobre_la_oferta_de_agua_para_las_plantas
[182] V. M. Mayor-Durán, M. Blair, and J. E. Muñoz, “Metodología para estimar el coeficiente de heterogeneidad del suelo, el número de repeticiones y el tamaño de parcela en investigaciones con frijol (Phaseolus vulgaris L.),” Acta Agron, vol. 61, no. 1, pp. 32–39, 2012, Accessed: Jul. 19, 2023. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-28122012000100005&lng=en&nrm=iso&tlng=es
[183] A. M. Idris and A. A. El-Zahhar, “Indicative properties measurements by SEM, SEM-EDX and XRD for initial homogeneity tests of new certified reference materials,” Microchemical Journal, vol. 146, pp. 429–433, May 2019, doi: 10.1016/j.microc.2019.01.032.
[184] A. Sahuquillo, A. Rigol, and G. Rauret, “Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments,” TrAC - Trends in Analytical Chemistry, vol. 22, no. 3. Elsevier, pp. 152–159, Mar. 01, 2003. doi: 10.1016/S0165-9936(03)00303-0.
[185] E. A. Mackey et al., “Certification of Three NIST Renewal Soil Standard Reference Materials for Element Content: SRM 2709a San Joaquin Soil, SRM 2710a Montana Soil I, and SRM 2711a Montana Soil II.”
[186] M. A. Taboada, R. S. Lavado, and Universidad de Buenos Aires. Facultad de Agronomia., Alteraciones de la fertilidad de los suelos : El halomorfismo, la acidez, el hidromorfismo y las inundaciones.
[187] F. Pereyra, Suelos de la Argentina Geografía de suelos, factores y procesos formadores. Buenos Aires, Argentina, 2011.
[188] ICONTEC, “NTC 5264 Calidad Del Suelo. Determinación de pH.” [Online]. Available: https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-del-ph-ntc5264-2018.html (accessed Jul. 19, 2023).
[189] L. Soto, F. Niño, D. Garzón, and D. Ahumada, “Development of Reference Material of Mercury in Fish: A comparison of different alternatives to homogeneity assessment,” 17th IMEKO TC 10 and EUROLAB Virtual Conference“Global Trends in Testing, Diagnostics & Inspection for 2030” , pp. 123–128, 2020, Accessed: Jul. 19, 2023. [Online]. Available: https://www.imeko.org/publications/tc10-2020/IMEKO-TC10-2020-014.pdf
[190] ISO, “ISO 13528:2022 Statistical methods for use in proficiency testing by interlaboratory comparison.” https://es.scribd.com/document/529604884/ISO-13528-SP (accessed Jul. 19, 2023).
[191] C. De Kreij and G. Wever, “Proficiency testing of growing media, soil improvers, soils, and nutrient solutions,” Commun Soil Sci Plant Anal, vol. 36, no. 1–3, pp. 81–88, 2005, doi: 10.1081/CSS-200042971.
[192] P. Quevauviller et al., “Certified reference material for the quality control of EDTA- and DTPA-extractable trace metal contents in calcareous soil (CRM 600),” Fresenius J Anal Chem, vol. 360, no. 5, pp. 505–511, 1998, doi: 10.1007/s002160050750.
[193] A. M. Idris, A. O. Alnajjar, T. S. Alkhuraiji, and K. F. Fawy, “Long-term stability test of elemental content in new environmental certified reference material candidates using ICP OES and ICP-SFMS,” Toxin Rev, vol. 40, no. 4, pp. 645–653, 2021, doi: 10.1080/15569543.2019.1617315.
[194] R. Magari, “Assessing Shelf Life Using Real-Time and Accelerated Stability Tests,” Biopharm Int, pp. 36–47, Nov. 2003, Accessed: Jul. 19, 2023. [Online]. Available: https://www.researchgate.net/publication/289381233_Assessing_Shelf_Life_Using_Real-Time_and_Accelerated_Stability_Tests
[195] G. W. Thomas, “Soil pH and Soil Acidity,” Methods of Soil Analysis, Part 3: Chemical Methods, pp. 475–490, Jan. 2018, doi: 10.2136/SSSABOOKSER5.3.C16.
[196] E. Amézketa, “Soil Aggregate Stability: A Review,” Journal of Sustainable Agriculture, vol. 14, no. 2–3, pp. 83–151, Jul. 1999, doi: 10.1300/J064V14N02_08.
[197] B. D. Kay, “Soil Structure and Organic Carbon: A Review,” Soil Processes and the Carbon Cycle, pp. 169–197, Feb. 2018, doi: 10.1201/9780203739273-13.
[198] C. A. Lucho-Constantino, M. Álvarez-Suárez, R. I. Beltrán-Hernández, F. Prieto-García, and H. M. Poggi-Varaldo, “A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater,” Environ Int, vol. 31, no. 3, pp. 313–323, Apr. 2005, doi: 10.1016/J.ENVINT.2004.08.002.
[199] R. P. Matos, V. M. P. Lima, C. C. Windmöller, and C. C. Nascentes, “Correlation between the natural levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley (MG), Brazil,” J Geochem Explor, vol. 172, pp. 195–202, Jan. 2017, doi: 10.1016/J.GEXPLO.2016.11.001.
[200] M. F. Alarcón-Jiménez, J. H. Camacho-Tamayo, and J. H. Bernal, “Management zones based on corn yield and soil physical attributes,” Agron Colomb, vol. 33, no. 3, pp. 373–382, 2015, doi: 10.15446/AGRON.COLOMB.V33N3.53760.
[201] D. Borsboom, “Latent Variable Theory,” Measurement: Interdisciplinary Research & Perspective, vol. 6, no. 1–2, pp. 25–53, May 2008, doi: 10.1080/15366360802035497.
[202] D. Borsboom, G. J. Mellenbergh, and J. Van Heerden, “The Theoretical Status of Latent Variables,” Psychological Review, vol. 110, no. 2. pp. 203–219, Apr. 2003. doi: 10.1037/0033-295X.110.2.203.
[203] S. L. R. Ellison and M. Thompson, “Standard additions: Myth and reality,” Analyst, vol. 133, no. 8. Royal Society of Chemistry, pp. 992–997, 2008. doi: 10.1039/b717660k.
[204] N. C. Schwertman, M. A. Owens, and R. Adnan, “A simple more general boxplot method for identifying outliers,” Comput Stat Data Anal, vol. 47, no. 1, pp. 165–174, Aug. 2004, doi: 10.1016/J.CSDA.2003.10.012.
[205] J. E. Cavanaugh and A. A. Neath, “The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements,” Wiley Interdiscip Rev Comput Stat, vol. 11, no. 3, p. e1460, May 2019, doi: 10.1002/WICS.1460.
[206] H. Louie, M. Wu, P. Di, P. Snitch, and G. Chapple, “Direct determination of trace elements in sea-water using reaction cell inductively coupled plasma mass spectrometry,” J Anal At Spectrom, vol. 17, no. 6, pp. 587–591, 2002, doi: 10.1039/b109121m.
[207] Q. Ketterings, C. Miyamoto, R. R. Mathur, K. Dietzel, and S. Gami, “A Comparison of Soil Sulfur Extraction Methods,” Soil Science Society of America Journal, vol. 75, no. 4, pp. 1578–1583, 2011, doi: 10.2136/sssaj2010.0407.
[208] I. Povar and O. Spinu, “The role of hydroxy aluminium sulfate minerals in controlling Al 3+ concentration and speciation in acidic soils,” Central European Journal of Chemistry, vol. 12, no. 8, pp. 877–885, 2014, doi: 10.2478/s11532-014-0540-4.
[209] C. Córdova et al., “Scientific Note. An alternative method to measure available sulphur by ion chromatograhy in volcanic soils,” Chilean J. Agric. Anim. Sci., ex Agro-Ciencia, vol. 33, no. 2, p. 118, 2017.
[210] C. G. Kowalenko and D. Babuin, “Interference problems with phosphoantimonylmolybdenum colorimetric measurement of phosphorus in soil and plant materials,” Commun Soil Sci Plant Anal, vol. 38, no. 9–10, pp. 1299–1316, May 2007, doi: 10.1080/00103620701328594.
[211] J. B. Rodriguez, J. R. Self, and P. N. Soltanpour, “Optimal conditions for phosphorus analysis by the ascorbic acid-molybdenum blue method,” Soil. Sci. Soc. Am. J., vol. 58, no. May-June, pp. 867–870, 1994.
[212] L. L. Wei, C. R. Chen, and Z. H. Xu, “The effect of low-molecular-weight organic acids and inorganic phosphorus concentration on the determination of soil phosphorus by the molybdenum blue reaction,” Biol Fertil Soils, vol. 45, no. 7, pp. 775–779, 2009, doi: 10.1007/s00374-009-0381-z.
[213] E. A. Nagul, I. D. McKelvie, P. Worsfold, and S. D. Kolev, “The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box,” Anal Chim Acta, vol. 890, pp. 60–82, 2015, doi: 10.1016/j.aca.2015.07.030.
[214] J. T. Sloop, D. A. Gonçalves, L. M. O’brien, J. A. Carter, B. T. Jones, and G. L. Donati, “Evaluation of different approaches to applying the standard additions calibration method,” Anal Bioanal Chem, vol. 413, pp. 1293–1302, 2021, doi: 10.1007/s00216-020-03092-8/Published.
[215] A. L. Hauswaldt et al., “Uncertainty of standard addition experiments: A novel approach to include the uncertainty associated with the standard in the model equation,” Accreditation and Quality Assurance, vol. 17, no. 2, pp. 129–138, 2012, doi: 10.1007/s00769-011-0827-5.
[216] G. Giannoulas, G. Z. Tsogas, and D. L. Giokas, “Single-point calibration and standard addition assays on calibrant-loaded paper-based analytical devices,” Talanta, vol. 201, pp. 149–155, Aug. 2019, doi: 10.1016/j.talanta.2019.04.008.
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados al autor, 2023
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 170 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85244/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85244/2/52964051.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85244/3/52964051.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
e8e26ed1cb66bd75af84d29995340105
88b562e2f7ff3778b9c7e6a5c5b31be7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090052598235136
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados al autor, 2023http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martínez Cordón, María José0f66912da9a6accaef9784be67b513ffAbella Gamba, Johanna Paolaf8588c3590dd213d593e78bf50b55c6bAhumada Forigua, Diego AlejandroGrupo de Investigación en Metrología Química y Bioanálisis del Instituto Nacional de Metrología de ColombiaResidualidad y Destino Ambiental de Plaguicidas en Sistemas Agricolas2024-01-12T16:25:52Z2024-01-12T16:25:52Z2023https://repositorio.unal.edu.co/handle/unal/85244Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, gráficas, tablasEn el presente documento, se presentan los resultados obtenidos en el desarrollo de dos herramientas metrológicas relacionadas con la medición de hierro, cobre, azufre y fósforo disponible en suelos. La primera herramienta correspondió a un material de referencia, para lo cual inicialmente se desarrollaron y validaron diferentes métodos para la medición de estos mensurandos por ICP-MS, cromatografía iónica y espectrofotometría UV-Vis. Estos métodos demostraron ser adecuados para evaluar la homogeneidad y estabilidad de materiales de referencia. Posteriormente, se presentan los resultados obtenidos en los estudios de preparación, homogeneidad y estabilidad de los materiales de referencia; los cuales permitieron soportar la obtención de materiales de referencia adecuados para su uso. Para el desarrollo de una segunda herramienta metrológica, se llevó a cabo un estudio preliminar del establecimiento de equivalencias entre el uso de diferentes técnicas analíticas para la medición de hierro, cobre, azufre y fósforo disponible en suelos; este estudio mostró que (i) existen diferencias en las mediciones obtenidas por diferentes técnicas analíticas y métodos de cuantificación; (ii) en algunos casos, como hierro, cobre y fósforo, estas diferencias podrían estar asociadas a la influencia de algunas propiedades de los suelos como la conductividad electrolítica, el contenido de manganeso y el pH. Finalmente, se proponen tres modelos multivariados que permiten mejorar la equivalencia entre las técnicas y reducir el error hasta en un 80%. (Texto tomado de la fuente)This document presents the results of the development of two metrological tools for measuring available iron, copper, sulfur, and phosphorus in soils. The first tool is a reference material. For its development, different measurement methods were validated using ICP-MS, ion chromatography, and UV-Vis spectrophotometry. These methods proved to be suitable for evaluating the homogeneity and stability of reference materials. The results obtained in the preparation, homogeneity, and stability studies of the reference materials are presented below, which supported that reference materials were obtained with uncertainties due to homogeneity and stability suitable for their use. For the development of a second metrological tool, a preliminary study was carried out to establish equivalences between different analytical techniques for measuring available iron, copper, sulfur, and phosphorus in soils. This study showed that (i) there are differences in the measurements obtained by different analytical techniques and quantification methods; (ii) in some cases, such as iron, copper, and phosphorus, these differences could be associated with the influence of some soil properties such as electrolytic conductivity, manganese content, and pH. Finally, three multivariate models are proposed that allow improving the equivalence between techniques and reducing error by up to 80%.MaestríaMagíster en Ciencias - QuímicaQuímica analítica / Metrología Química / Química del sueloxxii, 170 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::543 - Química analíticaMetrologíaCationesmetrologycationsSuelosMaterial de referenciaComparabilidadCorrelacionesElementos disponiblesSoilsReference materialComparabilityCorrelationsSoil available elementsDesarrollo de herramientas metrológicas para la medición de aniones y cationes en suelosDevelopment of metrological tools for the measurement of anions and cations in soilsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] N. Unidas, “La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe,” 2030. [Online]. Available: www.issuu.com/publicacionescepal/stacks[2] FAO, “Estrategias en Materia de Fertilizantes,” p. 122, 2000, [Online]. Available: http://www.fao.org/tempref/agl/agll/docs/fertstrs.pdf[3] A. A. Correndo, M. Boxler, and F. O. García, “Análisis económico del manejo de la fertilización con enfoque en el largo plazo,” Ciencia del Suelo, vol. 33, no. 2, pp. 197–212, 2015.[4] P. Quevauviller, “Operationally-defined extraction procedures for soil and sediment analysis. Part 3: New CRMs for trace-element extractable contents,” TrAC - Trends in Analytical Chemistry, vol. 21, no. 11, pp. 774–785, 2002, doi: 10.1016/S0165-9936(02)01105-6.[5] S. A. Ben Mussa, H. S. Elferjani, F. A. Haroun, and F. F. Abdelnabi, “Determination of available nitrate, phosphate and sulfate in soil samples,” Int J Pharmtech Res, vol. 1, no. 3, pp. 598–604, 2009.[6] K. T. Osman, Soils: Principles, properties and management. Springer Science + Business, 2013. doi: 10.1007/978-94-007-5663-2.[7] D. A. Horneck, D. M. Sullivan, J. S. Owen, and J. M. Hart, “Soil Test Interpretation Guide,” 2011. [Online]. Available: http://extension.oregonstate.[8] C. Dimkpa, P. Bindraban, J. E. McLean, L. Gatere, U. Singh, and D. Hellums, Methods for Rapid Testing of Plant and Soil Nutrients. USA: Springer International Publishing, 2017. doi: 10.1007/978-3-319-58679-3_1.[9] S. Sadeghian Khalajabadi, “Fertilizad del suelo y nutricion del cafe en Colombia,” Cenicafé, vol. 32, 2008.[10] C. Dimkpa, P. Bindraban, J. E. McLean, L. Gatere, U. Singh, and D. Hellums, “Methods for Rapid Testing of Plant and Soil Nutrients,” USA: Springer International Publishing, 2017, pp. 1–43. doi: 10.1007/978-3-319-58679-3_1.[11] M. R. Motsara and R. N. Roy, Guide to laboratory establishment for plant nutrient analysis. Rome, Italy: Food and Agriculture Organization of the United Nations, 2008.[12] J. B. Jones, “Universal Soil Extractants: Their Composition and Use,” Commun Soil Sci Plant Anal, vol. 21, no. 13–16, pp. 1091–1101, 1990, doi: 10.1080/00103629009368292.[13] “ISO 17034:2016 - General requirements for the competence of reference material producers.” https://www.iso.org/standard/29357.html (accessed Jul. 19, 2023).[14] T. Document et al., “DRAFT ISO GUIDE ISO / GUIDE 35 Reference materials — Guidance for the characterization and the assessment of the homogeneity and stability of the material,” vol. 2015, 2016.[15] R. J. C. Brown and H. Andres, “How should metrology bodies treat method-defined measurands?,” Accreditation and Quality Assurance, vol. 25, no. 2, pp. 161–166, Apr. 2020, doi: 10.1007/s00769-020-01424-w.[16] H. Andres et al., “Report from the CCQM Task Group on Method-defined measurands,” 2019. Accessed: Jul. 19, 2023. [Online]. Available: https://www.bipm.org/documents/20126/28432509/working-document-ID-11268/6eae4b21-bb0a-db3e-372a-86398d0f107a[17] V. J. Barwick, Ed., Eurachem Guide: Terminology in Analytical Measurement - Introduction to VIM 3, Second edition. 2023. [Online]. Available: www.eurachem.org.[18] Eurolab España. and PP Morillas y colaboradores, Eds., Guía Eurachem: La Adecuación al Uso de los Métodos Analíticos - Una guía de laboratorio para la validación de métodos y temes relacionados, Primera edición. 2016. Accessed: Jan. 19, 2023. [Online]. Available: www.eurachem.org[19] Eurachem Method Validation Working Group, The fitness for purpose of analytical methods : a laboratory guide to method validation and related topics. 2014. Accessed: Jul. 19, 2023. [Online]. Available: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf[20] D. Ahumada, C. Paredes, J. Abella, and I. González, Validación de Métodos en Análisis Químico Cuantitativo. Instituto Nacional de Metrología, 2023. Accessed: Feb. 21, 2023. [Online]. Available: https://inm.gov.co/web/wp-content/uploads/2023/05/Guia_ValidacionMetodosAnalisisQuimicoCuantitativo-16.pdf[21] JCGM, “International Vocabulary of Metrology Fourth edition,” Joint Committee for Guides in Metrology, no. January, pp. 1–55, 2021.[22] H. Kipphardt, R. Matschat, and U. Panne, “Metrology in chemistry - A rocky road,” Microchimica Acta, vol. 162, no. 1–2, pp. 35–41, 2008, doi: 10.1007/s00604-007-0909-6.[23] G. Dube, “Metrology in chemistry - A public task,” Accreditation and Quality Assurance, vol. 6, no. 1, pp. 3–7, 2001, doi: 10.1007/PL00010431.[24] R. Kaarls, “Metrology in chemistry: Rapid developments in the global metrological infrastructure, the CIPM MRA and its economic and social impact,” Accreditation and Quality Assurance, vol. 11, no. 4, pp. 162–171, 2006, doi: 10.1007/s00769-006-0104-1.[25] “Decreto_Ley_4175_de_2011 por el cual se escinden unas funciones de la Superintendencia de Industria, y Comercio, se crea el Instituto Nacional de Metrología y se establece su objetivo y estructura.” 2011. Accessed: Jul. 19, 2023. [Online]. Available: https://www.suin-juriscol.gov.co/viewDocument.asp?id=1543264[26] L. R. O. Geaquinto, V. Souza, E. C. P. Rego, M. L. Silva, and L. B. L. Balottin, “The importance of metrological tools to implementation of alternative method OECD TG 428,” Toxicology in Vitro, vol. 84, no. June, 2022, doi: 10.1016/j.tiv.2022.105425.[27] A. Durazzo, E. B. Souto, G. Lombardi-Boccia, A. Santini, and M. Lucarini, “Metrology, agriculture and food: Literature quantitative analysis,” Agriculture (Switzerland), vol. 11, no. 9, Sep. 2021, doi: 10.3390/agriculture11090889.[28] C. R. Beauchamp et al., “Metrological tools for the reference materials and reference instruments of the NIST material measurement laboratory,” Gaithersburg, MD, Jul. 2020. doi: 10.6028/NIST.SP.260-136-2020.[29] M. Thompson, S. L. R. Ellison, and R. Wood, “The International Harmonized Protocol for the proficiency testing of analytical chemistry laboratories: (IUPAC technical report),” Pure and Applied Chemistry, vol. 78, no. 1, pp. 145–196, 2006, doi: 10.1351/pac200678010145.[30] D. Tholen, “Metrology in service of society: The role of proficiency testing,” Accreditation and Quality Assurance, vol. 16, no. 12, pp. 603–605, 2011, doi: 10.1007/s00769-011-0836-4.[31] W. G. Miller, G. R. D. Jones, G. L. Horowitz, and C. Weykamp, “Proficiency testing/external quality assessment: Current challenges and future directions,” Clin Chem, vol. 57, no. 12, pp. 1670–1680, 2011, doi: 10.1373/clinchem.2011.168641.[32] M. Ramsey and S. Ellison, “Quality in Measurement and Testing,” … of Metrology and Testing, pp. 39–141, 2011, Accessed: Jan. 22, 2015. [Online]. Available: http://link.springer.com/chapter/10.1007/978-3-642-16641-9_3[33] S. A. Wise, “What is novel about certified reference materials?,” Anal Bioanal Chem, vol. 410, no. 8, pp. 2045–2049, 2018, doi: 10.1007/s00216-018-0916-y.[34] Fda, Cfsan, Ors, DBC, and CHCB, “Elemental Analysis Manual - Section 3.5 Version 3.0 (December 2021).” [Online]. Available: https://www.fda.gov/food/laboratory-methods-food/elemental-analysis-manual-eam-food-and-related-products[35] ISO, “UNE-EN ISO 17034 Requisitos generales para la competencia de los productores de materiales de referencia,” 2017, [Online]. Available: www.une.org[36] H. Emons, A. Fajgelj, A. M. H. van der Veen, and R. Watters, “New definitions on reference materials,” Accreditation and Quality Assurance, vol. 10, no. 10, pp. 576–578, Feb. 2006, doi: 10.1007/s00769-006-0089-9.[37] P. de Bièvre, “On the difference between a ‘reference material’ and a ‘material reference,’” Accreditation and Quality Assurance, vol. 16, no. 8. pp. 391–392, Aug. 2011. doi: 10.1007/s00769-011-0800-3.[38] H. W. Vesper, W. G. Miller, and G. L. Myers, “Reference materials and commutability.,” Clin Biochem Rev, vol. 28, no. 4, pp. 139–47, 2007, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/18392124%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2282402[39] M. Ochsenkuhn-petropoulou and M. Koenig, “Elements in Soil UME EnvCRM 03,” pp. 1–84, 2018.[40] K. Kupiec, P. Konieczka, and J. Namieśnik, “Prospects for the production, research and utilization of reference materials,” Crit Rev Anal Chem, vol. 39, no. 4, pp. 311–322, Oct. 2009, doi: 10.1080/10408340903253182.[41] A. Botha, S. Ellison, T. Linsinger, and A. van der Veen, “Outline for the revision of ISO Guide 35,” Accreditation and Quality Assurance, vol. 18, no. 2, pp. 115–118, Dec. 2012, doi: 10.1007/s00769-012-0940-0.[42] S. L. R. Ellison and A. Botha, “Principles for the assessment of homogeneity and stability in the new ISO Guide 35:2017,” Accreditation and Quality Assurance, vol. 23, no. 1, pp. 47–51, Feb. 2018, doi: 10.1007/s00769-017-1293-5. [43][43] S. L. R. Ellison, “Homogeneity studies and ISO Guide 35:2006,” Accreditation and Quality Assurance, vol. 20, no. 6, pp. 519–528, Dec. 2015, doi: 10.1007/s00769-015-1162-z.[44] S. A. Abdul-Wahab, C. S. Bakheit, and S. M. Al-Alawi, “Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations,” Environmental Modelling and Software, vol. 20, no. 10, pp. 1263–1271, 2005, doi: 10.1016/j.envsoft.2004.09.001.[45] D. Montgomery, E. Peck, and G. Vining, “Introducción al análisis de regresión lineal,” 2006. https://www.academia.edu/34899097/Montgomery_y_Runger_Probabilidad_y_Estadistica_Aplicada_a_La_Ingenieria (accessed Jul. 19, 2023).[46] N. R. Draper and J. A. John, “Influential observations and outliers in regression,” Technometrics, vol. 23, no. 1, pp. 21–26, 1981, doi: 10.1080/00401706.1981.10486232.[47] M. Ringnér, “What is principal component analysis?,” 2008. [Online]. Available: http://www.nature.com/naturebiotechnology[48] S. M. Holland, “PRINCIPAL COMPONENTS A N ALYSI S (PCA),” 2019. Accessed: Jul. 19, 2023. [Online]. Available: http://strata.uga.edu/software/pdf/pcaTutorial.pdf[49] J. Jones, “Soil test methods: Past, present, and future use of soil extractants,” Commun Soil Sci Plant Anal, vol. 29, no. 11–14, pp. 1543–1552, 1998, doi: 10.1080/00103629809370048.[50] ICONTEC, “NTC-5526 Calidad del suelo. Determinación de micronutrientes disponibles: Cobre, zinc hierro y manganeso,” 2007.[51] A. Mehlich, “New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and Zinc1,” Commun Soil Sci Plant Anal, vol. 9, no. 6, pp. 477–492, 1978, doi: 10.1080/00103627809366824.[52] A. Mehlich, Communications in Soil Science and Plant Analysis Mehlich 3 soil test extractant : A modification of Mehlich 2 extractant,”, pp. 37–41, 1984, doi: 10.1167/iovs.11-7364.[53] J. J. Wang, D. L. Harrell, R. E. Henderson, and P. F. Bell, “Comparison of Soil-Test Extractants for Phosphorus, Potassium, Calcium, Magnesium, Sodium, Zinc, Copper, Manganese, and Iron in Louisiana Soils,” Commun Soil Sci Plant Anal, vol. 35, no. 1–2, pp. 145–160, 2004, doi: 10.1081/CSS-120027640.[54] E. A. Hanlon and G. V. Johnson, “Bray/kurtz, mehlich III, AB/D and ammonium acetate extractions of p, k and mg in four oklahoma soils,” Commun Soil Sci Plant Anal, vol. 15, no. 3, pp. 277–294, 1984, doi: 10.1080/00103628409367475.[55] A. K. Alva, “Comparison of Mehlich 3, Mehlich 1, Ammonium Bicarbonate-DTPA, 1.0m Ammonium Acetate, and 0.2m Ammonium Chloride for extraction of Calcium, Magnesium, Phosphorus, and Potassium for a wide range of soils,” Commun Soil Sci Plant Anal, vol. 24, no. 7–8, pp. 603–612, 1993, doi: 10.1080/00103629309368826.[56] J. Matula and J. Matula, “A relationship between multi-nutrient soil tests (Mehlich 3, ammonium acetate, and water extraction) and bioavailability of nutrients from soils for barley,” Plant Soil Environ, vol. 55, no. 4, pp. 173–180, 2009, doi: 10.17221/29/2009-pse.[57] G. J. Michaelson, C. L. Ping, and G. A. Mitchell, “Correlation of Mehlich 3, Bray 1, and ammonium acetate extractable P, K, Ca, and Mg for alaska agricultural soils,” Commun Soil Sci Plant Anal, vol. 18, no. 9, pp. 1003–1015, 1987, doi: 10.1080/00103628709367877.[58] L. M. Shuman and R. R. Duncan, “Soil Exchangeable Cations and Aluminum Measured by Ammonium Chloride, Potassium Chloride, and Ammonium Acetate,” Commun Soil Sci Plant Anal, vol. 21, no. 13–16, pp. 1217–1228, 1990, doi: 10.1080/00103629009368300.[59] P. N. Soltanpour and A. P. Schwab, “A new soil test for simultaneous extraction of macroand micro-nutrients in alkaline soils,” Commun Soil Sci Plant Anal, vol. 8, no. 3, pp. 195–207, 1977, doi: 10.1080/00103627709366714.[60] A. Schöning and G. W. Brümmer, “Extraction of mobile element fractions in forest soils using ammonium nitrate and ammonium chloride,” Journal of Plant Nutrition and Soil Science, vol. 171, no. 3, pp. 392–398, 2008, doi: 10.1002/jpln.200625169.[61] V. J. G. Houba, E. J. M. Temminghoff, G. A. Gaikhorst, and W. van Vark, “Soil analysis procedures using 0.01 M calcium chloride as extraction reagent,” Commun Soil Sci Plant Anal, vol. 31, no. 9–10, pp. 1299–1396, 2000, doi: 10.1080/00103620009370514.[62] J. Sarkadi and J. Loch, “Experiences with 0.01m calcium chloride as an extraction reagent for use as a soil testing procedure in hungary,” Commun Soil Sci Plant Anal, vol. 25, no. 9–10, pp. 1771–1777, 1994, doi: 10.1080/00103629409369151.[63] G. C. J. Irving and M. J. McLaughlin, “A Rapid and Simple Field Test for Phosphorus in Olsen and Bray No. 1 Extracts of Soil1,” Commun Soil Sci Plant Anal, vol. 21, no. 19–20, pp. 2245–2255, 1990, doi: 10.1080/00103629009368377.[64] A. M. Wolf and D. E. Baker, “Comparisons of soil test phosphorus by olsen, bray pl, mehlich i and mehlich iii methods,” Commun Soil Sci Plant Anal, vol. 16, no. 5, pp. 467–484, 1985, doi: 10.1080/00103628509367620.[65] M. D. A. Bolland and R. J. Gilkes, “Evaluation of the Bray 1, calcium acetate lactate (CAL), Truog and Colwell soil tests as predictors of triticale grain production on soil fertilized with superphosphate and rock phosphate,” Fertilizer Research, vol. 31, no. 3, pp. 363–372, 1992, doi: 10.1007/BF01051288.[66] L. D. Hylander, T. Makino, and N. Ae, “Bray-2 phosphorus as influenced by soil fineness and filtration time,” Commun Soil Sci Plant Anal, vol. 30, no. 7–8, pp. 947–955, 1999, doi: 10.1080/00103629909370259.[67] M. Do Carmo Horta and J. Torrent, “Phosphorus desorption kinetics in relation to phosphorus forms and sorption properties of Portuguese acid soils,” Soil Sci, vol. 172, no. 8, pp. 631–638, 2007, doi: 10.1097/ss.0b013e3180577270.[68] L. Arce, A. Ríos, and M. Valcárcel, “Direct multiparametric determination of anions in soil samples by integrating on-line automated extraction/filtering with capillary electrophoresis,” Fresenius J Anal Chem, vol. 360, no. 6, pp. 697–701, 1998, doi: 10.1007/s002160050784.[69] F. J. Sikora, P. S. Howe, L. E. Hill, D. C. Reid, and D. E. Harover, “Comparison of colorimetric and ICP determination of phosphorus in Mehlich3 soil extracts,” Commun Soil Sci Plant Anal, vol. 36, no. 7–8, pp. 875–887, 2005, doi: 10.1081/CSS-200049468.[70] O. O. Adesanwo, D. V. Ige, L. Thibault, D. Flaten, and W. Akinremi, “Comparison of Colorimetric and ICP Methods of Phosphorus Determination in Soil Extracts,” Commun Soil Sci Plant Anal, vol. 44, no. 21, pp. 3061–3075, 2013, doi: 10.1080/00103624.2013.832771.[71] R. N. Sah and P. H. Brown, “Boron determination - A review of analytical methods,” Microchemical Journal, vol. 56, no. 3, pp. 285–304, 1997, doi: 10.1006/mchj.1997.1428.[72] A. P. Mallarino, “Field Calibration for Corn of the Mehlich-3 Soil Phosphorus Test with Colorimetric and Inductively Coupled Plasma Emission Spectroscopy Determination Methods,” Soil Science Society of America Journal, vol. 67, no. 6, pp. 1928–1934, 2003, doi: 10.2136/sssaj2003.1928.[73] J. J. Pittman, H. Zhang, J. L. Schroder, and M. E. Payton, “Differences of phosphorus in Mehlich 3 extracts determined by colorimetric and spectroscopic methods,” Commun Soil Sci Plant Anal, vol. 36, no. 11–12, pp. 1641–1659, 2005, doi: 10.1081/CSS-200059112.[74] R. McDowell, A. Sharpley, P. Brookes, and P. Poulton, “Relationship between soil test phosphorus and phosphorus release to solution,” Soil Sci, vol. 166, no. 2, pp. 137–149, 2001, doi: 10.1097/00010694-200102000-00007.[75] O. M. Kachurina, H. Zhang, W. R. Raun, and E. G. Krenzer, “Simultaneous determination of soil aluminum, ammonium- and nitrate- nitrogen using 1 M potassium chloride,” Commun Soil Sci Plant Anal, vol. 31, no. 7–8, pp. 893–903, 2000, doi: 10.1080/00103620009370485.[76] D. A. Tel and C. Heseltine, “The Analyses of Kcl Soil Extracts For Nitrate, Nitrite And Ammonium Using a Traacs 800 Analyzer,” Commun Soil Sci Plant Anal, vol. 21, no. 13–16, pp. 1681–1688, 1990, doi: 10.1080/00103629009368331.[77] K. Malekani and M. S. Cresser, “Comparison of three methods for determining boron in soils, plants, and water samples,” Commun Soil Sci Plant Anal, vol. 29, no. 3–4, pp. 285–304, 1998, doi: 10.1080/00103629809369946.[78] C. A. De Abreu, M. F. De Abreu, B. van Raij, O. C. Bataglia, and J. C. De Andrade, “Extraction of boron from soil by microwave heating for icp-aes determination,” Commun Soil Sci Plant Anal, vol. 25, no. 19–20, pp. 3321–3333, 1994, doi: 10.1080/00103629409369267.[79] E. D. Rhine, R. L. Mulvaney, E. J. Pratt, and G. K. Sims, “Improving the Berthelot Reaction for Determining Ammonium in Soil Extracts and Water,” Soil Science Society of America Journal, vol. 62, no. 2, p. 473, 1998, doi: 10.2136/sssaj1998.03615995006200020026x.[80] D. Bartelett and J. R. Neller, “Turbidimetric determination of sulfate sulfur in soil extracts,” University of Florida Agricultural Experiment Station, pp. 201–204, 1960.[81] D. ; G. B. Russi F.H.; Prystupa, P.; Rubio, G., “Comparación de mediciones turbidimétricas de sulfatos utilizando distintos extractantes y tratamientos del extracto,” XXII Congreso Argentino de la Ciencia del suelo. El Suelo: pilar de la agroindustria en la pampa argentina, p. 29, 2010.[82] H. A. Ajwa and M. A. Tabatabai, “Comparison of Some Methods for Determination of Sulfate in Soils,” Commun Soil Sci Plant Anal, vol. 24, no. 15–16, pp. 1817–1832, Sep. 1993, doi: 10.1080/00103629309368920.[83] J. Coutinho, “Automated method for sulphate determination in soil-plant extracts and waters,” Commun Soil Sci Plant Anal, vol. 27, no. 3–4, pp. 727–740, 1996, doi: 10.1080/00103629609369590.[84] R. J. Wright and T. Stuczynski, “Atomic Absorption and Flame Emission Spectrometry Chapter 4,” 1996.[85] M. Tüzen, “Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry,” Microchemical Journal, vol. 74, no. 3, pp. 289–297, 2003, doi: 10.1016/S0026-265X(03)00035-3.[86] Y. Zhang, J. N. Moore, and W. T. Frankenberger, “Speciation of soluble selenium in agricultural drainage waters and aqueous soil-sediment extracts using hydride generation atomic absorption spectrometry,” Environ Sci Technol, vol. 33, no. 10, pp. 1652–1656, 1999, doi: 10.1021/es9808649.[87] L. Elçi, Z. Arslan, and J. F. Tyson, “Flow injection solid phase extraction with Chromosorb 102: determination of lead in soil and waters by flame atomic absorption spectrometry,” Spectrochim Acta Part B At Spectrosc, vol. 55, no. 7, pp. 1109–1116, 2000, doi: 10.1016/S0584-8547(00)00195-6.[88] K. W. Jackson and A. P. Newman, “Determination of lead in soil by graphite furnace atomic-absorption spectrometry with the direct introduction of slurries,” Analyst, vol. 108, no. 1283, pp. 261–264, 1983, doi: 10.1039/an9830800261.[89] D. J. David, “The determination of exchangeable sodium, potassium, calcium and magnesium in soils by atomic-absorption spectrophotometry,” Analyst, vol. 85, no. 1012, pp. 495–503, 1960, doi: 10.1039/AN9608500495.[90] D. J. Eckert and M. E. Watson, “Integrating the Mehlich-3 extractant into existing soil test interpretation schemes,” Commun Soil Sci Plant Anal, vol. 27, no. 5–8, pp. 1237–1249, 1996, doi: 10.1080/00103629609369629.[91] B. J. A. Haring, W. van Delft, and C. M. Bom, “Determination of arsenic and antimony in water and soil by hydride generation and atomic absorption spectroscopy,” Fresenius’ Zeitschrift für Analytische Chemie, vol. 310, no. 3–4, pp. 217–223, 1982, doi: 10.1007/BF00484035.[92] K. S. Patel, P. C. Sharma, and P. Hoffmann, “Graphite furnace-atomic absorption spectrophotometric determination of palladium in soil,” Fresenius J Anal Chem, vol. 367, no. 8, pp. 738–741, 2000, doi: 10.1007/s002160000483.[93] M. D. Ho and G. J. Evans, “Operational Speciation of Cadmium, Copper, Lead and Zinc in the NIST Standard Reference Materials 2710 and 2711 (Montana Soil) by the BCR Sequential Extraction Procedure and Flame Atomic Absorption Spectrometry,” Analytical Communications, vol. 34, no. 11, pp. 363–364, 1997, doi: 10.1039/a706954e.[94] Ş. Tokalioǧlu and Ş. Kartal, “Relationship Between Vegetable Metal and Soil-Extractable Metal Contents by the BCR Sequential Extraction Procedure: Chemometrical Interpretation of the Data,” Int J Environ Anal Chem, vol. 83, no. 11, pp. 935–952, 2003, doi: 10.1080/03067310310001608740.[95] T. L. Yuan and H. L. Breland, “Evaluation of Atomic Absoprtion Methods for Determinations of Aluminium, Iron, and Silicon in Clay and Soil Extracts,” Journal Series Paper No. 3094, pp. 868–872, 1969.[96] V. Andreu and E. Gimeno-García, “Total content and extractable fraction of cadmium, cobalt, copper, nickel, lead, and zinc in calcareous orchard soils,” Commun Soil Sci Plant Anal, vol. 27, no. 13–14, pp. 2633–2648, 1996, doi: 10.1080/00103629609369728.[97] S. G. Dolar and D. R. Keeney, “Availability of Cu, Zn and Mn in soils: I.—Influence of soil pH, organic matter, and extractable phosphorus,” J Sci Food Agric, vol. 22, no. 6, pp. 273–278, 1971, doi: 10.1002/jsfa.2740220602.[98] B. E. Yusiharni, H. Ziadi, and R. J. Gilkes, “A laboratory and glasshouse evaluation of chicken litter ash, wood ash, and iron smelting slag as liming agents and P fertilisers,” Australian Journal of Soil Research, vol. 45, no. 5, pp. 374–389, 2007, doi: 10.1071/SR06136.[99] W. L. Lindsay and W. A. Norvell, “Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper,” Soil Science Society of America Journal, vol. 42, no. 3, pp. 421–428, 1978, doi: 10.2136/sssaj1978.03615995004200030009x.[100] R. Garcia and E. Millán, “Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain),” Chemosphere, vol. 37, no. 8, pp. 1615–1625, 1998, doi: 10.1016/S0045-6535(98)00152-0.[101] B. D. Tembo, K. Sichilongo, and J. Cernak, “Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia,” Chemosphere, vol. 63, no. 3, pp. 497–501, 2006, doi: 10.1016/j.chemosphere.2005.08.002.[102] C. Mico, L. Recatala, M. Peris, and Juan. Sanchez, “A comparison of two digestion methods for the analysis of heavy metals by flame atomic absorption spectroscopy.,” Spectroscopy Europe, vol. 19, no. 1, pp. 23–26, 2007.[103] M. Ghaedi, M. R. Fathi, A. Shokrollahi, and F. Shajarat, “Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy,” Anal Lett, vol. 39, no. 6, pp. 1171–1185, 2006, doi: 10.1080/00032710600622167.[104] C. Monterroso and F. Macías, “Evaluation of the Test-Mineral Method for Studying Minesoil Geochemistry,” Soil Science Society of America Journal, vol. 62, no. 6, pp. 1741–1748, 1998, doi: 10.2136/sssaj1998.03615995006200060036x.[105] P. N. Soltanpour, F. Collins, and R. O. Miller, “Inductively Coupled Plasma Emission Spectrometry and Inductively Coupled,” Methods of soil analysis. Part 3 - chemical methods., no. 5, pp. 91–139, 1996.[106] H. Kawaguchi, “Inductively coupled plasma mass spectrometry. A review.,” Analytical Sciences, vol. 4, no. 4, pp. 339–345, 1988, doi: 10.2116/analsci.4.339.[107] J. Feuerstein, S. F. Boulyga, P. Galler, G. Stingeder, and T. Prohaska, “Determination of 90Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS),” J Environ Radioact, vol. 99, no. 11, pp. 1764–1769, 2008, doi: 10.1016/j.jenvrad.2008.07.002.[108] L. Arroyo, T. Trejos, T. Hosick, S. Machemer, J. R. Almirall, and P. R. Gardinali, “Analysis of soils and sediments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): An innovative tool for environmental forensics,” Environ Forensics, vol. 11, no. 4, pp. 315–327, 2010, doi: 10.1080/15275922.2010.494949.[109] S. F. Boulyga and J. S. Becker, “Determination of uranium isotopic composition and236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry,” Fresenius J Anal Chem, vol. 370, no. 5, pp. 612–617, 2001, doi: 10.1007/s002160100838.[110] M. Hollenbach, J. Grohs, S. Mamich, M. Kroft, and E. R. Denoyer, “Determination of Technetium-99, Thorium-230 and Uranium-234 in Soils,” vol. 9, no. September, 1994.[111] J. B. Jones, “Elemental analysis of soil extracts and plant tissue ash by plasma emission spectroscopy,” Commun Soil Sci Plant Anal, vol. 8, no. 4, pp. 349–365, 1977, doi: 10.1080/00103627709366727.[112] H. Performance and C. Electrophoresis, “Capillary Electrophoresis Capillary electrophoresis,” Food Toxicants Analysis: Techniques, Strategies and Developments, vol. 1997, no. 2, pp. 561–597, 2014, doi: 10.1021/acs.analchem.5b04125.[113] B. Westergaard, H. C. B. Hansen, and O. K. Borggaard, “Determination of anions in soil solutions by capillary zone electrophoresis.”[114] A. Göttlein, “Determination of free Al3+ in soil solutions by capillary electrophoresis,” Eur J Soil Sci, vol. 49, no. 1, pp. 107–112, 1998, doi: 10.1046/j.1365-2389.1998.00133.x.[115] G. Dinelli, A. Vicari, and V. Brandolini, “Detection and quantitation of sulfonylurea herbicides in soil at the ppb level by capillary electrophoresis,” J Chromatogr A, vol. 700, no. 1–2, pp. 201–207, 1995, doi: 10.1016/0021-9673(95)00099-9.[116] H. J. Menne, K. Janowitz, and B. M. Berger, “Comparison of capillary electrophoresis and liquid chromatography for determination of sulfonylurea herbicides in soil,” J AOAC Int, vol. 82, no. 6, pp. 1534–1541, 1999, doi: 10.1093/jaoac/82.6.1534.[117] J. Hernández-Borges, F. J. García-Montelongo, A. Cifuentes, and M. Á. Rodríguez-Delgado, “Analysis of triazolopyrimidine herbicides in soils using field-enhanced sample injection-coelectroosmotic capillary electrophoresis combined with solid-phase extraction,” J Chromatogr A, vol. 1100, no. 2, pp. 236–242, 2005, doi: 10.1016/j.chroma.2005.09.053.[118] C. Casiot, M. C. B. Alonso, J. Boisson, O. F. X. Donard, and M. Potin-Gautier, “Simultaneous speciation of arsenic, selenium, antimony and tellurium species in waters and soil extracts by capillary electrophoresis and UV detection,” Analyst, vol. 123, no. 12, pp. 2887–2893, 1998, doi: 10.1039/a805954c.[119] R. Naidu, J. Smith, R. G. Mclaren, D. P. Stevens, M. E. Sumner, and P. E. Jackson, “Application of Capillary Electrophoresis to Anion Speciation in Soil Water Extracts: II. Arsenic,” Soil Sci. Soc. Am. J., vol. 64, pp. 122–128, 2000.[120] B. L. Chu, B. Y. Guo, Z. Peng, Z. Wang, G. Guo, and J. M. Lin, “Studies on degradation of imazalil enantiomers in soil using capillary electrophoresis,” J Sep Sci, vol. 30, no. 6, pp. 923–929, 2007, doi: 10.1002/jssc.200600447.[121] C. R. Warren, “Rapid and sensitive quantification of amino acids in soil extracts by capillary electrophoresis with laser-induced fluorescence,” Soil Biol Biochem, vol. 40, no. 4, pp. 916–923, 2008, doi: 10.1016/j.soilbio.2007.11.011.[122] R. Jagadish and V. A. Shanmugaselvan, “Quantification of Inorganic Anions in Tea (Camellia Sinensis (L) O. Kuntze) Tissues and Soil Using Ion Chromatography Coupled with Conductivity Detector,” Commun Soil Sci Plant Anal, vol. 49, no. 8, pp. 875–888, 2018, doi: 10.1080/00103624.2018.1448404.[123] M. B. Turrión, J. F. Gallardo, and M. I. González, “Extraction of soil-available phosphate, nitrate, and sulphate ions using ion exchange membranes and determination by ion exchange chromatography,” Commun Soil Sci Plant Anal, vol. 30, no. 7–8, pp. 1137–1152, 1999, doi: 10.1080/00103629909370274.[124] A. C. Scheinost, R. Kretzschmar, S. Pfister, and D. R. Roberts, “Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil,” Environ Sci Technol, vol. 36, no. 23, pp. 5021–5028, Dec. 2002, doi: 10.1021/es025669f.[125] I. J. Pickering, N. E. Brown, and T. K. Tokunaga, “Quantitative Speciation of Selenium in Soils Usiny X-ray Absorption Spectroscopy,” Environ Sci Technol, vol. 29, no. 9, pp. 2456–2459, 1995.[126] S. Gaudino et al., “The role of different soil sample digestion methods on trace elements analysis: A comparison of ICP-MS and INAA measurement results,” Accreditation and Quality Assurance, vol. 12, no. 2, pp. 84–93, Feb. 2007, doi: 10.1007/s00769-006-0238-1.[127] Soil Analysis: Recent Trends and Applications. Springer Singapore, 2020. doi: 10.1007/978-981-15-2039-6.[128] LGC, “Analytical reference materials, standards and high purity solvents,” Lgcstandards.Com, p. 75, 2011, [Online]. Available: www.lgcstandards.com[129] “EPTIS | Home.” https://www.eptis.org/ (accessed Jul. 19, 2023).[130] “WEPAL-QUASIMEME - WEPAL.” https://www.wepal.nl/en/wepal.htm (accessed Jul. 19, 2023).[131] “Directorio Oficial de Acreditados - DOA | ONAC.” https://onac.org.co/directorio-de-acreditados/ (accessed Jul. 19, 2023).[132] “Sociedad Colombiana de la Ciencia del Suelo.” https://sccsuelos.org/ (accessed Jul. 19, 2023).[133] S. W. Culman et al., “Calibration of Mehlich-3 with Bray P1 and Ammonium Acetate in the Tri-State Region of Ohio, Indiana and Michigan,” Commun Soil Sci Plant Anal, vol. 51, no. 1, pp. 86–97, 2019, doi: 10.1080/00103624.2019.1695825.[134] J. Zbiral, “Determination of phosphorus in calcareous soils by Mehlich 3, Mehlich 2, CAL, and Egner extractants,” Commun Soil Sci Plant Anal, vol. 31, no. 19–20, pp. 3037–3048, 2000, doi: 10.1080/00103620009370648.[135] A. D. C. Chilimba, S. K. Mughogho, and J. Wendt, “Mehlich 3 or Modified Olsen for soil testing in Malawi,” Commun Soil Sci Plant Anal, vol. 30, no. 7–8, pp. 1231–1250, 1999, doi: 10.1080/00103629909370280.[136] W. Hao et al., “Rapid classification of soils from different mining areas by laser-induced breakdown spectroscopy (LIBS) coupled with a PCA-based convolutional neural network,” J Anal At Spectrom, vol. 36, no. 11, pp. 2509–2518, Nov. 2021, doi: 10.1039/D1JA00078K.[137] Z. O. Alibrahim and C. D. Williams, “Assessment of bioavailability of some potential toxic metals in mining-affected soils using EDTA extraction and principle component analysis (PCA) approach, Derbyshire, UK,” Interdisciplinary Journal of Chemistry, vol. 1, no. 2, 2016, doi: 10.15761/IJC.1000110.[138] X. Wang, T. Guo, Y. Wang, Y. Xing, Y. Wang, and X. He, “Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA,” Agric Water Manag, vol. 237, Jul. 2020, doi: 10.1016/j.agwat.2020.106180.[139] S. Rodrigues et al., “The influence of anthropogenic and natural geochemical factors on urban soil quality variability: A comparison between Glasgow, UK and Aveiro, Portugal,” Environ Chem Lett, vol. 7, no. 2, pp. 141–148, 2009, doi: 10.1007/s10311-008-0149-y.[140] M. Ferde et al., “SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • Chemical characterization of the soils from black pepper (Piper nigrum L.) cultivation using principal component analysis (PCA) and Kohonen self-organizing map (KSOM)”, doi: 10.1007/s11368-021-02966-3/Published.[141] Comité 013 Calidad del suelo - ICONTEC.” https://econecta.icontec.org/cmtvw.aspx?ID=F3B2CDAC9DA30AD6 (accessed Jul. 19, 2023).[142] I. R. B. Olivares, G. B. Souza, A. R. A. Nogueira, G. T. K. Toledo, and D. C. Marcki, “Trends in developments of certified reference materials for chemical analysis - Focus on food, water, soil, and sediment matrices,” TrAC - Trends in Analytical Chemistry, vol. 100. Elsevier B.V., pp. 53–64, Mar. 01, 2018. doi: 10.1016/j.trac.2017.12.013.[143] I. Kuselman and A. Fajgelj, “IUPAC/CITAC Guide: Selection and use of proficiency testing schemes for a limited number of participants-chemical analytical laboratories (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 82, no. 5, pp. 1099–1135, 2010, doi: 10.1351/PAC-REP-09-08-15.[144] “Reference materials-Guidance for the characterization and the assessment of the homogeneity and stability of the material,” 2015, [Online]. Available: www.iso.org[145] D. A. Ahumada-Forigua, L. L. Soto-Morales, L. V. Morales-Erazo, and J. P. Abella-Gamba, “Development of a certified reference material for elemental analysis of drinking water,” Revista Colombiana de Química, vol. 48, no. 3, pp. 36–44, Sep. 2019, doi: 10.15446/rev.colomb.quim.v48n3.78660.[146] R. Sánchez, J. Snell, A. Held, and H. Emons, “Development and validation of a method for mercury determination in seawater for the process control of a candidate certified reference material,” Anal Bioanal Chem, vol. 407, no. 21, pp. 6569–6574, 2015, doi: 10.1007/s00216-015-8833-9.[147] T. P. J. Linsinger et al., “Homogeneity and stability of reference materials,” Springer-Verlag, 2001.[148] L. Deprez et al., “Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material,” Biomol Detect Quantif, vol. 9, pp. 29–39, 2016, doi: 10.1016/j.bdq.2016.08.002.[149] “Norma Técnica Colombiana NTC 5402: Calidad del suelo. Determinación del ... - Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) - Google Libros.” https://books.google.com.co/books/about/Norma_T%C3%A9cnica_Colombiana_NTC_5402.html?id=tpodtAEACAAJ&redir_esc=y (accessed Jul. 19, 2023).[150] “Calidad del suelo. determinación de fósforo disponible.” https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-de-fosforo-disponible-ntc5350-2020.html (accessed Jul. 19, 2023).[151] “Calidad del suelo. Determinación de la humedad y del factor de corrección (Pw), expresados en base seca” https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-de-la-humedad-y-del-factor-de-correccion-pw-expresados-en-base-seca-ntc6230-2017.html (accessed Jul. 19, 2023).[152] Y. Zhu et al., “Applications and uncertainty estimation of single level standard addition method ICP-MS for elemental analysis in various matrix,” Analytical Sciences, vol. 34, no. 6, pp. 701–710, 2018, doi: 10.2116/analsci.18SBP09.[153] C. Uribe and E. Cosio, “Combination of single-point standard addition calibration and natural internal standardization for quantification of terpenes in Pisco samples,” Lwt, vol. 147, no. April, p. 111551, 2021, doi: 10.1016/j.lwt.2021.111551.[154] A. Hineman and C. Stephan, “Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality,” J Anal At Spectrom, vol. 29, no. 7, pp. 1252–1257, 2014, doi: 10.1039/c4ja00097h.[155] F. Vanhaecke, H. Vanhoe, R. Dams, and C. Vandecasteele, “The use of internal standards in ICP-MS,” Talanta, vol. 39, no. 7, pp. 737–742, 1992, doi: 10.1016/0039-9140(92)80088-U.[156] C. Xie, J. Xu, J. Tang, S. A. Baig, and X. Xu, “Comparison of Phosphorus Determination Methods by Ion Chromatography and Molybdenum Blue Methods,” Commun Soil Sci Plant Anal, vol. 44, no. 17, pp. 2535–2545, Sep. 2013, doi: 10.1080/00103624.2013.811518.[157] P. Masson, C. Morel, E. Martin, A. Oberson, and D. Friesen, “Comparison of soluble P in soil water extracts determined by ion chromatography, colorimetric, and inductively coupled plasma techniques in PPB range,” Commun Soil Sci Plant Anal, vol. 32, no. 13–14, pp. 2241–2253, 2001, doi: 10.1081/CSS-120000280.[158] P. N. Soltanpour, A. Khan, and W. L. Lindsay’, “Factors Affecting Dtpa-Extractable Zn, Fe, Mn, and Cu from Soils1,” Commun Soil Sci Plant Anal, vol. 7, no. 9, pp. 797–821, 1976, doi: 10.1080/00103627609366689.[159] M. Thompson and S. L. R. Ellison, “A review of interference effects and their correction in chemical analysis with special reference to uncertainty,” Accreditation and Quality Assurance, vol. 10, no. 3, pp. 82–97, 2005, doi: 10.1007/s00769-004-0871-5.[160] WEPAL, “WAGENINGEN EVALUATING PROGRAMS Certificate of Analysis (WEPAL) - ISE sample 919,” 2019.[161] WEPAL, “WAGENINGEN EVALUATING PROGRAMS Certificate of Analysis (WEPAL) - ISE sample 890,” pp. 1–12, 2019.[162] WEPAL, “WAGENINGEN EVALUATING PROGRAMS Certificate of Analysis (WEPAL) - ISE sample 850,” pp. 1–12, 2019.[163] C. Voica, A. Dehelean, A. Iordache, and I. Geana, “Method validation for determination of metals in soils by ICP-MS,” Rom Rep Phys, vol. 64, no. 1, pp. 221–231, 2012.[164] W. Horwitz and R. Albert, “The Horwitz ratio (HorRat): A useful index of method performance with respect to precision,” J AOAC Int, vol. 89, no. 4, pp. 1095–1109, 2006, doi: 10.1093/jaoac/89.4.1095.[165] A. Gustavo González and M. Ángeles Herrador, “A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles,” TrAC - Trends in Analytical Chemistry, vol. 26, no. 3, pp. 227–238, 2007, doi: 10.1016/j.trac.2007.01.009.[166] “CITAC / EURACHEM GUIDE Guide to Quality in Analytical Chemistry An Aid to Accreditation,” 2002. [Online]. Available: http://www.european-accreditation.org/publication/citac-eurachem-ta[167] JCGM, “Evaluation of measurement data-Guide to the expression of uncertainty in measurement Évaluation des données de mesure-Guide pour l’expression de l’incertitude de mesure,” 2008. [Online]. Available: www.bipm.org[168] FAO 2009, “La agricultura mundial en la perspectiva del año 2050,” Fao, p. 4, 2009, [Online]. Available: http://www.fao.org/fileadmin/templates/wsfs/docs/I[169] K. Montiel and M. Ibrahim, “Manejo integrado de suelos para una agricultura resiliente al cambio climático.” [Online]. Available: http://www.iica.int[170] V. E. Vallejo-Quintero, “Importancia y utilidad de la evaluación de la calidad de suelos mediante el componente microbiano: experiencias en sistemas silvopastoriles,” Colombia Forestal, vol. 16, no. 1, pp. 83–99, 2013, Accessed: Jul. 19, 2023. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-07392013000100006&lng=en&nrm=iso&tlng=es[171] G. De Dios, E. Ortega-jimenez, A. Guerrero, C. J. López, and E. Ortega, “Importancia de la fertilización en praderas tropicales,” Agroproductividad, vol. 11, no. 5, pp. 130–133, May 2019.[172] B. King, “The selection and use of reference materials - a basic guide for laboratories and accreditation bodies,” Accreditation and Quality Assurance, vol. 8, no. 9, pp. 429–433, Sep. 2003, doi: 10.1007/s00769-003-0601-4.[173] E. V. Vanchikova et al., “Comparative assessment of the methods for exchangeable acidity measuring,” Eurasian Soil Science, vol. 49, no. 5, pp. 512–518, 2016, doi: 10.1134/S1064229316050136.[174] LGC, “Reference Materials Catalogue,” 2022. [Online]. Available: https://ec.europa.eu/jrc[175] P. M. Chetty and D. Van Dijk, “The establishment and use of a reference material as a control sample,” Commun Soil Sci Plant Anal, vol. 33, no. 15–18, pp. 2653–2659, 2002, doi: 10.1081/CSS-120014470.[176] “North American Proficiency Testing | NAPT.” https://www.naptprogram.org/ (accessed Jul. 19, 2023).[177] “Nutrients in Soil | CRM, PT, QR, Soil | ERA.” https://www.eraqc.com/nutrients-in-soil-soil-era000128 (accessed Jul. 19, 2023).[178] A. A. Veroniki et al., “Methods to estimate the between-study variance and its uncertainty in meta-analysis,” Res Synth Methods, vol. 7, no. 1, pp. 55–79, Mar. 2016, doi: 10.1002/jrsm.1164.[179] R. DerSimonian and N. Laird, “Meta-analysis in clinical trials revisited,” Contemp Clin Trials, vol. 45, pp. 139–145, Jun. 2015, doi: 10.1016/j.cct.2015.09.002.[180] S. Ariel, R. Ovelar, and H. Causarano, “Heterogeneidad del suelo en un campo experimental y su efecto sobre el sesamo (Sesamum indicum l.),” Investigación Agraria, vol. 4, no. 1, pp. 13–16.[181] R. Fernández and N. Trillo, “La textura del suelo como fuente de heterogeneidad; sus efectos sobre la oferta de agua para las plantas,” pp. 171–192, 2017, Accessed: Jul. 19, 2023. [Online]. Available: https://www.researchgate.net/publication/319872937_La_textura_del_suelo_como_fuente_de_heterogeneidad_sus_efectos_sobre_la_oferta_de_agua_para_las_plantas[182] V. M. Mayor-Durán, M. Blair, and J. E. Muñoz, “Metodología para estimar el coeficiente de heterogeneidad del suelo, el número de repeticiones y el tamaño de parcela en investigaciones con frijol (Phaseolus vulgaris L.),” Acta Agron, vol. 61, no. 1, pp. 32–39, 2012, Accessed: Jul. 19, 2023. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-28122012000100005&lng=en&nrm=iso&tlng=es[183] A. M. Idris and A. A. El-Zahhar, “Indicative properties measurements by SEM, SEM-EDX and XRD for initial homogeneity tests of new certified reference materials,” Microchemical Journal, vol. 146, pp. 429–433, May 2019, doi: 10.1016/j.microc.2019.01.032.[184] A. Sahuquillo, A. Rigol, and G. Rauret, “Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments,” TrAC - Trends in Analytical Chemistry, vol. 22, no. 3. Elsevier, pp. 152–159, Mar. 01, 2003. doi: 10.1016/S0165-9936(03)00303-0.[185] E. A. Mackey et al., “Certification of Three NIST Renewal Soil Standard Reference Materials for Element Content: SRM 2709a San Joaquin Soil, SRM 2710a Montana Soil I, and SRM 2711a Montana Soil II.”[186] M. A. Taboada, R. S. Lavado, and Universidad de Buenos Aires. Facultad de Agronomia., Alteraciones de la fertilidad de los suelos : El halomorfismo, la acidez, el hidromorfismo y las inundaciones.[187] F. Pereyra, Suelos de la Argentina Geografía de suelos, factores y procesos formadores. Buenos Aires, Argentina, 2011.[188] ICONTEC, “NTC 5264 Calidad Del Suelo. Determinación de pH.” [Online]. Available: https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-del-ph-ntc5264-2018.html (accessed Jul. 19, 2023).[189] L. Soto, F. Niño, D. Garzón, and D. Ahumada, “Development of Reference Material of Mercury in Fish: A comparison of different alternatives to homogeneity assessment,” 17th IMEKO TC 10 and EUROLAB Virtual Conference“Global Trends in Testing, Diagnostics & Inspection for 2030” , pp. 123–128, 2020, Accessed: Jul. 19, 2023. [Online]. Available: https://www.imeko.org/publications/tc10-2020/IMEKO-TC10-2020-014.pdf[190] ISO, “ISO 13528:2022 Statistical methods for use in proficiency testing by interlaboratory comparison.” https://es.scribd.com/document/529604884/ISO-13528-SP (accessed Jul. 19, 2023).[191] C. De Kreij and G. Wever, “Proficiency testing of growing media, soil improvers, soils, and nutrient solutions,” Commun Soil Sci Plant Anal, vol. 36, no. 1–3, pp. 81–88, 2005, doi: 10.1081/CSS-200042971.[192] P. Quevauviller et al., “Certified reference material for the quality control of EDTA- and DTPA-extractable trace metal contents in calcareous soil (CRM 600),” Fresenius J Anal Chem, vol. 360, no. 5, pp. 505–511, 1998, doi: 10.1007/s002160050750.[193] A. M. Idris, A. O. Alnajjar, T. S. Alkhuraiji, and K. F. Fawy, “Long-term stability test of elemental content in new environmental certified reference material candidates using ICP OES and ICP-SFMS,” Toxin Rev, vol. 40, no. 4, pp. 645–653, 2021, doi: 10.1080/15569543.2019.1617315.[194] R. Magari, “Assessing Shelf Life Using Real-Time and Accelerated Stability Tests,” Biopharm Int, pp. 36–47, Nov. 2003, Accessed: Jul. 19, 2023. [Online]. Available: https://www.researchgate.net/publication/289381233_Assessing_Shelf_Life_Using_Real-Time_and_Accelerated_Stability_Tests[195] G. W. Thomas, “Soil pH and Soil Acidity,” Methods of Soil Analysis, Part 3: Chemical Methods, pp. 475–490, Jan. 2018, doi: 10.2136/SSSABOOKSER5.3.C16.[196] E. Amézketa, “Soil Aggregate Stability: A Review,” Journal of Sustainable Agriculture, vol. 14, no. 2–3, pp. 83–151, Jul. 1999, doi: 10.1300/J064V14N02_08.[197] B. D. Kay, “Soil Structure and Organic Carbon: A Review,” Soil Processes and the Carbon Cycle, pp. 169–197, Feb. 2018, doi: 10.1201/9780203739273-13.[198] C. A. Lucho-Constantino, M. Álvarez-Suárez, R. I. Beltrán-Hernández, F. Prieto-García, and H. M. Poggi-Varaldo, “A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater,” Environ Int, vol. 31, no. 3, pp. 313–323, Apr. 2005, doi: 10.1016/J.ENVINT.2004.08.002.[199] R. P. Matos, V. M. P. Lima, C. C. Windmöller, and C. C. Nascentes, “Correlation between the natural levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley (MG), Brazil,” J Geochem Explor, vol. 172, pp. 195–202, Jan. 2017, doi: 10.1016/J.GEXPLO.2016.11.001.[200] M. F. Alarcón-Jiménez, J. H. Camacho-Tamayo, and J. H. Bernal, “Management zones based on corn yield and soil physical attributes,” Agron Colomb, vol. 33, no. 3, pp. 373–382, 2015, doi: 10.15446/AGRON.COLOMB.V33N3.53760.[201] D. Borsboom, “Latent Variable Theory,” Measurement: Interdisciplinary Research & Perspective, vol. 6, no. 1–2, pp. 25–53, May 2008, doi: 10.1080/15366360802035497.[202] D. Borsboom, G. J. Mellenbergh, and J. Van Heerden, “The Theoretical Status of Latent Variables,” Psychological Review, vol. 110, no. 2. pp. 203–219, Apr. 2003. doi: 10.1037/0033-295X.110.2.203.[203] S. L. R. Ellison and M. Thompson, “Standard additions: Myth and reality,” Analyst, vol. 133, no. 8. Royal Society of Chemistry, pp. 992–997, 2008. doi: 10.1039/b717660k.[204] N. C. Schwertman, M. A. Owens, and R. Adnan, “A simple more general boxplot method for identifying outliers,” Comput Stat Data Anal, vol. 47, no. 1, pp. 165–174, Aug. 2004, doi: 10.1016/J.CSDA.2003.10.012.[205] J. E. Cavanaugh and A. A. Neath, “The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements,” Wiley Interdiscip Rev Comput Stat, vol. 11, no. 3, p. e1460, May 2019, doi: 10.1002/WICS.1460.[206] H. Louie, M. Wu, P. Di, P. Snitch, and G. Chapple, “Direct determination of trace elements in sea-water using reaction cell inductively coupled plasma mass spectrometry,” J Anal At Spectrom, vol. 17, no. 6, pp. 587–591, 2002, doi: 10.1039/b109121m.[207] Q. Ketterings, C. Miyamoto, R. R. Mathur, K. Dietzel, and S. Gami, “A Comparison of Soil Sulfur Extraction Methods,” Soil Science Society of America Journal, vol. 75, no. 4, pp. 1578–1583, 2011, doi: 10.2136/sssaj2010.0407.[208] I. Povar and O. Spinu, “The role of hydroxy aluminium sulfate minerals in controlling Al 3+ concentration and speciation in acidic soils,” Central European Journal of Chemistry, vol. 12, no. 8, pp. 877–885, 2014, doi: 10.2478/s11532-014-0540-4.[209] C. Córdova et al., “Scientific Note. An alternative method to measure available sulphur by ion chromatograhy in volcanic soils,” Chilean J. Agric. Anim. Sci., ex Agro-Ciencia, vol. 33, no. 2, p. 118, 2017.[210] C. G. Kowalenko and D. Babuin, “Interference problems with phosphoantimonylmolybdenum colorimetric measurement of phosphorus in soil and plant materials,” Commun Soil Sci Plant Anal, vol. 38, no. 9–10, pp. 1299–1316, May 2007, doi: 10.1080/00103620701328594.[211] J. B. Rodriguez, J. R. Self, and P. N. Soltanpour, “Optimal conditions for phosphorus analysis by the ascorbic acid-molybdenum blue method,” Soil. Sci. Soc. Am. J., vol. 58, no. May-June, pp. 867–870, 1994.[212] L. L. Wei, C. R. Chen, and Z. H. Xu, “The effect of low-molecular-weight organic acids and inorganic phosphorus concentration on the determination of soil phosphorus by the molybdenum blue reaction,” Biol Fertil Soils, vol. 45, no. 7, pp. 775–779, 2009, doi: 10.1007/s00374-009-0381-z.[213] E. A. Nagul, I. D. McKelvie, P. Worsfold, and S. D. Kolev, “The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box,” Anal Chim Acta, vol. 890, pp. 60–82, 2015, doi: 10.1016/j.aca.2015.07.030.[214] J. T. Sloop, D. A. Gonçalves, L. M. O’brien, J. A. Carter, B. T. Jones, and G. L. Donati, “Evaluation of different approaches to applying the standard additions calibration method,” Anal Bioanal Chem, vol. 413, pp. 1293–1302, 2021, doi: 10.1007/s00216-020-03092-8/Published.[215] A. L. Hauswaldt et al., “Uncertainty of standard addition experiments: A novel approach to include the uncertainty associated with the standard in the model equation,” Accreditation and Quality Assurance, vol. 17, no. 2, pp. 129–138, 2012, doi: 10.1007/s00769-011-0827-5.[216] G. Giannoulas, G. Z. Tsogas, and D. L. Giokas, “Single-point calibration and standard addition assays on calibrant-loaded paper-based analytical devices,” Talanta, vol. 201, pp. 149–155, Aug. 2019, doi: 10.1016/j.talanta.2019.04.008.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85244/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL52964051.2023.pdf52964051.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf5118238https://repositorio.unal.edu.co/bitstream/unal/85244/2/52964051.2023.pdfe8e26ed1cb66bd75af84d29995340105MD52THUMBNAIL52964051.2023.pdf.jpg52964051.2023.pdf.jpgGenerated Thumbnailimage/jpeg4895https://repositorio.unal.edu.co/bitstream/unal/85244/3/52964051.2023.pdf.jpg88b562e2f7ff3778b9c7e6a5c5b31be7MD53unal/85244oai:repositorio.unal.edu.co:unal/852442024-01-12 23:03:35.014Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=